ICPR’02 - IN PROCEEDINGS OF THE SIXTEENTH IAPR INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION,
QUEBEC CITY, CANADA, PP. 560-563, voL. II, AuGcusT 2002.

A Unified Framework for Quasi-Linear Bundle Adjustment

Adrien Bartoli, Adrien.Bartoli@inria.fr
INRIA Rhone-Alpes, 655, av. de I’Europe, 38334 St. Ismier cedex, France.

Abstract

Obtaining 3D models from long image sequences is a ma-
jor issue in computer vision. One of the main tools used to
obtain accurate structure and motion estimates is bundle ad-
justment. Bundle adjustment is usually performed using non-
linear Newton-type optimizers such as Levenberg-Marquardt
which might be quite slow when handling a large number of
points or views.

We investigate an algorithm for bundle adjustment based
on quasi-linear optimization. The method is straightforward
to implement and relies on solving weighted linear systems
obtained as simple functions of the input data. Important
features are that (7) the original cost function is preserved,
(4¢) different projection models, either calibrated or not, are
handled in a unified framework and (¢i¢) any number of views
and points as well as missing data can be handled.

Experimental results on simulated and real data show that
the algorithm is as accurate as standard techniques while re-
quiring less computational time to converge.

1. Introduction

Recovering metric structure and motion from uncalibrated
images is a central problem for computer vision. Most of
the time, a sub-optimal solution is obtained in projective
space for motion, then for structure [1], or jointly [6]. Self-
calibration is then performed to upgrade the reconstruction to
metric space.

In this paper, we investigate a very simple technique for
bundle adjustment. Experimental results reveal that it is as
accurate as traditional techniques while requiring less cpu
time. We consider both the full perspective and the affine
projection, either calibrated or uncalibrated. We may end up
therefore with projective, affine or metric reconstructions.

Let us consider point features. Bundle adjustment basi-
cally consists in finding the minimum of a cost function de-
fined as the sum of discrepancies between actual and pre-
dicted image points. These discrepancies are measured us-
ing the Euclidean distance. The optimization is performed
over a set of parameters that represents structure and motion
using most of the time non-linear Newton-type optimization
techniques such as Levenberg-Marquardt [7]. This technique

has the following drawbacks. Firstly, handling the free scale
of homogeneous entities such as vectors or matrices repre-
senting points or cameras may be non-trivial. Secondly, it
requires the computation of at least the first order Jacobian
matrix of the residuals with respect to structure and motion
parameters which might be non-trivial. Thirdly, the compu-
tational cost may be non-negligible since the Hessian matrix
has to be inverted, even if specific techniques have been pro-
posed to speed up the process [7].

In this paper, we adapt the resection-intersection tech-
nique [2, 5, 7] to perform bundle adjustment using quasi-
linear optimizations. Our contribution differs from previous
ones in that (i) we use the original cost function of bundle
adjustment, which preserves optimality and (i¢) we handle
a great variety of camera models in a unified manner. In
particular, we deal with calibrated configurations where non-
linear constraints hold on the recovered motion. The final
algorithm is simplicity itself. The method relies on rewriting
the non-linear Euclidean distance used in bundle adjustment
as a weighted bilinear algebraic distance [4]. In practice, it
consists in iteratively solving weighted least squares systems
that are simple functions of image point positions. Exper-
imental results reveal that it performs as well as standard
techniques in terms of convergence accuracy while greatly
reducing computational cost.

This paper is organized as follows. In §2, we give our
notation and preliminaries. §3 introduces the principle and
the algorithm for quasi-linear bundle adjustment. These re-
sults are independent of the camera model. The approach is
specialized in §584.1 and 4.2 to uncalibrated and calibrated
perspective cameras respectively. Finally, §5 validates the
approach on simulated and real data and §6 gives our con-
clusions and perspectives.

2. Notation and preliminaries.

Vectors are typeset using bold letters (q, Q), matrices us-
ing sans-serif fonts (P, S) and scalars in italics (z,w). We
make no formal distinction between coordinate vectors and
physical entities. Everything is expressed in homogeneous
coordinates, e.g. q" ~ (q1 g2 ¢3) is an image point, where
~ means equality up to scale and T is vector/matrix transpo-

sition.

The standard cost function for bundle adjustment is de-
fined by C = 3=, >, d*(qyj,dij), where d” is the squared
Euclidean distance, q;; the reprojection of the i-th estimated
3D point in the j-th image and q;; the corresponding image
point. We drop the indices ¢ and j for clarity. Bundle adjust-
ment can be formulated as minp g C, where P and Q respec-
tively designate the estimates of the parameters of motion and
structure.

Distances in the image. The Euclidean distance is em-
ployed for bundle adjustment and in many criteria since it
is physically meaninful. Most of the time, its non-linearity
induces that of the corresponding criterion which therefore
can not be used to linearly estimate e.g. structure or motion.
On the other hand, consider the squared algebraic distance
d, defined by [4]:

d*(x,y) = w2 _d*(x,y) where Wxy = (r3y3)~2. (1)

X,y a
The non-linearity is hidden in the weight factors w y which
can be thought of as a bias of the algebraic distance with re-
spect to the Euclidean one. A convenient expression may be
derived as follows:

dZ:||S[x]Xy||2andS:(e "), 2

1 0

where ||.||? is the L5 or squared Frobenius norm for vectors
or matrices respectively and [.] x the skew-symmetric 3 x 3-
matrix associated with the cross product, i.e. [v]xq = v x q.
The algebraic distance does not have any physical meaning
since it depends upon the relative scale of the homogeneous
representation of x and y. Its advantage is that it is bilinear.
Since in most estimation problems one of the points com-
pared is known, d, becomes linear for the other.

Quasi-linear optimization. The relationship (1) between
the Euclidean and the algebraic distance is the basis for quasi-
linear optimization. The principle is to initialize weight
factors to unity and compute a biased estimate using the
weighted algebraic distance. When such an estimate has been
obtained, weight factors can be computed using (1). The pro-
cess is then iterated until convergence. Typically, 3 or 4 iter-
ations are enough.

3. Quasi-Linear Bundle Adjustment

We derive the bundle adjustment algorithm, which is valid
for most camera models. We then detail camera-dependent
elements.

Consider the initial bundle adjustment problem which in-
volves optimizing simultaneaously over the motion and struc-
ture parameters. It can be split, as indicated in [2, 5, 8] and
becomes minp (ming C). This is strictly equivalent to the
initial problem in that the same minima are kept. We split ac-
cordingly the optimization process into two distinct steps, for
motion on the one hand and for structure on the other hand.

These optimization steps can be alternatively performed to
refine structure and motion. This scheme is termed resection-
intersection. Each step can then be conducted independently
using non-linear optimizers such as Levenberg-Marquardt, as
proposed in [8]. The advantages of doing so are humerous:

e it reduces the complexity, since the optimization con-
sists of (m — 1) independent outer steps® over an 11-
dimentional space and n independent 3-dimensional in-
ner steps (m is the number of views of n is the number
of points);

o it performsas well as directly optimizing over all the pa-
rameters in terms of convergence accuracy, as reported
by [2, 5, 8] and confirmed by our results;

e each of the two alternated optimization steps can be per-
formed quasi-linearly, see the next section.

The algorithm, given below, needs an initialization of either
structure or motion whereas standard bundle adjusters require
both:

1. initialize weight factors to unity: wq g = 1. These are
not necessary for the affine camera model;

2. quasi-linearly solve for structure;

3. quasi-linearly solve for motion;

4. iterate steps 2 and 3 until convergence (see below);

The estimation of weight factors, which corrects the bias of
the algebraic distance with respect to the Euclidean one, is
done inside steps 2 and 3.

Convergence. Convergence is achieved when steps 2 and 3
become idempotent for structure and motion, i.e. when the
difference between two consecutive values of the cost func-
tion C is lower than a threshold, typically 10e—8 pixel, or
when the residual error begins to increase.

4. Resection-I nter section
4.1. Uncalibrated Pin-Hole Cameras

We consider uncalibrated full perspective projection to
model cameras. This yields projective reconstructions. We
derive the equations that lead to structure, then motion, quasi-
linear estimation. Consider one term d?(q, q) of the double
sum of the cost function C. Using the link (1) between the
Euclidean and the algebraic distances d and d,, then the ex-
pression (2) of the algebraic distance, each of these terms can
be written d*(q,q) = w? 4[|S[a]x@l[*>. Using perspective
projection g ~ PQ and some minor algebraic manipulations:

P;Q — 2P}

2
#0@) =g |)| e
(4:9) =wqq PIQ—-¢piQ ®)
where p; are the rows of P. Using (1), we obtain the expres-
sion for the weight factors as:
-2
Wq,q = (ng) . 4

1we do not optimize the first camera parameters to (partially) fix the co-
ordinate frame.

Intersection — Solving for the structure. Using equation
(3), and if weight factors wg g are assumed to be known,
one can recover the structure by solving the linear system
MU*Q = 0 for each point feature Q considered where:

| J (5)

Each of the m views where the point Q is visible provides
2 equations. The solution is the unit singular vector corre-
sponding to the smallest singular value of M“ which can be
obtain using e.g. svD. This naturally ensures the free scale
of the recovered homogeneous vector since ||Q||? = 1.

The process is then iterated while re-estimating weight
factors wg g to reduce the bias of the algebraic distance until
convergence, which is assessed as in §3.

T T
us _ P2 — 492P3
(M)2m><4 - [wqﬁ(

p] — a1p}

Resection — Solving for the motion. We use equation (3)
to form a linear system MY"p that can be solved using svD
where p ~ (p] pd pJ) encapsulates the rows of P and:

)|

Each of the n points that project onto view P provides 2 equa-
tions. The iteration is then conducted while re-estimating the
weight factors, as for the structure. The free scale of P is
fixed since ||P||? = ||p||* = 1.

o Q' —4Qf

Q" o] -a1QT

(Mum)2n><12 = [wqa(

4.2. Calibrated Pin-Hole Cameras

We consider the calibrated full perspective camera model.
This leads to metric reconstructions. In this case, resection is
termed pose estimation and has been widely studied, see e.g.
[3]. When the motion is frozen, solving for the structure can
be conducted using the quasi-linear algorithm of §4.1.

Pose estimation from minimal data, i.e. n = 3 points is
non-linear by nature since there exist four solutions in this
case. However, when an initial guess is known, it can be re-
fined using linear algebra. Difficulties arise because of non-
linear constraints on the orthonormality of the recovered ro-
tation matrix. An algorithm for pose refinement with n. > 3
points that fits into our quasi-linear framework is described
in the next section.

Quasi-linear pose estimation. Let P ~ K(R t) be the pro-
jection matrix where K is a 3 x 3 matrix containing the known
intrinsic parameters, R a 3 x 3 rotation matrix and t a 3-
vector. The unknowns are therefore R and t. Under the as-
sumption of zero skew and unity aspect ratiowhich are valid
for most modern cameras, distances measured onto the image
plane are equal to distances measured onto the retina up to a
scale factor as d?(q,q) = f2d*(x,X) where x = K~!q and
X~ = K~1q are retinal points and f is the focal length (in
number of pixels).

Linearly update the motion. Each term d?(q,q) of the
double sum of the cost function C can be expanded as in
the uncalibrated case, but using retinal points. This gives
d*(q,q) = f?w? .||S[x]«x]|?. Using then perspective pro-
jection X ~ (R t)Q of the point QT ~ (QT «) on the retina,
we obtain d?(q,q) = f2w?.||S[x]x(RQ + at)|[%. If we
approximate the rotation between two iterations of the algo-
rithm by a first order taylor expansion, (I + [w]yx), we ob-
tain after some minor algebraic manipulations d?(q,q) =
22 L ||S[x]xRQ — S[x]« [Q] x W + aS[x] « t||> + O, where
O contains higher order terms. By neglecting O, we can es-
timate the first order pose update m"™ = (w' tT) by solving
the linear system M®™m = d°™, where:

(MM, 6 = (P2l o (SHIXRIQ —aSbdy))
dm,, = L 2 vi;('[xJXRQ)n).

Algorithm. The algorithm for quasi-linear pose estimation

combines first order updates of pose and re-estimation of cal-

ibrated weight factors wy 3 = wqq:

1. solve for pose update using M“™m = d°™;

2. update rotation: R < RRy,, where Ry, gives the rotation
corresponding to w' = (w; wy w3) using e.g. Euler
angles;

3. re-estimate calibrated weight factors wy % using (4);

4. iterate steps 1-3 until convergence, see §3.

5. Experimental Results

In the following two sections, we compare previously de-
scribed algorithms to existing ones. We use simulated data
to compare them in the most general case, i.e. projective.
We then consider real images and both projective and met-
ric spaces. More detailled results, in particular on pose es-
timation and for the affine camera will be made available
in a longer version of the paper. We compare the follow-
ing algorithms. LIN is structure and motion initialization [1],
QLIN is the proposed quasi-linear method and LM relies on
the Levenberg-Marquardt non-linear optimizer. Note that our
implementation uses analytical differentiation and a sparse
inverser for the Hessian matrix, see [7]. We also compared a
full Hessian inversion-based implementation that we denote
as Lm-full.

The threshold for convergence (see §3) is the same for
QLIN and LM and is equal to 10e—2. Image point coordinates
are standardized such that they lie in [—1...1]°.

5.1. Simulated Data

The simulated scene consists of 3D point features chosen
at random inside a cube of 2 meters side length. We simulate
two camera configurations. The first one is stable and the sec-
ond one contains nearly unreconstructable points. We mea-
sure the reprojection error to assess the convergence accuracy

and the cpu time to convergence to compare computational
costs. In order to simulate realistic situations, we adopted
the following parameters: the focal length of the cameras is
1000 (expressed is number of pixels) and the image size is
512 x 512. Values plotted have been averaged over 50 trials.
Median values gave graphs similar to those for the means.
The curves for 3D errors show expected results, see e.g. [6].

Convergence accuracy. The standard configuration is 50
points, 10 views and an added image noise with a Gaussian
distribution of 0.5 pixel standard deviation.

Figures 1 (a) shows the results when varying the image
noise. We observe that for camera configuration 1, there is
no difference between QLIN and LM, even when the starting
point given by LIN lies quite far from the final result. The er-
ror for these two methods degrades gracefully as image noise
increases. For camera configuration 2, figure 1 (a) shows that
there is a slight difference between QLIN and LM only when
the level of added image noise is beyond 1 pixel. LM-full, not
shown on these graphs, gave exactly the same results as LM.

jxel)

o1 (p

Reprojection e
CPU time (second)

Image noise standard deviation (pixel) Number of views.

(@) (b)

Figure 1. (a): reprojection error at convergence versus
added image noise. The curves for QLIN and LM and
the first configuration, and for LM and the second con-
figuration are nearly undistinguishable. (b): CPU time to
convergence versus the number of views.

Computation time. We observe on figure 1 (b) that the
quasi-linear optimization requires less cpu time to conver-
gence than the non-linear one whatever the number of views.
Results from another experiment where added image noise is
varied from 0 to 2 pixels, shows that cpu time to convergence
linearly increases with the added image noise. The cpu time
needed by LM is twice thus needed by QLIN. LM-full gave
results out of range of these graphs.

5.2. Real Images

We use the 181 images of the hotel sequence? and 197
corner correspondences. These corners have been automat-
ically detected and semi-automatically matched through the
different views. Calibration data were approximately known
for this sequence. The results given in table 1 show that QLIN

2These data have been provided by the Modeling by Videotaping group
in the Robotics Institute, Carnegie Mellon University.

| first 5 images full 181 images sequence

| rep. error (pixel) [cpu time (second) | rep. error (pixel) [cPu time (second) |
- 9.4209 6.2524

Lm-full 0.0357

ba LM 0.0357 2.55

QLIN 0.0391 0.95

| step | approach

init.

1056 ~17 mn.

22026 96
22034 37

Table 1. Reprojection errors (pixel) and CPU time to con-
vergence (second) for various algorithms and sequence
lengths.

converges to the same residual error as LM and LM-full. In
terms of computational cost, we observe that QLIN is roughly
2.5 times faster than Lm.

6. Conclusions and Per spectives

We addressed the problem of structure and motion refine-
ment using bundle adjustment. We perform this task based
on quasi-linear optimization while keeping the original cost
function of bundle adjustment. We split the problem into
structure refinement on the one hand and motion refinement
on the other hand. The principle is then to rewrite the Eu-
clidean distance used in bundle adjustment as a weighted
algebraic distance. Quasi-linear optimization iteratively up-
dates these weights while refining structure or motion.

The result is a disarmigly simple algorithm that comes out
to be a loop over two weighted linear systems constructed as
simple functions as the input data.

We conducted numerous experiments on simulated and
real data. In the light of these results, we observed that this
algorithm is as accurate as standard Levenberg-Marquardt-
based bundle adjusters in terms of convergence accuracy
while being much faster in terms of computational cost.

Acknowledgement. | wish to thank Frederik Schaffalitzky
for providing his implementation of LM used in §5.

References

[1] P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition
from extended image sequences. In ECCV, 1996.

[2] Q. Chenand G. Medioni. Efficient iterative solution to M-view
projective reconstruction. In CVPR, 1999.

[3] R.Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and M. Kim.
Pose estimation from corresponding point data. |EEE SMC,
6(19):1426-1446, 1989.

[4] R.Hartley. Minimizing algebraic error. In ICCV, 1998.

[5] S. Mahamud, M. Herbert, Y. Omori, and J. Ponce. Provably-
convergent iterative methods for projective structure and mo-
tion. In CVPR, 2001.

[6] P. Sturm and B. Triggs. A factorization based algorithm for
multi-image projective structure and motion. In ECCV, 1996.

[7] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bun-
dle ajustment — a modern synthesis. In Vision Algorithms:
Theory and Practice, 2000.

[8] Z. Zhang. Motion and structure from two perspective views:
From essential parameters to euclidean motion via fundamental
matrix. Journal of the Optical Society of America A, 1997.

