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Abstract

This paper is about multi-view modeling of a rigid scene. We merge the tra-

ditional approaches of reconstructing image-extractable features and of modeling

via user-provided geometry. We use features to obtain a first guess for structure

and motion, fit geometric primitives, correct the structure so that reconstructed fea-

tures lie exactly on geometric primitives and optimize both structure and motion

in a bundle adjustment manner while enforcing the underlying constraints. We

specialize this general scheme to the point features and the plane geometric prim-

itives. The underlying geometric relationships are described by multi-coplanarity

constraints. We propose a minimal parameterization of the structure enforcing

these constraints and use it to devise the corresponding maximum likelihood es-

timator. The recovered primitives are then textured from the input images. The

result is an accurate and photorealistic model.

Experimental results using simulated data confirm that the accuracy of the

model using the constrained methods is of clearly superior quality compared to

that of traditional methods and that our approach performs better than existing

ones, for various scene configurations. In addition, we observe that the method
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still performs better in a number of configurations when the observed surfaces are

not exactly planar. We also validate our method using real images.

Keywords: 3D Reconstruction, Piecewise Planar Scene, Constrained Structure and

Motion, Maximum Likelihood Estimator.

1 Introduction

The general problem of scene modeling is, given a sequence of images without a priori

information, to recover a model of the scene as well as (relative) pose and calibration.

Performing this task accurately is one of the key goals in computer vision.

In this paper, we focus on the geometric scene modeling, i.e. we do not address

aspects of lighting and surface appearance recovery besides perspective correction of

texture maps. We aim at devising a framework for the recovery of photorealistic and

accurate models from a sparse set of images.

Existing works fall into two categories: the feature- and the primitive-based ap-

proaches. By features, we designate two- or lower-dimensional geometric entities that

can be extracted from individual images (e.g. points, lines, conics). By primitives, we

mean other entities, e.g. planes or higher-dimensional ones (cubes, spheres). Let us

examine these two approaches in more detail. First, the primitive-based approach, see

e.g. [9, 22, 34], in which the user typically provides parametric primitives through a

modeling program. Parameters are determined using 3D-2D or 2D-2D matches and

possibly refined using photometric criteria, such as maximization of the gradient for

wireframe models, to optimize their reprojection. If necessary, camera calibration is

performed and texture maps are extracted for each primitive to produce a renderable

model. This approach has proven to give convincing results, notably in terms of pro-

ducing photorealistic rendering.

The feature-based approach, see e.g. [6], relies on the existence of extractable im-

age features. These features are matched accross the different views, typically using

photometric and geometric criteria or by hand. From these, structure and motion are

recovered. If necessary, camera calibration is performed and parameters refined in a
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bundle adjustment manner. This approach has proven to provide accurate reconstruc-

tion results, due to the high (in general) number of features considered. The problem

is that modeling a scene with features alone does not allow to produce photorealistic

rendering. Several works consider this issue, by using as features all the pixels, via

dense matching [30], space-carving [21, 31], or plenoptic modeling [14, 23]. The main

limitation of at least the latter approach is that a high number of images is necessary to

achieve accurate reconstruction. Other approaches relying on an a priori known envi-

ronment (e.g. using turn-table sequences [27, 38] or apparent contours [8]) can produce

high quality rendering but do not work in the general case.

Actually, there exists a continuum between the two extreme feature- and primitive-

based categories, made of hybrid approaches using both features and primitives1. These

approaches are made to draw on the strength of both feature- and primitive-based cate-

gories: the high (in general) number of features might allow to obtain an accurate model

recovery (even more accurate than for feature-based approaches) while the primitives

contribute to form a photorealistic model. In hybrid approaches, the features and the

primitives are linked by geometric constraints.

We study such an hybrid approach based on the point feature and the plane primi-

tive. The geometric constraints used are incidence of points with none, one or several

modeled planes and are called multi-coplanarity constraints. The corresponding con-

strained structure and motion recovery process is then called piecewise planar structure

and motion.

These choices are motivated as follow. The point is a standard, widespread fea-

ture that may be easily extracted from the images. Most existing sparse structure and

motion recovery systems deal with point features. The plane is a primitive sufficiently

general to model a large number of real scenes, especially in man-made environments.

Moreover, there are several works dealing with planes, that might be useful for an

integrated modeling system: plane detection [3, 7, 10, 11, 12, 32, 40], plane-guided

point matching [1, 11, 12, 32, 45], and self-calibration using the knowledge of planes

[1, 24, 42, 45, 46].
1Note that this is very different from the hybrid approach of [9] which is actually primitive-based.
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Concretely, we propose methods to parameterize points and planes under multi-

coplanarity constraints. This parameterization is consistent in the sense that its number

of parameters is the same as the number of degrees of freedom of the scene. It is em-

ployed to derive maximum likelihood estimators. Scene structure and camera motion

are consistently estimated at once. A projective as well as a Euclidean version of the

estimator are derived. The recovered structure perfectly satisfies the geometric con-

straints and is optimal in this respect, where optimal means maximum likelihood under

a geometric error model.

In the following two paragraphs, we present the piecewise planar structure and

motion process and review existing work.

Piecewise planar structure and motion. Given point correspondences between im-

ages, traditional unconstrained structure and motion reconstruct the points without

using geometric constraints. First, suboptimal methods, see e.g. [6, 37], are used to

compute an initial solution. The result is then refined using bundle adjustment [33, 44].

If camera calibration is not available, the result is a projective reconstruction. In this

case, the calibration information can be recovered on-line using several techniques

[18, 25, 29, 41]. The uncalibrated reconstruction is then upgraded to metric and bundle

adjustment is used to compute an optimal metric structure and motion.

In the projective case, when only points are used as features, then the scene has

11n − 15 + 3m essential degrees of freedom, where n is the number of views and m

the number of points. Each view has 11 degrees of freedom; 15 degrees of freedom for

the choice of the projective basis are deduced.

Assume now, that not only point correspondences are available, but also their plane

memberships. The goal is to compute an optimal structure and motion including the ge-

ometric constraints underlying to the special multi-coplanar structure of the points. Ide-

ally, this process is a maximum likelihood estimator optimizing feature, primitive po-

sitions, and viewing parameters while enforcing the underlying geometric constraints.

Consequently, there is a need for a new formulation of structure and motion, that mod-

els both features and primitives, and that preserves the relationships between them, in

our case, that models points and enforces multi-coplanarity constraints. The use of
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such a constrained estimator has a strong impact on the structure and motion process.

Compared to the unconstrained case, the use of primitives constituting an important

geometric constraint on both structure and motion, we can expect better reconstruction

results. It might also be faster, as the number of parameters is usually lower.

Intra-primitive constraints, such as a priori known angles or parallelism of the mod-

eled planes could be used. One problem with these constraints is that, generally speak-

ing, they can not be used in a projective framework. Many other kinds of constraints

could be modeled, such as the collinearity of points.

Choosing the constraints to model is difficult. Indeed, this is a trade-off between

accuracy (the more constraints are used, the more accurate the reconstruction will be)

and the complexity of the algebraic modeling. If too many kinds of constraints are

used, then we end up with a network of constraints, that may be viewed as a graph

linking features and primitives, and that might be redundent in the sense of cycles

in this graph. Another issue is the automatization of an integrated modeling system.

High-order constraints, such as the arrangement of planes in e.g. cuboı̈ds, are more

difficult to detect than the coplanarity of a set of points. A comprehensive treatment of

the possible geometric constraints is out of the scope of this paper.

As said before, the incorporation of multi-coplanarity constraints has an impact on

the number of essential degrees of freedom of the scene, e.g. a point on one plane

has 2 degrees of freedom instead of 3 in the unconstrained case. Consequently, the

number of degrees of freedom of such a scene becomes equal to 11n−15+3p+3m−
∑

j jmj where the notation mj designates the number of points lying on j of a total of

p modeled planes.

Let us review existing piecewise planar structure and motion estimators.

Previous work. Most of the existing works yield only a sub-optimal estimation of

the geometry. Actually, they fall into two categories:

• the recovered structure is only approximately piecewise planar so clearly the

results can not be optimal [11, 26, 39, 40, 46];

• the recovered structure is piecewise planar but the method is not optimal because
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it can not be turned into a maximum likelihood estimator or only the single-

coplanarity constraint is modeled [1, 3, 5].

If we want our estimator to be optimal with respect to piecewise planarity, it has to fall

into the second category, i.e. the recovered model has to be exactly piecewise planar.

The constrained structure and motion is a maximum likelihood estimator that incorpo-

rates points, planes and multi-coplanarity constraints in a bundle adjustment manner.

The cost function is non-linear [33, 44] and subject to constraints. There are several

ways to conduct such an optimization process, in particular, we could use constrained

optimization techniques such as sequential quadratic programming or a specific struc-

ture and motion parameterization enforcing the multi-coplanarity constraints [4, 5].

Ideally, these two possibilities give the same results because they are both consis-

tent (i.e. the number of algebraic degrees of freedom is the same as that of essential

degrees of freedom of the scene) and the cost function being optimized is the same.

However, in practice, the convergence of the optimization process is determined by the

number of parameters used which directly influences numerical stability. This deter-

mines which method to use in which case.

In our case, the number of parameters is high and so we have to reduce it to or

close to the minimum, i.e. the number of essential degrees of freedom, if we want to

ensure a stable optimization process. The first possibility consists in systematically

adding parameters to the system to model constraints and is consequently unadapted.

The second possibility is less systematic, so needs more algebraic manipulations to

be derived. However, the number of parameters is so reduced that the convergence

might be faster and more reliable. Another issue that is important to be dealt with for

both estimation cost and stability is that of analytic differentiation for the non-linear

minimizer, which implies that the parameterization has a closed-form expression.

We addressed the case of two views and points lying on one plane (i.e. the single-

coplanarity constraint) in [5] and extended it to multi-view and multi-coplanarity con-

straints in [4] where we derived the maximum likelihood estimator but without the

possibility of analytic differentiation. In this paper, we present an estimator and the

corresponding parameterization which is minimal for the structure and quasi-minimal
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for the motion, for n views and a quasi-general set of multi-coplanarity constraints and

which allows analytic differentiation.

As real world surfaces are only approximately planar, we experimentally evaluate

the performance of the constrained method compared to an unconstrained one with

respect to different degrees of deviation from planarity and different scene configura-

tions.

Since our approach needs to upgrade an uncalibrated reconstruction to metric, we

perform self-calibration. To initialize a bundle adjustment procedure, we use the linear

method of [28], inspired by [41], for the estimation of variable focal length. In practice,

we encountered a singular situation, that is likely to occur in modeling applications: the

optical axes of all images meet in a single 3D point (which will usually be the center of

the modeled object). We adapt the basic method to this case and validate the approach

on real images.

In §2 we give our notations. We then present our parameterization and the corre-

sponding maximum likelihood estimator for a projective framework in §3, followed by

an equivalent scheme in the Euclidean case in §4 where we also present self-calibration.

We report on experiments on simulated data for constrained structure and motion in §5.

Finally, §6 shows experimental results obtained using real images taken with an uncali-

brated camera which validate both the reconstruction and the self-calibration processes,

followed by our conclusions.

2 Notations

Physical entities (points, planes, etc.) are typeset using italic fonts (X , π, etc.) and

their corresponding homogeneous coordinate vectors using the same letters in bold

fonts (X, π, etc.). Matrices are designated by sans-serif fonts such as H. Vector and

matrix elements are typeset using italic fonts and indices, e.g. X ∼ (X1, X2, X3, X4)
T

where T is the transposition and ∼ the equality up to a non-zero scale factor.

The notation X/j is used to designate the vector formed with the elements of X

with index different from j. Similarly, Xj←α represents the vector X with the value α

inserted at the j-th position. The cross product is written × and the associated 3 × 3
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skew-symmetric matrix [.]×.

We model cameras using perspective projection, described by a 3 × 4 homoge-

neous matrix P. Non-linear optimization processes are conducted using the Levenberg-

Marquardt algorithm [13].

3 Constrained Projective Structure and Motion

In this section, we describe how to minimally parameterize the structure and quasi-

minimally the motion in the projective case. We then derive the maximum likelihood

estimator corresponding to the constrained structure and motion.

As shown in the expression for the number of essential degrees of freedom of the

scene, we have to take into account 15 degrees of gauge freedom left by the arbitrary

choice for the projective basis of the reconstruction. Gauge freedom is defined as

the internal freedom of choice for a coordinate system [43]. It can be fixed using a

particular formulation for the structure [17] or for the camera matrices [6]. Due to the

complexity of structure parameterization, we have chosen to absorb the gauge freedom

into the parameterization of motion.

In the next two sections, we describe respectively our structure and motion param-

eterizations.

3.1 Structure Parameterization

As said in the introduction, we have to parameterize both planes and points and in

addition enforce the underlying multi-coplanarity constraints. The parameterization

consists in passing from the usual homogeneous 4-vectors that represent points and

planes in 3D projective space, to a minimal set of parameters representing the structure

while enforcing the multi-coplanarity constraints. We first give an homogeneous and

consistent parameterization for planes and points and then remove the homogeneity

to reach a minimal parameterization. This last step is achieved using what we call

mapped coordinates that allow to locally remove homogeneity. This is also used in the

parameterization of the motion and in the Euclidean case.
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3.1.1 Multi-coplanarity Constraints

A multi-coplanarity constraint is a geometric constraint between a point and a set of

planes. Before parameterizing the structure, we have to decide where, in the parameter-

ization of planes, of points or both, these constraints have to be incorporated. Actually,

it seems inevitable to incorporate them in the point parameterization. Let us investi-

gate the case of plane parameterization. Indeed, consider the case of a point lying on

more than three planes. Such a point does not have, in general, any degree of freedom,

and can be determined using three of the planes it lies on2. Once this point has been

determined, it constrains the position of the other planes. Consequently, plane param-

eterization is dependent on multi-coplanarity constraints provided they contain a point

lying on more than three planes.

If we do not model points lying on more than three planes (or take into account only

three of the planes they lie on), it is possible to parameterize each plane independently

while the multi-coplanarity constraints up to three planes are to be taken into account

only for point parameterization. Considering that points lying on four or more planes

are rare, we make such an assumption (an algebraic solution will just be sketched). Let

us see the corresponding parameterization.

3.1.2 Planes

As said above, planes do not incorporate multi-coplanarity constraints and each one

has therefore 3 degrees of freedom. An homogeneous 4-vector is then a consistent

parameterization.

3.1.3 Points Under Multi-coplanarity Constraints

We describe point parameterization performed under a local incorporation of multi-

coplanarity constraints. Let us examine different possible means. We then present our

solution for the different multi-coplanarity cases.

To simplify the reading, we consider the case of a 2D point x constrained to lie

on a 2D line l, which is similar to the 3D single-coplanarity case. Such a constraint
2This is not true if the planes form a pencil.
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is expressed as lTx = 0 and is satisfied for any point expressed in the nullspace of

lT ∼ (l1, l2, l3).

The approach that naturally comes to mind is to compute a basis for the nullspace

of lT and to express the coordinates of point x in this basis. We examine two ways

to compute this nullspace basis and show that each of them are not appropriate to our

problem.

A basis for the nullspace of lT is given by the skew-symmetric 3× 3 cross-product

matrix associated to l (there are other possible bases):

L ∼ [l]× ∼




0 −l3 l2

l3 0 −l1

−l2 l1 0


 .

One can easily check that, as required, lTL = 0T
3 and rankL = 2. Any point on l

can be represented by a linear combination of the 3 columns of L, thereby involving

3 homogeneous coefficients. This is not consistent since a point on a line has only 1

degree of freedom. On the other hand, one could think of using only 2 columns of L as

a basis for the nullspace, say drop the leading column l1. In this case, the representation

is consistent, but it is no more complete: the point with coordinate l1 lying on l can not

be represented as a linear combination of the two last columns of L.

Another possibility is to compute an orthonormal basis for the nullspace of lT

through e.g. its singular value decomposition:

lT ∼ lTdiag(1, 0, 0)
(
l3×1 | V̄3×2

)
.

In this case, the basis given by the two columns of V̄ is minimal and the corresponding

parameterization would be consistent. However, since the entries of V̄ do not depend

directly on the coefficients of l, analytic differenciation would not be possible in the

underlying optimization process.

Consistency and analytic differenciation are the main reasons for our specific pa-

rameterization to be used. We successively deal with points lying on none, one, two

and three planes.
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Unconstrained points. Such a point does not lie on any modeled plane and being

therefore not subject to any modeled geometric constraint, it has 3 degrees of freedom.

An homogeneous 4-vector is then a consistent parameterization.

Single-coplanar points. Let X be a point constrained to lie on a plane π. Such a

point has 2 degrees of freedom and our goal is then to express it via an homogeneous

3-vector —instead of the general homogeneous 4-vector— by incorporating the single-

coplanarity constraint.

Algebraically, this constraint is written as π
TX = 0. Let us find a change of

projective basis where each point lying on π has an element fixed to a constant value,

so that this element can be ignored in the parameterization of X . For that purpose, we

define the class of homographies Hj
π by the identity matrix of size 4× 4 where the j-th

row (j ∈ {1 . . .4}) has been replaced by the 4-vector π
T (e.g. H1

π ∼

 π

T

03 I3×3


).

Let Ξ ∼ Hj
πX be the representation of X in this new basis. By definition of Hj

π, we

have Ξj = 0 and the point X can therefore be parameterized by Ξ/j , the homogeneous

3-vector formed from the 3 elements of Ξ with index different from j, X being further

recovered using X ∼ Hj
π
−1

Ξ.

There are 4 possibilities for the choice of j. Since Hj
π
−1

is necessary to recover X

from Ξ, we choose j as the index that maximizes (in magnitude) the determinant of

Hj
π: j = argmaxi| det Hi

π| which in fact leads to j = argmaxi|πi|. Such a choice

ensures Hj
π to be a bijective transformation since det Hj

π = πj that, by construction, is

always non-zero. Indeed, π is an homogeneous vector and has therefore at least one

non-zero element.

Table 1 shows the practical algorithm for parameterizing/unparameterizing X ∈ π

derived from the above reasoning. In the unparameterization, we divide by πj that, as

said above, is always non-zero.

The dropped coordinate depends on the current estimate of π. Therefore, it might

change between two steps of the optimization process. However, this does not cre-

ate discontinuities since after each optimization step, the structure is unparameter-

ized and standard homogeneous coordinates are recovered. The structure is then re-

parameterized for the next iteration, and the index of the dropped coordinate may
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Let X be a point subject to a single-coplanarity constraint with plane π. The homoge-

neous 4-vector X represents X in the current projective basis while the homogeneous

3-vector X̃ is a parameterization of X incorporating the single-coplanarity constraint.

Parameterization (X → X̃):

• choose j such that j = argmaxi|πi| subject to j ∈ {1 . . . 4} in the projective

case and j ∈ {1 . . . 3} in the Euclidean case;

• X̃ ∼ X/j .

Unparameterization (X̃ → X):

• compute α = −
∑

i6=j πiXi

πj
;

• X ∼ X̃j←α.

Table 1: Parameterization/unparameterization of a single-coplanar point.

change. The parameterization is therefore used in a local manner, which is impor-

tant in order to keep smooth the cost function and to avoid creating singularities in the

minimization process.

Multi-coplanar points, two planes. Let X be a point constrained to lie on planes π

and π′. Such a point has 1 degree of freedom provided that π 6= π′ and our goal is

then to express it via an homogeneous 2-vector —instead of the general homogeneous

4-vector— by incorporating the multi-coplanarity constraint.

We follow the same reasoning as for the previous case. We define the class of

homographies H
j,j′

π,π′ by the matrix Hj
π where the j′-th row has been replaced by the 4-

vector π
′T (e.g. H

1,2
π,π′ ∼




π
T

π
′T

02×2 I2×2


). Let us consider Ξ ∼ H

j,j′

π,π′X. By definition

of H
j,j′

π,π′ , we have Ξj = Ξj′ = 0 and point X can therefore be parameterized by Ξ/j,j′ ,

the homogeneous 2-vector formed from the 2 elements of Ξ with index different from

j and j′, X being further recovered using X ∼ H
j,j′

π,π′

−1

Ξ.

Since j and j′ must be different, this leaves 4 × 3 = 12 different choices for

them. As H
j,j′

π,π′

−1

is needed, we choose j and j ′ such that the determinant of H
j,j′

π,π′
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is maximized (in magnitude). Subsequently deriving a practical algorithm as in the

single-coplanarity case is then straightforward.

Multi-coplanar points, three planes. Let X be a point constrained to lie on planes

π, π′ and π′′. As already mentioned previously, it is straightforward to see that a point

lying on three planes does not have, in general, any degree of freedom3. Such points

are therefore not represented in the parameterization and have to be recovered from the

three plane equations. There are two ways to do that. One can either choose a scheme

similar to the one given previously or use the generalized cross-product, which gives a

closed-form expression for the point (each point coordinate is given by the determinant

of a 3 × 3 matrix of plane coefficients).

Multi-coplanar points, more than three planes. As said previously, this case is

rare. Dealing with it properly would add a great complexity to the system, in the sense

that constraints would then be expressed not only on points but also on planes, thereby

creating a graph of constraints with possible redundancies and cycles. Let us sketch,

however, how the case of a point X lying on 4 planes π, π′, π′′ and π′′′ could be

handled algebraically. Other higher order cases, though more complicated, could then

be handled in a similar manner. The constraints are express as:

B
TX = 04 where B4×4 ∼

(
π π

′
π
′′

π
′′′

)
.

This equation means that the matrix B has a (at least) 1-dimensional nullspace, i.e.

det B = 0, which yields a 4-linear constraint on the coefficients of the plane equations.

If one chooses to constrain e.g. plane π, then one of its coordinates may be dropped

by considering the above-derived equation, and by applying a scheme similar to that

described in table 1, for the single-coplanarity case.

Modeling intra-primitive metric constraints. In this paragraph, we give some hints

on the algebraic modeling of intra-primitive constraints, and in particular on the per-

pendicularity and the orthogonality of planes. As explained in the introduction, a com-

prehensive treatment of all these constraints is out of the scope of this paper.
3This is not true if the planes form a pencil.
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Firstly, consider the perpendicularity of two planes π and π′. This constraint can be

algebraically expressed by considering that the dot product between the normal vectors

of two such planes must vanish:

π1π
′
1 + π2π

′
2 + π3π

′
3 = 0.

This bilinear constraint can be enforced by the elimination of one parameter to contrain

one of the two planes to be perpendicular to the other one. We end up with the same

problem as that of modeling the single-coplanarity constraint described above.

Secondly, consider the modeling of the parallelism of two planes π and π ′. The

normal vectors of two such planes must be equal, up to scale, which is equivalent to

nullifying there cross-product:




π2π
′
3 − π3π

′
2 = 0

π3π
′
1
− π1π

′
3

= 0

π1π
′
2 − π2π

′
1 = 0.

Among these 3 equations, only 2 are independent, but one can not choose 2 of them a

priori. Therefore, depending of which plane is to be contrained and on which axes, 2

equations are used to eliminate 2 of its parameters. Since these equations are bilinear,

we end up with the same problem as that of modeling the multi-coplanarity constraint

with 2 planes, described previously.

3.1.4 Mapped Coordinates

Homogeneous algebraic entities have an internal gauge freedom as they are only de-

fined up to a non-zero scale factor. Consequently, they are not minimal in the sense

that they are overparameterized. We define a tool called mapped coordinates that lo-

cally removes the homogeneity, in other words produces a minimal version of an ho-

mogeneous entity. Let us consider the case of homogeneous vectors of P
ν , which is

not a restriction, the method being valid for any homogeneous entity (matrix, tensor).

In more detail, a (ν + 1)-vector v, can be decomposed into a ν-vector ṽ and a map

µ ∈ {1, . . . , ν +1}, the index of a coefficient to be fixed. An important property is that

slightly changing v does not, in general, affect µ but only ṽ, and if µ is affected, it will
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usually not create numerical instability (in the sense that the maximum coefficient of v

will not tend towards zero during e.g. optimization).

The map µ is chosen as the index of the entry of v that has the largest absolute

value. This choice can be justified as follows. If we assume that all entries of v have the

same probability to become zero during an optimization step, our choice minimizes the

probability that the selected entry (i.e. the one corresponding to the map µ) vanishes.

Consequently, this system is adapted to non-linear optimizers such as Levenberg-

Marquardt [13], where the map can be re-estimated at each step of the optimization

process. A practical algorithm for using mapped coordinates is given in table 2.

Let v be an homogeneous (ν + 1)-vector. Any other homogeneous entity (matrix,

tensor) can be brought back to this case by stacking its elements into a single vector.

The inhomogeneous ν-vector ṽ represents the mapped coordinates of v whereas the

integer µ represents its map.

Mapping (v → (ṽ, µ)):

• choose µ such that µ = argmaxi|vi|;

• ṽ =
v/µ

vµ
.

Unmapping ((ṽ, µ) → v):

• v ∼ ṽµ←1.

Table 2: Mapped coordinates for homogeneous entities. Only ṽ has to be included in

optimization processes.

3.1.5 Summary of Structure Parameterization

We have given algorithms to exploit multi-coplanarity constraints for up to three planes

per point. These constraints are enforced in an homogeneous manner while reducing

the number of parameters for each point, see §3.1.3, and the homogeneity is removed

using mapped coordinates, as indicated in table 2, to obtain a minimal parameterization.
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3.2 Motion Parameterization

In this section, we first parameterize camera projection matrices in an homogeneous

manner and then remove the homogeneity using mapped coordinates to obtain a quasi-

minimal parameterization.

We have chosen previously to fix the projective reconstruction basis via the camera

parameterization. It has then to express 11n − 15 degrees of freedom but actually has

10 + 11(n − 2) parameters (see below), i.e. is overparameterized by 3. This is not a

problem for the optimization process since this number does not depend neither on the

number of views nor on the number of points.

The number of parameters is obtained as follows. Each of the n views is rep-

resented by 11 parameters from its camera matrix, except for 2 of them, related by

the epipolar geometry (or equivalently, one special-form projection matrix), that we

represent using 10 parameters. More details are given below, where we describe the

geometry of one, two, three or more views. Note that the motion parameterization is

independent from the structure, and in particular, does not depend on the fact that the

structure is constrained or not.

One view. The projective reconstruction basis can not be uniquely fixed. However

the camera matrix P can be arbitrarily set, e.g. we use here P ∼ ( I | 0).

Two views. If we suppose that the first camera matrix has been fixed, the second

one has 7 degrees of freedom. Indeed, the geometry of such a system is described by

the epipolar geometry contained in the rank deficient fundamental matrix F. Provided

P has the form given above, the second camera matrix can be extracted from F as

P
′ ∼ ( [e′]×F | e′) where e′ is the second epipole defined by F

Te′ = 0.

Minimally parameterizing the rank-2-ness of the fundamental matrix requires the

use of several maps [5, 47] which is complicated from an implementation point of

view. Alternatively, it is possible to overparameterize rank-2-ness by using a plane

homography H and the second epipole e′. The second camera matrix is then formed

as P′ ∼ ( [e′]2×H | e′) where [e′]2×H is the canonical plane homography which is the

only plane homography satisfying HTe′ = 0 [4] (it is thus singular).
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#views #dof #param. parameters gauge constraints

n = 2 7 10 H̃, ẽ′ HTe′ = 0

n ≥ 3 7 + 11(n− 2) 10 + 11(n − 2) H̃, ẽ′, P̃k≥3 HTe′ = 0

Table 3: Motion parameterization. Notations H̃, ẽ′ and P̃k respectively designate the

mapped coordinates (see table 2) of the canonic plane homography (see text), of the

second epipole (i.e. the projection of the first camera’s center of projection onto the

image plane of the second camera) and of other camera matrices. dof stands for degrees

of freedom.

In this paper, we use this second possibility. The problem is parameterized by

the 8 mapped coordinates of H and the 2 mapped coordinates of e′, which yield 10

parameters. Consequently, it is overparameterized by 10− 7 = 3 parameters, since the

two-view motion has only 7 degrees of freedom.

Three or more views. Two or more views completely fix the projective basis. Con-

sequently, each additional view adds 11 degrees of freedom to the system and in the

general case their camera matrices do not have any special form and have to be entirely

parameterized. We use mapped coordinates for that purpose.

The motion parameterization is summarized in table 3.

3.3 Maximum Likelihood Estimator

We describe the maximum likelihood estimator for constrained structure and motion

using the previously described parameterization. We first analyze which kinds of points

are reconstructable and under which conditions, notably if they have to be included in

the constrained optimization process. We then show how to initialize the parameteri-

zation from a general structure and motion (when multi-coplanarity constraints are not

enforced), in the case of motion and then structure. Finally, we give the cost function

and details on the maximum likelihood estimator.
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#views #planes unconstrained optimization constrained

0

0

no no

no

1 no

2 no

≥ 3 yes

1

0

no

no no

1 no yes

≥ 2 yes no

≥ 2 any yes yes no

Table 4: Summary of which points are reconstructable under which condition. “uncon-

strained” indicates a reconstruction when planes are not yet modeled, “optimization”

indicates a reconstruction possible using planes and for points that add redundancy

useful for optimization and “constrained” indicates a reconstruction possible only after

the maximum likelihood estimation.

3.3.1 Initialization

At this step, we suppose to have a first guess of structure and motion as well as a

clustering of points into multi-coplanar groups, see §6.

Feature reconstructability. Planes are reconstructable provided that at least three

points that they contain can be themselves reconstructed without geometric constraints.

Once planes are reconstructed, new point reconstructions can be obtained. Table 4

gives which points, in terms of the number of views they are seen in and number of

planes they lie on, can be reconstructed and if they have to be incorporated in the

optimization process (i.e. if they add redundancy useful for optimization).

Motion. We have to change the projective basis such that the first camera matrix

becomes ( I | 0). This is done by post-multiplying all camera matrices by an appro-

priately chosen 3D homography and pre-multiplying the structure by the inverse of this

homography.
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Constrained structure. The initialization of points depending on that of planes, we

first estimate plane equations and then points.

A plane is fitted to the points of each coplanar group. If X is a point lying on the

plane π, the constraint XT
π = 0 holds. By stacking the equations for all points lying

on the plane, we obtain a linear system for π which can be solved using e.g. singular

value decomposition. Another possibility is to estimate a plane homography between

two images of the plane and to further extract the plane equation.

The unconstrained points and the multi-coplanar points lying on three or more

planes are easy to initialize. Indeed, the former are not subject to any modeled ge-

ometric constraint and are taken directly from the initial structure, and the latter do not

have any degree of freedom and so do not need initial values.

On the other hand, single-coplanar and multi-coplanar points lying on two planes

need a special initialization. As we work in projective space, we can not consider any

metric in space (such as orthogonal projection) and have to do measurements in the

images.

For a single-coplanar point X lying on a plane π, we consider one of its projections

and reconstruct the 3D point by intersecting the associated viewing ray with the plane

π. We measure the reprojection error in all images where X is visible. We iterate

over the set of images where X is visible and select the one that minimizes the total

reprojection error.

For a multi-coplanar point X lying on planes π and π′, we adopt the same method.

However, to ensure that the reconstructed point lies on the two planes, we orthogonally

project one of its image points onto the projection of the intersection line of π and π ′

and then reconstruct as above. Which plane π or π′ is used to reconstruct does not

matter. Details for this initialization are given in [4].

3.3.2 Optimization

Our goal is to derive an optimal estimator, in the sense of the maximum likelihood,

for points and planes under multi-coplanarity constraints. This result is obtained by

enforcing exactly the constraints, as is does by our parameterization. The cost function
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to minimize is the root mean square or, equivalently, the sum of square of the repro-

jection residuals [33, 44]. In fact, this gives the maximum likelihood estimator under

the assumption that errors in image point positions are identically and independently

distributed according to a centered Gaussian, or normal, law.

We also include camera motion parameters into the non-linear optimization since

an independent computation of the maximum likelihood estimate for the structure only

is not possible: both structure and motion have to be estimated at once.

The cost function, denoted by C, depends on measured image points xij and on

reprojected points x̂ij predicted by structure and motion parameters S. It is defined by:

C(S) =
∑

i

∑

j

wij d2(xij , x̂ij).

Indices i and j respectively represent the different images and the different structure

points and d(., .) is the Euclidean distance. We set wij=1 if and only if the j-th point

appears in the i-th image and 0 otherwise. The optimal structure and motion parameters

Ŝ are then given by the minimization of C over S:

Ŝ = argmin
S

C(S).

This is done in practice using the Levenberg-Marquardt algorithm with analytic differ-

entiation.

Let us investigate how to upgrade the obtained structure and motion to a metric

frame.

4 Constrained Euclidean Structure and Motion

In this section, we describe how to upgrade the previously recovered projective struc-

ture and motion to metric and how to parameterize them in order to obtain a constrained

maximum likelihood estimator.

4.1 Upgrade to Metric

There exist several possibilities to upgrade a projective reconstruction to metric, with-

out a full prior calibration, e.g. by providing constraints on scene structure, camera
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motion, or calibration. In this work, we perform self-calibration. A Euclidean bundle

adjustment is initialized using the linear method of [28], inspired by [41], that assumes

known intrinsic parameters, besides the variable focal length. The method is rather

straightforward, but we describe it here since the basic method is subject to a degen-

erate situation we encountered in practice, and that is likely to occur quite often in

modeling applications for e.g. built environments. We give a variant of the method that

does not degenerate in this case.

Suppose that Pi are the projection matrices associated with the projective recon-

struction obtained so far. We suppose that all the intrinsic parameters are given, besides

the focal lengths, fi, for the individual images. In practice, we assume the principal

points (ui, vi) to lie in the center of the respective image, and we know the cameras’

aspect ratios τi (in fact, they could easily be included in the linear self-calibration rou-

tine). The skew factor is neglected, i.e. we assume pixels to be rectangular (in the

linear method; skew is estimated during bundle adjustment).

Self-calibration is based on estimating a projective transformation T such that the

transformed projection matrices can be decomposed into extrinsic and intrinsic param-

eters, such that the latter have the known values, i.e.:

∃fi, Ri, ti : PiT ∼




τi 0 ui

0 1 vi

0 0 1







fi 0 0

0 fi 0

0 0 1


 ( Ri | ti),

where the Ri are orthonormal matrices and the ti 3-vectors. Considering only the

leading 3 × 3 submatrix of the equation, and multiplying it by its transpose, we get:

PiT̄ T̄
T
P

T

i ∼




τi 0 ui

0 1 vi

0 0 1







f2

i 0 0

0 f2

i 0

0 0 1







τi 0 ui

0 1 vi

0 0 1




T

,

where T̄ is the 4 × 3 matrix consisting of the first three columns of T. Let

X = T̄ T̄
T

Mi =




τi 0 ui

0 1 vi

0 0 1




−1

Pi.
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Then, the above equation becomes:

MiXM
T

i ∼




f2

i 0 0

0 f2

i 0

0 0 1


 . (1)

The matrix X represents the “absolute quadric” [41], in the space of the projective

reconstruction. It is 4 × 4, symmetric and of rank 3.

Let mT

ij be the vector representing the j-th row of Mi. From equation (1), the

following linear equations on X can be obtained:

mT

i1Xmi2 = 0

mT

i1Xmi3 = 0

mT

i2Xmi3 = 0

mT

i1Xmi1 −mT

i2Xmi2 = 0.

The rank-3 constraint on X can not be imposed via linear equations, which implies

that there exist singularities for the linear method, that are not singular for the generic

case [36]. The generic singularities (critical motions) for self-calibration of varying

focal length (with other intrinsic parameters known), are described in [20, 35]. An

imaging configuration that is singular for the linear approach, but not in general, is the

case where the optical axes of all views pass through one 3D point. Image sequences

taken for modeling objects will very often be singular in this respect (e.g. the sequence

shown in figure 3).

Due to this singularity, the system of the above linear equations will have a one-

dimensional family of solutions:

X ∼ X1 + µX2.

The rank-3-constraint allows to solve for µ via the equation det X = 0. This is a

degree-4-polynomial in µ. We solve it numerically, thus obtaining a maximum of 4

solutions for X. To find a unique solution, we compute the focal lengths that each

solution gives rise to, and choose the solution, where these respect practical bounds

(they have to lie in an interval of the order [300, 5000], depending on the camera used).
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In practice, we always found a single solution satisfying these constraints, the others

being far off.

Focal lengths are extracted by computing ωi ∼ MiXMT

i and then

fi =

√
1

2
(ωi,11 + ωi,22)

ωi,33
.

From the estimated X, we extract a projective transformation that upgrades projec-

tion matrices and point coordinates to metric. There is no unique solution for this, so

in practice we choose one that has roughly equal singular values. Let X = ±UΣUT be

the singular value decomposition of X. Since X is of rank 3, the 4-th singular value is

zero. Let Σ′ be obtained by replacing that zero with e.g. the largest singular value in

Σ, we obtain the projective upgrade transformation needed:

T = U
√

Σ′.

Extracting extrinsic parameters from the upgraded projection matrices is then

straightforward — it basically requires fitting of orthonormal matrices to general 3× 3

matrices [19]. More details are given in §4.4. The result is optimized via bundle ad-

justment. An alternative to the described approach would be to use the coplanarity

information already available, like [1, 24, 42, 45, 46].

In the following paragraph, we just give a few numerical details. In order to im-

prove the condition of the linear equation system, we transform the matrices Mi as

follows. First, we assume that images are normalized using e.g. [15]. Second, we

make use of the free choice for the basis of the projective reconstruction, by comput-

ing a projective transformation, that hopefully leads to better conditioning. A simple

method to do that is as follows. We stack the Mi in a matrix M of size 3n × 4, and

compute its singular value decomposition:

M = AΓB
T.

From A, we extract sub-matrices replacing the Mi in the linear equations: A is or-

thonormal, so the linear equations are more likely to be well conditioned. The product

ΓBT represents the projective transformation corresponding to the mapping between

the original and the transformed Mi (naturally, the 3D points have to be transformed
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accordingly). Using this normalization, we obtained much more accurate initial values

and actually prevented the bundle adjustment to fall in a local minimum it got trapped

in otherwise, in one case.

4.2 Structure Parameterization

In this section, we adapt the projective structure parameterization of §3.1 to the Eu-

clidean case. In this case, planes are modeled as homogeneous 4-vectors, whereas

points can be written as inhomogeneous 3-vectors.

The plane parameterization has been described in §3.1.2 and mapped coordinates

(cf. §3.1.4) were used to reach the minimality. The point parameterization under multi-

coplanarity constraints of §3.1.3 for the projective case can be used either directly or

adapted to take full advantage of the Euclidean structure. We successively specialize

the different cases.

Unconstrained points. As said above, points can be parameterized using inhomoge-

neous 3-vectors, which is minimal in this case.

Single-coplanar points. Let X be a point lying on a plane π. As for the projective

case, we want to change the reconstruction basis such as to fix an element of X to

a constant value. In the Euclidean case, we have XT ∼ ( X̄T | 1) in the homoge-

neous form, so that the 4-th element is already fixed. Consequently, we must choose

a transformation that preserves this element while fixing another one. This class of

transformation is H
j
π where j ∈ {1 . . .3}. The practical algorithm for parameteriz-

ing/unparameterizing such a point in the Euclidean case is similar to that of table 1 but

using the constraint j ∈ {1 . . . 3} for the choice of j.

Multi-coplanar points. We follow the same reasoning as in the previous case. A

point lying on two planes is then parameterized by a scalar and does not have parame-

ters in the three planes case. The practical algorithms are then identical to the projective

case, provided a choice for the indices j and j ′ in {1 . . . 3} for the two planes case.
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4.3 Motion Parameterization

For motion parameterization in the Euclidean case, we suppose that each camera has z

unknown intrinsic parameters, where z ∈ {1 . . . 5}.

One view. We choose the reconstruction basis such that P ∼ K( I | 0) where K is

the calibration matrix, containing the intrinsic parameters. We have therefore z degrees

of freedom for this first camera.

Two or more views. The Euclidean basis has been fixed by the first view up to a

global scale factor. We then have to completely parameterize the other camera matrices.

Such an additional camera is written as P′ ∼ K′( R | t). Making the same assumption

on the intrinsic parameters than for the first view, this leaves z + 6 degrees of freedom

for each view, its internal parameters and the 6 parameters for the rotation R and the

translation t. These entities are minimally parameterized, as described in e.g. [2].

4.4 Maximum Likelihood Estimator

The maximum likelihood estimator in the metric case is very similar to that of the pro-

jective case as the cost function is the same. The intrinsic parameters for each camera

have been recovered previously, see §4.1. In order to initialize our parameterization,

we still need to extract the relative pose of each camera, i.e. factorize each projection

matrix P ∼ ( P̄ | p) under the form P = 1

λK( R | t) where λ is an unknown scale

factor. Let us define S = K−1P̄. We first estimate the scale factor as λ = 3
√

det S.

The translation can then be obtained by t = λK−1p. In the noise-free case, λS is an

orthonormal matrix, but in practice it is not and we choose the closest rotation matrix

in the sense of the Frobenius norm. This can be done using a singular value decom-

position of λS and a recomposition where the matrix of singular values Σ is omitted:

R = UVT where λS = UΣVT. Once this initialization has been done, non-linear

optimization of the cost function C (cf. §3.3) can be launched using the Levenberg-

Marquardt algorithm [13] with analytic differentiation.
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5 Experimental Results Using Simulated Data

In this section, we compare our method to existing ones, notably to that consisting in

individually reconstructing each point and to that using approximate multi-coplanarity

constraints. We perform this comparison for the structure results, then for the motion

results.

The test bench consists of a cube of one meter side length observed by a set of

cameras. Points are generated on the cube, possibly offset from their planes in order to

simulate non-perfect coplanarity and projected onto the images, where centered Gaus-

sian noise is added. The default parameters of this simulation are the following. Up

to 50, 10 and 1 points are generated on respectively each face, edge and vertex of the

cube. Two cameras with a focal length of 1000 (expressed in number of pixels) and a

1 meter baseline are situated at a distance of 10 meters from the cube. The standard

deviation of image noise is up to 3.0 pixels. The intrinsic parameters are not supposed

to be known which yields projective reconstructions.

In the sequel, we vary independently each of these parameters to compare the dif-

ferent approaches under various conditions, especially we want to determine how the

constrained methods behave when the observed surfaces are only approximately planar.

We measure the quality of reconstructions using the 3D residual of its Euclidean

distance to the ground truth scene structure X: E =
√

1

m

∑m
j=1

d2(HXj ,Xj), where

H is a 3D homography (mapping the projective to the Euclidean structure) estimated

using non-linear minimization of E. We measure the median value over 100 trials.

The estimators compared are:

• Po-ML: optimal structure and motion obtained in a bundle adjustment manner

[44] without geometric constraints;

• Pl-wt: (wt stands for weights) similar to Po-ML but uses heavily weighted (260 ≈
1020) additional equations to approximate multi-coplanarity [26, 39];

• Pl-ML: uses the parameterization described in this paper to explicitly model

multi-coplanarity;
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• Pl-h: (h stands for homography) uses method Po-ML described above with as

input point correspondences corrected by maximum likelihood estimation of ho-

mographies. This method is described in more detail below. Note that it works

only with two images and with the single-coplanarity constraint.

The last method evaluated relies on a simple homography-based point correction. A

plane observed by two cameras induces an homography. This homography relates the

projections of the points lying on the plane. The family of such homographies is 3-

dimensional, provided that the epipolar geometry is known (this is linked to the fact

that a plane has 3 degrees of freedom). In the calibrated case, they depend upon the

relative pose between the two cameras and on their intrinsic parameters. If all these

consistency constraints are ignored, and if the piecewise planar structure and motion

problem is considered only for two views and with single-coplanarity constraints, one

can devise a simple process to incorporate the knownledge of coplanarity in a standard

unconstrained reconstruction method. Indeed, one can estimate independently each ho-

mography corresponding to each coplanar group of points and correct them so that they

perfectly correspond through the homography. A standard structure and motion algo-

rithm can then be launched with as input the corrected points. This is what Pl-h does.

Obviously, this process is suboptimal since most consistency constraints have been ig-

nored, and since the final reconstruction is only approximately planar. Extending the

idea to multi-view and multi-coplanarity constraints, by enforcing all the underlying

consistency constraints would yield the same result as our estimator, up to the conver-

gence of the underlying non-linear optimizers. However, the algebraic structure would

be more complicated since more consistency constraints have to be imposed in the

images than in the 3D space.

Let us describe the different experimental situations when varying a scene parame-

ter and the simulation results we have obtained.

Added image noise, figure 1a: the standard deviation of added image noise is varied

from 0 to 3 pixels;

Baseline, figure 1b: the baseline is varied between 0.1 and 1 meter;
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Number of points, figure 1c: the number of points is respectively equal to 50α, 10α

and 1 for each face, edge and vertex of the cube, where α varies from 0.1 to 1;

Number of views, figure 1d: the number of views varies from 2 to 10. The different

cameras are situated such that the baseline between two consecutive ones is 1

meter;

Distance scene/cameras, figure 1e: the distance between the cube and the cameras

is varied between 10 and 20 meters.

In all these cases, the method Po-ML based only on individual point reconstruction

gives results of a quality lower than methods Pl- modeling also planes (the residual

is at least twice as low). The method Pl-ML performs slightly better than Pl-wt in all

cases. Finally, method Pl-h gives results slightly worse than Pl-wt, but much better

than Po-ML.

One aspect not shown on the graphs of figure 1, due to the use of a median value

over a large number of trials, is that methods Po-ML and Pl-wt have a percentage of

convergence lower than Pl-ML and Pl-h, especially for unstable configurations (large

image noise, small baseline, high distance scene/cameras etc.). For example, the per-

centage of convergent estimations over 1000 trials is 95.2%, 89.1%, 97.5% and 97.3%

for Po-ML, Pl-wt, Pl-ML and Pl-h respectively, for a distance scene/cameras of 20

meters and a 0.1 meter baseline.

Plane unflatness, figure 1f: 3D points are offset from the planes they lie on by dis-

tances drawn from a normal distribution with standard deviation between 0 and

0.1 meters.

We observe that there is a threshold on the plane unflatness where methods Pl-

using the knowledge of planes begin to perform worse than method Po-ML. It is in-

teresting to define the breakdown ratio, denoted by ε, as the ratio between the extent

of 3D noise and plane surface area, assuming that the scene is seen completely in all

views. In the case of figure 1f, ε=6%, recalling that each plane of the cube is 1 square

meter. The value of ε depends on all scene parameters.
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Figure 1: Comparison of the 3D residuals for different approaches versus different

scene parameters. Note that method Pl-h is not visible on (d) since it works with two

views only.
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n=2 3m. 10 m. 20 m.

1 pixel 0.5% 2% 4%

3 pixels 2% 6% 9%

n=10 3m. 10 m. 20 m.

1 pixel 0.3% 1.2% 3%

3 pixels 1.3% 4% 8%

Table 5: Breakdown ratio ε for different scene configurations (image noise, number of

views, distance scene/cameras).

Table 5 shows values of ε established experimentally for various scene parameters.

We observe that the less stable the configuration is the higher is ε, i.e. the more im-

portant is the incorporation of multi-coplanarity constraints, even if the scene is not

perfectly piecewise planar.

The values of one or several percent in table 5 represent relatively large variations

which are superior to those of a great majority of approximately planar real surfaces.

Consequently, we can say that there are many cases when a method using piecewise

planarity will perform better than any method based on individual point reconstruction.

Similar results with other point- and plane-based methods have been obtained in

[4]. We have also performed similar experiments in the calibrated case, i.e. the re-

constructions obtained are Euclidean, and we observed that this does not change the

results significantly. This can be explained by the fact that the optimization criterion is

image-based, and so invariant to projective transformation (such as the upgrade from

projective to metric space).

Comparing the motion estimates. We compare the results on the motion param-

eters provided by the different methods. We use the same experimental setup as

previously. The quality of the estimated motion is measured as follow. We ex-

tract the n projection centers Ci of the estimated camera matrices and compute the

3D residual of their Euclidean distances to the ground-truth projection centers C i:

Emotion =
√

1

n

∑n
i=1

d2(HCi,Ci). The 3D homography H is estimated as in the pre-

vious case, using non-linear minimization of E, i.e. using estimated to ground-truth

point correspondences (estimating it with corresponding centers of projection would

be highly sensitive to noise, due to the low number of data). We measure the median
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value of Emotion over 100 trials.

Let us describe the different experimental situations and results obtained.

Added image noise, figure 2a: the standard deviation of added image noise is varied

from 0 to 3 pixels;

Number of views, figure 2b: the number of views is varied from 2 to 10, a 3 pixels

standard deviation noise is added.
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Figure 2: Comparison of the 3D residuals for the motion for different approaches ver-

sus different scene parameters. Note that method Pl-h is not visible on (b) since it

works with two views only.

As already observed for the results on the structure, the method Po-ML that do

not use coplanarity information performs worse than the others. The method Pl-ML

performs better than Pl-wt and the method Pl-h performs worse than Pl-wt. We observe

that the gap between plane-based methods Pl- and the point-based method Po-ML is

reduced compared to the error estimated on the structure. In all cases, we also observe

that the error measure obtained is worse than for the structure. This is due to the

fact that the homography mapping the reconstruction result to the ground-truth data is

estimated by minimizing the criterion E, based on the structure only.
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space approach step rep. error (pixels) # iterations

projective

unconstrained
init. 3.86 -

MLE 1.07 7

constrained
init. 1.90 -

MLE 1.20 3

metric

unconstrained MLE 2.69 6

constrained
init. 3.86 -

MLE 1.43 9

Table 6: Reprojection errors (pixel) and number of iterations of non-linear optimizers

at various stages of the reconstruction process. MLE stands for Maximum Likelihood

Estimator.

6 Results Using Real Images

In this section, we present the reconstruction results obtained using the images shown

in figure 3. Similar results have been obtained with other images (see [5]). We describe

the different steps followed to perform a complete reconstruction, from the images to

the 3D textured model. Table 6 shows the reprojection errors obtained at various stages

of the process.

Figure 3: Images used to validate the method.

Structure and motion initialization. This has been obtained using image point

matches given manually. We perform a partial reconstruction from two images us-

ing the method [15, 16] and incrementally add the other images to obtain the complete

structure and motion. We then run a bundle adjustment to minimize the reprojection

error and to obtain the maximum likelihood estimate for an unconstrained structure.
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Multi-coplanarity constraints. These relationships are established semi-

automatically using plane homographies. The user provides three image points

matched in at least one other view to obtain a first guess for the plane. The other points

lying on this plane are then automatically detected. The user may interact to correct

badly clustered points and add points visible in only one view.

Constrained refinement of structure and motion. From the previous data, the

structure is parameterized as described in §3 and the maximum likelihood estimate

for constrained structure and motion of §3.3 is computed. According to table 4, points

visible in only one view and constrained to lie on two or more planes are reconstructed

and involved in the optimization process.

Structure completion. Points appearing in only one view and lying on one plane are

then reconstructed. The structure is complete in the sense that no more points will be

further added. Figure 5 shows structure reprojection on an original image.

Calibration. The metric structure is obtained via the self-calibration process de-

scribed in §4.1 and the reprojection error is minimized while enforcing the multi-

coplanarity constraints as indicated in §4.4. Figure 4 shows different views of the

recovered structure and the positioning of the cameras and figure 5 the reprojection of

the model in two original images. For the intrinsic parameters of each camera, only

the focal lengths are involved. It appears that also including principal points does not

change significantly the results.

Texture maps. The texture mapping requires the user to provide a polygonal delin-

eation for each planar facet in one of the images. The texture maps are then extracted

and perspectively corrected using calibrated projection matrices and bicubic interpola-

tion. Figure 6 shows different views of the recovered textured model.

Quality assessment. We have performed several measures on the metric reconstruc-

tion “before” and “after” the constrained optimization process (i.e. reflecting the

changes when using the method described in this paper). Two kinds of quantity are
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Figure 4: Recovered metric structure and motion. The structure is shown as a set of

planar polygons while the different cameras (the motion) are represented by pyramids.

The height of a pyramid is proportional to the recovered focal length of the camera.

The bottom-right image shows a rendering from above the point of view of the right

image of figure 5.

Figure 5: Reprojection of the recovered model onto the original images. The crosses

indicate the position of the reprojected point features.
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Figure 6: Different views of the textured model. Note that artefacts may be induced

by possibly unmodeled non-planar parts of the surfaces, e.g. the pole bulging out of

the roof in the top-right image is wrongly mapped to the roof plane, and is therefore

distorted in other views, e.g. the top-left one.
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σ1 σ2 µ

before 0.0489 0.0254 0.1032

after 0.0102 0.0168 0.0720

Table 7: Metric measures on the Euclidean reconstruction “before” and “after” the

constrained optimization. The lower λ1, λ2 and µ (see text) are, the better the recon-

struction is.

significant: length ratios and angles. Table 7 shows measures of such quantities. In this

table, σ1 and σ2 are the variances of the length of respectively the height and width of

the largest windows on the two walls, whereas µ is the mean of 1−2αi/π where αi are

the measures of right angles. The values given in table 7 show that the metric recon-

struction obtained with our method is clearly of superior quality than the unconstrained

one.

7 Conclusions

We have presented an hybrid approach that draws on the strengths of both the tradi-

tional feature- and primitive-based approaches, i.e. the reconstruction is accurate and

the recovered model allows to produce photorealistic rendering. More precisely, we

focus on the case of points and planes related by multi-coplanarity constraints and on

the design of a constrained structure and motion maximum likelihood estimator in both

the projective and the metric cases. This maximum likelihood estimator uses a minimal

parameterization of scene structure, enforcing underlying geometric constraints and a

quasi-minimal parameterization of motion.

Experimental results on simulated data show that the quality of the reconstruc-

tion obtained with our method is clearly superior to those of traditional feature-based

methods, in a large variety of experimental configurations, and for both structure and

motion. We also consider the case when surfaces are only approximately planar and ex-

perimentally determined breakpoints of plane unflatness above which the incorporation

of multi-coplanarity constraints makes the estimation less reliable.
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The method is validated using real images. The results are convincing, in terms

of both rendering quality and accuracy of metric values compared to a feature-based

method.

The implementation of our methods comprises modules for unconstrained projec-

tive reconstruction (“linear” ones and bundle adjustment), constrained projective re-

construction (initialization and optimization), self-calibration (“linear” method and op-

timization), as well as constrained Euclidean reconstruction (initialization and bundle

adjustment).
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