
The 3D Line Motion Matrix and

Alignment of Line Reconstructions

Adrien Bartoli and Peter Sturm

INRIA Rhône-Alpes

655, avenue de l’Europe

38334 Saint Ismier cedex

France.

first.last@inria.fr

Note: This work was supported by the project IST-1999-10756, VISIRE.

Abstract

We study the problem of aligning two 3D line reconstructions in projective, affine or

Euclidean space.

We introduce the
�����

3D line motion matrix that acts on Plücker coordinates.

We characterize its algebraic properties and its relation to the usual � � � point motion

matrix, and propose various methods for estimating 3D motion from line correspon-

dences, based on cost functions defined in images or 3D space. We assess the quality

of the different estimation methods using simulated data and real images.

Keywords: Lines, Reconstruction, Motion.

1 Introduction

The goal of this paper is to align two reconstructions of a set of 3D lines (figure 1). The

recovered motions can be used in many areas of computer vision [6, 7, 15].

Lines are widely used for tracking [11, 27], for visual servoing [1] or for pose

estimation [18] and their reconstruction has been well studied (see e.g. [4] for image

detection, [22] for matching and [12, 23, 24, 25] for structure and motion).

There are three intrinsic difficulties to motion estimation from 3D line correspon-

dences, even in Euclidean space. Firstly, there is no global linear and minimal param-

eterization for lines representing their 4 degrees of freedom by 4 global parameters.

Secondly, there is no universally agreed error metric for comparing lines. Thirdly,

depending on the representation, it may be non trivial to transfer a line between two

different bases.

In this paper, which is an extended version of [2], we address the problem of mo-

tion computation using line reconstructions from images. We assume that two sets of

images are given and independently registered. We also assume that correspondences

of lines between these two sets are known. Reconstructing lines from each of these

image sets provides the two 3D line sets to be aligned.

In projective, affine, metric and Euclidean space, motion is usually represented by

� � � matrices (homography, affinity, similarity or rigid displacement), with different

numbers of parameters, see [13] for more details. This representation is well-suited

to points and planes represented using homogeneous coordinates. We call it the usual

motion matrix.

One way to represent 3D lines is to use Plücker coordinates. They are consistent

in that they do not depend on particular points or planes used to define a line. On

the other hand, transferring a line between bases is not direct (one must either recover

two points lying on it, transfer them and form their Plücker coordinates or transform

the � � � skew-symmetric Plücker matrix representating the line). The problem with

the Plücker matrix representation is that applying the motion is quadratic in the entries

of the usual motion matrix which therefore can not be estimated linearly from line

matches.

3

PSfrag replacements

rigid scene

line reconstruction 1

line reconstruction 2

motion

camera set 1

camera set 2

Figure 1: Our problem is to align two corresponding line reconstructions or, equiva-

lently, to estimate the motion between the camera sets.

4

To overcome this, we derive a motion representation that is well-adapted to Plücker

coordinates in that it transfers them linearly between bases. The transformation is

represented by a
� ���

matrix that we call the 3D line motion matrix. We characterize

its algebraic properties in terms of the usual motion matrix. The expressions obtained

were previously known in the Euclidean case [21]. We also deal with projective and

affine spaces. We give a means of extracting the usual motion matrix from the 3D line

motion matrix. A given general
� � �

matrix can then be corrected so that it exactly

represents a motion1.

Using this representation, we derive several estimators for 3D motion from line

reconstructions. The motion allows lines to be transferred from the first reconstruction

into the second one. Cost functions can therefore be expressed either directly in the

second reconstruction basis using 3D entities or in image-related quantities, in terms

of the observed and reprojected lines in the second set of images.

Our first method is based on the direct comparison of 3D Plücker coordinates. Two

other methods are based on algebraic distances between reprojected lines and either

observed lines or points lying on them (such as their end-points). A
� � �

matrix

is recovered linearly, then corrected so that it exactly represents a motion. A fourth

method uses a more physically meaningful cost function based on orthogonal distances

between reprojected lines and points lying on measured lines. This requires non-linear

optimization techniques that need an initialization provided by e.g. one of the proposed

linear methods. We also propose a means to quasi-linearly optimize this cost function,

which does not require a separate initialization method.
�
2 gives some preliminaries and our notations. We introduce the 3D line motion

matrix in
�
3 and show in

�
4 how to extract the usual motion matrix from it.

�
5 shows

how these techniques can be used to estimate the motion between two reconstructions

of 3D lines. We validate our methods on both simulated data and real images in
���

6

and 7 respectively, and give our conclusions in
�
8.

1Compare this with the case of fundamental matrix estimation using the 8 point algorithm: the obtained
�����

matrix is corrected so that its smallest singular value becomes zero [13].

5

2 Preliminaries and Notations

We make no formal distinction between coordinate vectors and physical entities. Equal-

ity up to a non-null scale factor is denoted by � , transposition and transposed inverse

by
�

and � � , and the skew-symmetric
� ���

matrix associated with the cross product

by ��� �
	 , i.e. � ���	������ � � . Vectors are typeset using bold fonts (� , �), matrices using

sans-serif fonts (� , � , �) and scalars in italics. Everything is represented in homoge-

neous coordinates. Bars represent inhomogeneous leading parts of vectors or matrices,

e.g. � � ������ �����
. We use � �!� to designate the "$# -norm of vector � .

Plücker line coordinates. Given two 3D points � � ������ �%���
and & � �'�(�& ��)*�

,

one can form the Plücker coordinates of the line joining them as a 6-vector � � ��,+ ��-.�/�
defined up to scale [13]:01 2 + � �� � �&- � � �&43) ��5� (1)

Note that other choices of constructing 6-vectors of Plücker coordinates are possible.

Every choice goes with a bilinear constraint that 6-vectors have to satisfy in order to

represent valid line coordinates. For our definition, the constraint is + �6- �87 . An

alternative representation is the Plücker matrix 9 , which is related to � via:

9:�<;= � +>�
	 -3 -?� 7
@ACB

and to point coordinates by: 9:�D�C& � 3E&�� � �
This is a skew-symmetric rank-2 � � � matrix.

Usual motion representation. Transformations in projective, affine, metric and Eu-

clidean spaces are usually represented by � � � matrices. In the general projective

case, the matrices are unconstrained, while in the affine, metric and Euclidean cases

they have the following forms, where F is a
� ���

rotation matrix and the other blocks

do not have any special form:

6

projective: affine: metric: Euclidean:

homography � affinity � similarity � displacement �
������� �� ���

�
	� �
�������

������� �� �
� 	 �

�������
������� ��� �

� 	 �
�������

������� � �
� 	 �

�������
This block partitioning of � , � , � and � will be used to define the corresponding 3D

line motion matrices in
�
3.

Camera settings. We consider two sets of independently registered cameras. In the

projective space, without loss of generality, we can express each set in a canonical

reconstruction basis [20], and in particular, we can set reference cameras, e.g. the first

ones to: � � ��� �������� B
where

�
and

� �
are the reference cameras of the first and the second set respectively,

that we call the first and the second reference cameras. Let � be the � � � usual homog-

raphy matrix mapping points from the first basis to the second one and

� � � �!� �� � � " � �
the reference camera of the second set expressed in the first basis. These notations

are illustrated on figure 2. We denote by #%$ and #
�
$ the planes with coordinates

� 7 7 7'&(� of the two reconstructions. In affine, metric or Euclidean reconstructions,

these are the plane at infinity, while in projective reconstructions, they will in gen-

eral correspond to two finite planes. Let #
� �
$ be the plane in the first reconstruction

corresponding to #
�
$. We also make use of the lines � $ and � � $ lying on # $

and #
�
$ respectively and related by � . In particular, ��$ �)#*$,+-#

� �
$ �/.10 �

� �0 �32 �54 �0 �76 # � 2 � 798 .
Let us give a geometrical interpretation of the components of � . This will be useful

to subsequently investigate the corresponding properties of the 3D line motion matrices

in
�
3. The fundamental matrix [19] between the reference views is given by:

: �C� " � � �	 �� � � �C� 6<; �
	 ��!�
7

PSfrag replacements

� � �
� � �

:
�

�

�
��#*$ #

�
$� $ � � $

0 0
�

� � �

Figure 2: Camera settings.

�
is the perspective projection matrix from the first basis to

the first reference camera and

� �
from the second basis to the second reference camera.� � �

is the projection matrix of the second reference camera expressed in the first basis,

i.e. it projects points expressed in the first basis in the second reference camera.

�
and� �

are assumed known while

� � �
, which depends on the motion parameters, is unknown.

These settings can be easily transposed to the affine, metric and Euclidean cases.

8

Indeed, we have � �� 6 ; � � �� � � " � � since:��� � � ��� �
� ���� � " � � � � � �7 ;= �� 6 ;

6 � # �

@A
� ���� � " � � � � �� 6 ; �

These results may be easily specialized to the affine, metric and Euclidean spaces. The

other parts of � can be interpreted as follows:

� �� is the 2D plane homography for points between the reference views induced

by the plane # $. Indeed, let us consider 0��5# $. One can easily check that

0 � ��� � � 7 where � is the corresponding point in the first reference image and� � � 0 � �� � . Hence, if we deal with affine, metric or Euclidean reconstructions,

then �� is the infinite homography [13] between the two reference views;

� 6 ; contains the coordinates of the second epipole since:: � 6 ; � �� � � � � " � � �	 � 6<; � �� � � 6 ; �	 � 6<; � � ;

� #
� �
$ �)� 6 � # � � contains the coordinates of the plane at infinity of the second

basis expressed in the first basis. Indeed, #
� �
$ �C� � # � $ � � 6 � # � � .

Perspective projection matrix for lines. With our choice of Plücker coordinates (1),

the image projection of a line [8, 13] becomes the
� � �

linear transformation
�
�

:

�
� �5�����
	 � �� �� � � � " �
	 �� � B

(2)

where

� � � �� " is the
� � � perspective camera matrix. This result can be easily

demonstrated by finding the image line joining the projections of two points on the 3D

line. An explicit proof is given in the appendix. Specific forms for affine cameras and

calibrated perspective cameras are straightforward to derive.

3 The 3D Line Motion Matrix

In this section, we define and examine the properties of the 3D line motion matrix

for the projective space first and then specialize it to the affine, metric and Euclidean

9

spaces respectively.

3.1 The 3D Line Homography Matrix

The Plücker coordinates of a line, expressed in two different bases, are linearly linked.

The
� � �

matrix
� � that we call the 3D line homography matrix describes the transfor-

mation in the projective case and can be parameterized as:

��E� ;= ���
	(� �� �� � � � 6 ; �	 ��3 �� � 6 # �	 � �� 3 6 ; 6 � #
@A B

(3)

where � is the usual � � � homography matrix for points. If � � � � + �%-?�(�
are

Plücker line coordinates (i.e. + � - �'7), then
� � � are the Plücker coordinates of the

transformed line (i.e.
� � � satisfies the bilinear Plücker constraint).

The proof of this result is provided in the appendix. Note that
� � is a

� � �
matrix

defined up to scale and subject to 20 non-linear constraints since the projective motion

has 15 degrees of freedom. Other algebraic properties directly follow from equation

(3). Firstly, the determinant of
� � can be expressed in terms of that of � as:

���
	 � � �< �� � � � 	(� � � B
which means that if � is full-rank, then

� � is also full-rank. Secondly, let
��

denote the

3D line motion matrix corresponding to the usual motion matrix
�

. Then:

� � � � ��� � � � � � �
� � � � ; ��� � � � � � � ; �

These properties can be easily verified using any linear algebra symbolic manipulation

software such as MAPLE.

Consistency constraints on
� � . Let

� � be subdivided in
� �%�

blocks as:

� � � ;= � � ;
; � � ; #
� �?# ; � � # #

@A �
10

By ������� � , we denote the � -th row of matrix
� �	��� and by
����� � its � -th column. We express

the 20 non-linear consistency constraints that must hold on
� � as follows:

��� � ;
; � � ��� ; #�� � � 7 B � � & � � � �
��� � # ; � � ��� # #�� � � 7 B � � & � � � �
��
 � ;
; � � ���
 # ; � � � 7 B � � & � � � �
��
 � ; #�� � ���
 # #�� � � 7 B � � & � � � �

��� � ;
; � � ���� # #�� ��� �� ��� � ; #�� � ���� # ; � ��� � 7 B � � & � � � � B � � � & � � � � B ������
�

��� � ;
; � ; ���� # #�� ; �� ��� � ; #�� ; ��� # ; � ; � ��� � ;
; � # ��� # #�� # �� ��� � ; #�� # ��� # ; � # � ��� � ;
; � � ��� # #�� � �� ��� � ; #�� � ��� # ; � � �
A detailled derivation is given in the appendix. Note that these contraints are bilinear in

the entries of
� � . These constraints are important in that they characterize the algebraic

structure of a 3D line homography matrix.

Geometric interpretation of
� � .

� the upper-left
� �E�

block
�� ;
; � ��!� � is the 2D plane homography for lines,

between the reference views, induced by #%$. This follows from the observation

made in
�
2 that

� � � �; ; � �� is the corresponding plane homography acting on

points.

� the upper-right
� � �

block
� � ; # is the fundamental matrix between the reference

views, i.e.
� � ; # � :

. Indeed,
� � ; # � � 6 ; � 	 � � �C� " � � � 	 �� � � � :

(cf
�
2).

� the upper
� � �

block � � � ;
; � � ; #(is the perspective projection matrix for Plücker

line coordinates from the first basis to the second reference view. Indeed,

� � � ;
; � � ; #(� � ��� 	 � �� �� � � � 6 ; � 	 �� � � ��� 	 � �� � � �� � � � " � 	 �� � �
� B

where
�
�

corresponds to the perspective projection matrix (2) for Plücker line

coordinates (1) and

� � �
is the perspective projection matrix from the first basis to

the second reference view (see figure 2).

11

� the lower-left
� � �

block
� � # ; � �� � 6 # � 	 is a degenerate line-to-point homog-

raphy between the reference views, which can be interpreted as follows. Let �
be an image line in the first reference view. The intersection of � and the line of

equation
6 # is a point ��� � 6 # �	�� . The backprojection of � onto # $ lies on � $

and is given by 0 � $ � � � � 7 . Its corresponding point in the second reconstruc-

tion lies therefore on � � $ and is given by 0
� � $ � � � � � 7 with � � � ��$� 6 # � 	 � .

Projecting 0
�
$ into the second reference view gives finally � � � ��$� 6 # � 	 � .

So,
� � # ; is somehow reciprocal to a fundamental matrix that maps points to lines.

Whereas a fundamental matrix gives matching constraints for image points,
� � # ;

does not give any matching constraints for general lines (there are none between

two views).

� the lower-right
� � �

block
� � # # is the 2D plane homography for points, in-

duced by # $ (expressed in the second basis), between the reference views. In-

deed, we have shown that �� is a plane homography and
6 ;

the second epipole

corresponding to the pair of reference views. Using the formulation of [20],
�� # # � � �� 3 6 ; 6 � # is the 2D plane homography induced by the plane � 6 � # � � ,

which are the coordinates of the plane at infinity of the second basis expressed

in the first one.

� the lower
�����

block � � � # ; �� # # transfers a line � from the first basis to the

second one and projects its intersection point with #
�
$ into the second reference

view. This can be seen as follows. 0
� � $ � � � � � 7 with � � � � � � # ; � � # # � is the

point at infinity of
� � � which projects to � � in the second reference view.

3.2 The 3D Line Affinity Matrix

For affine reconstructions, the 3D line motion matrix has the following form and we

call it the 3D line affinity matrix:

�� � ;= ��� 	 � �� ��$� � � � �	 ��
� ��

@A � (4)

12

This result is obtained by specializing the 3D line homography matrix (3). The ge-

ometric interpretation of this matrix is very similar to the projective case. In particular,�� is the homography at infinity between the two reference views. Note that a
� � �

matrix defined up to scale representing an affinity is subject to 23 constraints, many of

them being linear or bilinear.

3.3 The 3D Line Similarity Matrix

In metric space, the 3D line motion matrix has the following form and we call it the 3D

line similarity matrix:

� � �<;= � F � � �
	 F
� F

@A � (5)

This result is obtained by specializing the 3D line homography matrix (3). The

geometric interpretation of this matrix is straightforward. The
� ���

upper-right block� � �	 F is the essential matrix between the reference views while the other two non-zero� � �
blocks give the rotation matrix between the reference cameras, as well as the

relative scale of the two reconstructions. Note that a
� � �

matrix defined up to scale

representing a similarity is subject to 28 constraints.

3.4 The 3D Line Displacement Matrix

In Euclidean space, the 3D line motion matrix has the following form and we call it the

3D line displacement matrix:

� �E� ;= F � � � 	 F
� F

@A � (6)

This result is obtained by specializing the 3D line homography matrix (3). It co-

incides with that obtained in [21]. The geometric interpretation of this matrix is very

similar to the metric case. Note that an homogeneous
� � �

matrix representing a rigid

displacement is subject to 29 constraints.

13

4 Extracting the Usual Motion Matrix from the 3D Line

Motion Matrix

Given a
� � �

3D line motion matrix, one can extract the corresponding motion param-

eters, i.e. the usual � � � motion matrix. In this section, we show how to extract a usual

motion matrix from a 3D line motion matrix in projective, affine, metric and Euclidean

spaces. We also give solutions for the cases where the
� � �

matrix considered is cor-

rupted by noise and therefore does not exactly correspond to a motion, i.e. it differs

from the forms (3), (4), (5) or (6).

4.1 Projective Space

We give an algorithm for the noise-free case in table 1. Its simple proof is given in

the appendix. In the presence of noise,
�� does not exactly satisfy the constraints (3)

and steps 2-4 have to be achieved in a least squares sense (see below). From there, one

can further improve the result, e.g. by non-linear minimization of the Frobenius norm

between the given (inexact) line homography matrix and the one corresponding to the

recovered usual motion parameters.

Let
� � be subdivided in

� �%�
blocks as:

� � � �� �� � � � � � ��� � � � � � � � .
1. �� : compute �� � ��� 4 ���
	(� � � ;
; 4 � � � �; ;
2.
6 ;

: compute � 6 ; �	%� � � � ; # ��!� ;
3.
6 # : compute � 6 # �	%��� ��!� ; � � # ;

4.
�

: compute
�

via
� � � 	 � � � � � �?# # � 6 ; 6 � # ��!� ; .

Table 1: Extracting the homography matrix from the 3D line homography matrix. Note

that extracted values are defined up to a global change of sign.

We give one way to perform a least squares estimation. Other algorithms might be

possible. Steps 2 and 3 require to fit a skew-symmetric
� � �

-matrix � � � 	 to a general

14

� ���
matrix � . The following solution minimizes the Frobenius norm of � � � 	 3�� :

�'� ;# ��� � # 3�� # � � ; � 3�� � ; � # ; 3�� ; # . Step 4 requires to fit a scaled
� � �

identity matrix � � to a general
� ���

-matrix � . The following solution minimizes the

Frobenius norm of � �?3�� : � � ;
�	� ��
 � � .

4.2 Affine Space

We give a straightforward algorithm in table 2. This algorithm is valid for the noise-free

case. For the noisy case, one can modify the proposed steps as follows.

Let
�� be subdivided in

� ���
blocks as:

�� � �� �� � � �� � �
� �� � � � .

1. �� : compute �� � ���# #
2. � : compute � � � 	 � �� ; # ��$� ; .

Table 2: Extracting the affinity matrix from the 3D line affinity matrix.

For step 1, �� can be recovered from
�� ; ; as well as

���# # . Their average, possibly

weighted, can be used to recover �� . Step 2 can be conducted as indicated for the

projective case in the previous section.

4.3 Metric Space

We give an algorithm for the noise-free case in table 3. For the noisy case, one might

Let
� � be subdivided in

� ���
blocks as:

� � � �� � � � � � �� � ��� � .
1. normalize

� � such that � � 	(� � � # # �� & ;
2. � : compute � ���� ��� 	 � � � ;
; ;
3. F : compute F�� � � # # ;
4. � : compute � � � 	 � � � ; # F � .

Table 3: Extracting the similarity matrix from the 3D line similarity matrix.

15

average the two versions of F available from
� � as F���� � � ;
;�� � # � �� # # ��� and correct

the result so that the obtained matrix exactly represents a rotation by using e.g. [16] orF����	�
�

where F��
���� � is the SVD (Singular Value Decomposition) of F . Step 4

can be achieved as indicated for the affine and projective cases.

4.4 Euclidean Space

We give an algorithm for the noise-free case in table 4. For the noisy case, one might

Let
� � be subdivided in

� �%�
blocks as:

� �E� �� � � � � �� � �
� �� � � � .

1. normalize
� � such that ���
	(� � � ;
; ���& ;

2. F : compute F�� � � ;
; ;
3. � : compute � � �	�� � � ; # F � .

Table 4: Extracting the displacement matrix from the 3D line displacement matrix.

average the two versions of F available from
� � as F � � � � ; ; � �� # # ��� and correct

the result so that the obtained matrix exactly represents a rotation as in the metric case.

Step 3 can be achieved as indicated for the affine and projective cases.

5 Aligning Two Line Reconstructions

We now describe how the 3D line motion matrix can be used to align two sets of �
corresponding 3D lines expressed in Plücker coordinates. We examine the projective

case but the method can also be used for affine, metric or Euclidean frames. We assume

that the two sets of cameras are independently weakly calibrated, i.e. their projection

matrices are known up to a 3D homography, so that a projective basis is attached to

each set [20]. Lines can be projectively reconstructed in these two bases. Our goal is

to align these 3D lines i.e. to find the projective motion between the two bases, using

the line reconstructions.

16

5.1 General Estimation Scheme

Estimation is performed by finding ���������
	���� where � is the cost function considered.

The scale ambiguity is removed by using the additional constraint � � � � # �)& . Non-

linear optimization is performed directly on the usual motion parameters (the 16 entries

of � and using the constraint � � � # �)&) whereas the other estimators determine an

approximate 3D line homography matrix
� � first, then recover the usual homography

matrix using the algorithm in table 1. The employed cost functions are non-symmetric,

taking into account the errors only in the second set of images.

5.2 Estimation Based on a 3D Cost Function

Our first alignment method is “Lin 3D”. One of the difficulties of using 3D lines for

motion estimation is that there is no universally agreed error metric between two 3D

lines. For that reason, we propose only one estimator based on 3D entities. This

estimator is based on a direct comparison of Plücker coordinates. A measure of the

distance between two 3D lines � and
�� is given by:

� #��� � � B �� �� �
����� ;������ ��� ;= �

����� ;������ ��� � � �! �
"�#

�%$# �/3 #
�&$# �(' # @A �

It can be constructed as follows. Consider the
� � �

matrix)���� �� � 3 �� � �
. If � and�� are identical, all entries of) vanish. Therefore,

� �*� � � B ��� �,+.-/+.01 # , where � � �32 is

the Frobenius matrix norm, can be used as a distance measure between � and
�� .

The distance
� �*� induces the following cost function:

� ��� � �
�

� #��� � � #*4 B �� #*4 B
where �65 � is the 7 -th reconstructed line in the 8 -th basis (8 �5. &

B
� 8) and

��!# 4 � � � � ; 4
is the estimated line after transfer from the first to the second basis.

Finding
� � that minimizes � �*� is a linear least squares problem. Concretely, it may

be solved by finding the null-vector of a
� 7 � ��� �

matrix, using e.g. SVD.

17

5.3 Estimation Based on 2D (Image-Related) Cost Functions

The following cost functions are based on minimizing discrepancies between repro-

jected lines and lines extracted in images. Concretely, we consider the projections in

the second set of images, of 3D lines in the first set, after transfer using the
� � to be

estimated. The discrepancy of these reprojected lines and observed ones is measured

by comparing 2D lines directly or by computing the distance between reprojected lines

and points on observed ones. The following cost functions are expressed in terms of

observed image lines, their end-points or an arbitrary number of points along the line,

and reprojected lines in the second set of images. These points need not be correspond-

ing points.

If end-points are not available then they can be hallucinated, e.g. by intersecting

the image lines with the image boundaries. The linear and quasi-linear methods need

at least 7 lines to solve for the motion while the non-linear one needs 5 (which is the

minimum number) but requires an initial guess.

We derive a joint projection matrix mapping a 3D line to a set of image lines in the

second set of images. Let

� �
� be the projection matrices of the � images corresponding

to the second set of cameras (expressed in the second basis) and
�
� �
� the corresponding� � �

line projection matrices (cf equation (2)). Similarly, let

�
� and

�
�
� be the point

and line projection matrices for the first set of cameras (expressed in the first basis).

Linear estimation 1. Our second alignment method “Lin 2D 1” directly uses the

line equations in the images. End-points need not be defined. We define an algebraic

measure of the distance between two image lines � and
� � by

� # � � B � �� � � � � � �� # . This

distance does not have any direct physical meaning, but it is zero if the two lines are

identical and simple in that it is bilinear. If � and
� � had unit norm and if they were

interpreted as vectors in Euclidean 3D space, then
� # � � B � �� would be the absolute value

of the sine of the angle between them.

This distance induces the cost function:

� ; � �
�

�
�

� # � ����� B � �����(B

18

where ����� is the 7 -th observed line in the � -th image of the second set and
� ����� the cor-

responding reprojection:
� � ��� � �

� �
�
� � � ; 4 . We normalize observed image lines such that� � ��� � # � & . Finding

� � that minimizes � ; is a linear least squares problem that may be

solved by computing the null-vector of a
� � � ��� �

matrix using e.g. SVD.

Linear estimation 2. Our third method “Lin 2D 2” uses points lying on the lines in

the second image set and the algebraic distance
� # � ��� B � �8��� � � � # between an image

point � and a line � . This distance would have a physical meaning, i.e. the orthogonal

distance between � and � , if they were normalized such that � � ��& and � #; � � ## � & .
If we consider the end-points � ��� and ����� of each line 7 of the � -th image of the

second image set, this gives the cost function:

� # � �
�

�
�

" � # � ��� ��� B � � ��� � � # � ��� ��� B � � ��� ' �
One can observe that an arbitrary number of points could be incorporated in �(# in a

straightforward manner. Finding
� � that minimizes � # is a linear least squares problem

that may be solved by computing the null-vector of a
�

� � � � �
matrix using e.g.

SVD.

Non-linear estimation 1. Our fourth method “NLin 2D 1” uses a geometrical cost

function based on the orthogonal distance between reprojected 3D lines and their mea-

sured end-points [17], defined as
� # � ��� B �� �� ��� 	
	 �� � ��� � �� (provided � � � &):

� � � �
�

�
�

" � # � ������� B � �����(� � # � ������� B � �����(' �
This is non-linear in the reprojected lines

� ����� and consequently in the entries of
� � ,

which implies the use of non-linear optimization techniques. We use the Levenberg-

Marquardt algorithm [10] with numerical differentiation. The unknowns are minimally

parameterized (we optimize directly the entries of � , not
� �), so no subsequent correc-

tion is needed to recover the motion parameters.

Quasi-linear estimation. The drawbacks of non-linear optimization are that the im-

plementation may be complicated. For these reasons, we also developed a quasi-linear

19

estimator “Qlin 2D” that minimizes the same cost function � � . Consider the cost func-

tions � # and � � . Both depend on the same data, measured image points on the line

(such as end-points) and reprojected lines, the former using an algebraic and the latter

the orthogonal distance. We can relate these distances by:

� # � ��� B � ���� � # � ��� B � where � � &
� #; � � ## B (7)

and rewrite � � as:

� � � �
�

�
�
� ���

" � # � ������� B � �����(� � # � ������� B � �����(' � (8)

The non-linearity is hidden in the weight factors � ��� . If they were known, the cost

function would be a sum of squares of terms that are linear in the entries of
� � . This

leads to the following iterative algorithm. Weights, assumed unknown, are initialized

to unity and iteratively updated. The loop is ended when the weights or equivalently

the residual errors converge. The algorithm is summarized in table 5. It is a quasi-

linear optimization that converges from the minimization of an algebraic error to the

geometrical one. Its main advantages are that it is simple to implement (as a loop over

a linear method) and that it gives reliable results as will be seen in the next sections.

1. initialization: set � ��� =1;

2. estimation: estimate
� � using standard weighted least squares; the

� � �

matrix obtained is corrected so that it represents a motion, see algorithm 1;

3. weighting: use
� � to update the weights � ��� according to equation (7);

4. iteration: iterate steps 2 and 3 until convergence (see text).

Table 5: Quasi-linear motion estimation from 3D line correspondences.

Non-linear estimation 2. The cost function � � employed in methods NLin 2D 1 and

QLin 2D is expressed only in terms of entities of the second set of images. Hence, it is

not symmetric with respect to the two sets of images. Our sixth method “NLin 2D 2”

20

is based on a cost function ��� , similar to � � , but that is symmetric with respect to the

two sets of images.

Let �
�
��� and �

�
��� designate the end-points of line 7 in the � -th image of the first set.

In order to write the expression of � � , we need the lines
� � ���� projected in the first image

set, after transfer from the second basis. They are given by
� � ���� � �

�
�
��!� ; � #*4 . The cost

function ��� can then be expressed as:

��� � � � � �
�

�
�

" � # � ��� ���� B � � ���� � � # � ��� ���� B � � ���� ' � (9)

This is a non-linear function. As for method NLin 2D 1, we optimize the entries of� using the Levenberg-Marquardt algorithm with numerical differentiation. At each

optimization step, we form matrix
� � . We do not compute directly the inverse of the

� ���
matrix

� � to get
�� � ; , but we rather compute the � � � matrix � � ; and form the

corresponding 3D line homography matrix, which is
� �!� ; � ��� � ; .

Other cost functions. Other distance measures between image lines have been pro-

posed in the literature. In [24], the authors proposed the total squared distance, i.e.

the sum of squared orthogonal distances along two line segments. In [25], the over-

lap between line segments is considered. These distances could be used for motion

estimation within the above described framework, requiring non-linear optimization.

It would also be possible to use a symmetric cost function, i.e. over the two sets of

images, as in [5] for the case of points.

Singularities. It has been shown that there exist critical sets of 3D lines [3]. In the

case of motion estimation from 3D line correspondences, [21] shows that these sets

may contain an infinite number of lines. For example, if all observed lines are coplanar,

motion estimation is ambiguous. We did not encounter such a singular situation during

our experiments.

21

6 Results Using Simulated Data

We first compare our estimators using simulated data. The test bench consists of four

cameras that form two stereo pairs observing a set of � � � 7 3D lines randomly

chosen in a sphere lying in the fields of view of all cameras. Lines are projected onto

the image planes, end-points are hallucinated at the image boundaries and corrupted by

additive Gaussian noise, and the equations of the image lines are estimated from these

noisy end-points.

A canonical projective basis [20] is attached to each camera pair and used to re-

construct the lines in projective space. We then compute the 3D homography between

the two projective bases using the estimators given in
�
5. We assess the quality of an

estimated motion by measuring the RMS (Root Mean Square) of the Euclidean repro-

jection error (orthogonal distances between reprojected lines and end-points in both

image pairs). This corresponds to the symmetric cost function � � (equation (9)) mini-

mized by the non-linear algorithm NLin 2D 2. We also monitor the computational cost

of each method. We show median results over 100 trials.

Accuracy. Figure 3 shows the error as the level of added noise varies. The non-linear

method is initialized using the quasi-linear one (an initialization from Lin2 2D 2 gives

similar results). We observe that the methods Lin 3D (based on an algebraic distance

between 3D Plücker coordinates), Lin 2D 1 and Lin 2D 2 perform worse than the oth-

ers. This is due to the fact that the cost functions used in these methods are not phys-

ically meaningful and biased compared to � � . Method QLin 2D gives results close to

those obtained using NLin 2D 1. It is therefore a good compromise between the linear

and non-linear methods, achieving good results while keeping simplicity of implemen-

tation. However, we observed that in a few cases (about 4%), the quasi-linear method

does not enhance the result obtained by Lin 2D 2 while NLin 2D does. QLin 2D esti-

mates more parameters than necessary and this may cause numerical instabilities. The

method that best minimizes the reprojection error is NLin 2D 2. This results could

have been expected since this method consists in minimizing the reprojection error.

22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Image noise standard deviation (pixel)

R
ep

ro
je

ct
io

n
er

ro
r

(p
ix

el
)

PSfrag replacements

Lin 3D

Lin 2D 1

Lin 2D 2

QLin 2D

NLin 2D 1

NLin 2D 2

Figure 3: Comparison of the reprojection error versus added image noise for different

motion estimators. The order of methods in the legend corresponds to the curves from

top to bottom.

23

Computational cost. Figure 4 shows the computational cost as the level of added

noise varies. These results have been obtained using our C implementation, on a

850 Mhz. Pentium III PC running under Windows. As expected, the linear meth-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image noise standard deviation (pixel)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
d)

PSfrag replacements

Lin 3D

Lin 2D 1

Lin 2D 2

QLin 2D

NLin 2D 1

NLin 2D 2

Figure 4: Comparison of the computation time versus added image noise for different

motion estimators. The order of methods in the legend corresponds to the curves from

top to bottom.

ods (Lin 2D 1, Lin 2D 2 and Lin 3D) give constant results, i.e. that do not depend

upon the level of added noise. Note that for these methods, the computational cost

is dominated by the singular value decomposition needed to solve the linear system.

Hence, the computational cost is directly linked to the size of the linear system associ-

ated to the method. This explains that method Lin 3D, with a ����������� linear system

to solve, has a much higher computational cost than methods Lin 2D 1 and Lin 2D 2

which have respectively �����	��� and
�������� systems to solve.

On the other hand, non-linear methods (QLin 2D, NLin 2D 1 and NLin 2D 2) give

results depending on the added noise level. Indeed, the noise level influences the num-

24

ber of iterations needed by the method to convergence and hence, the computational

cost. As for linear methods, the computational cost for method QLin 2D is domi-

nated by the singular value decomposition of successive linear systems, i.e. step 2 of

the algorithm shown in table 5. Hence, the computational cost is roughly given by

the number of iterations multiplied by the computational cost of method Lin 2D 2, on

which QLin 2D is based. This corresponds to what can be observed on figure 4. For

methods NLin 2D 1 and NLin 2D 2, we observe that the computational cost of each

Levenberg-Marquardt iteration is dominated by the computation of the differentiation

of the cost function, and slightly influenced by the resolution of the normal equations.

The fact that NLin 2D 2 has roughly twice the computational cost of NLin 2D 1 is ex-

plained by the fact that the number of terms in the symmetric cost function � � is twice

that of the cost function � � .
7 Results on Real Images

We test our algorithms using real images. Two scenarios are considered, described in

the following two sections.

The first one considers two projective line reconstructions obtained from a weakly

calibrated stereo rig. The overlap between the two reconstructions is large and the

recovered motion is expected to be accurate. A stereo self-calibration technique is then

applied to upgrade the reconstructions to metric space.

The second scenario is based on metric reconstructions obtained from multiple

views of an indoor scene. The overlap between the two reconstructions is small. Hence,

the alignment is expected to be unstable.

7.1 Largely Overlapping Reconstructions

We use images taken with a weakly calibrated stereo rig, shown on figure 5. Weakly

calibrated means that the fundamental matrix between the left and right images is

known. In practice, we estimate it from point correspondences using the maximum

likelihood estimation technique given in [26]. The epipolar geometry is the same for

25

both image pairs. Hence, stereo self-calibration techniques can be applied to recover

camera calibration from the computed 3D motion. From the fundamental matrix, we

pair 1 pair 2

Figure 5: The two image pairs of a ship part used in the experiments, overlaid with

extracted lines. Note that the extracted end-points do not necessarily correspond.

define a canonical reconstruction basis for each pair [20]. This also gives the line pro-

jection matrices
�
�
� and

�
� �
� . We track 21 lines across images by hand and projectively

reconstruct them for each image pair. One can observe that all lines are visible in each

of the 4 images of figure 5.

Motion estimation. We use the methods of
�
5 to estimate the projective motion be-

tween the two reconstructions, but since we have no 3D ground truth we will only

show the result of transferring the set of reconstructed lines from the first to the sec-

ond 3D frame, using the 3D line homography matrix, and reprojecting them. Figure 6

shows these reprojections, which confirms that the non-linear and quasi-linear methods

achieve better results than the linear ones. Note that the results appear visually slightly

worse for method NLin 2D 2 compared to method NLin 2D 1 since the former mini-

mizes the reprojection error in both image sets, while the latter uses only the second

image set.

We measure the reprojection error (in both image sets) and computational cost for

each method:

26

Lin 3D Lin 2D 1

Lin 2D 2 QLin 2D

NLin 2D 1 NLin 2D 2

Figure 6: The lines transferred from the first reconstruction and reprojected onto the

second image pair are shown overlaid on the left image of the second pair in black for

different methods while observed image lines are shown in white.

27

method reprojection error (pixel) computation time (second)

Lin 3D 3.45 0.16

Lin 2D 1 3.36 0.03

Lin 2D 2 2.83 0.02

NLin 2D 1 2.05 0.15

QLin 2D 1.93 0.09

NLin 2D 2 1.53 0.26

These results confirm those observed on figure 6: non-linear and quasi-linear methods

achieve better results than linear ones. The methods with the lowest computational

costs are Lin 2D 1 and Lin 2D 2, while the method with the highest computational cost

is NLin 2D 2. Methods Lin 3D and NLin 2D 1 have roughly the same computational

cost.

Even if there are some differences between the methods, it can be said that all of

them give a correct result, i.e. the reprojection error is reasonable.

Self-calibration. We use the usual � � � homography matrix estimated with the

method NLin 2D 1 to self-calibrate the stereo rig using the method described in [14]

with a three-parameter camera (zero skew and unit aspect ratio).

The usual � � � upgrade matrix, which converts a projective point reconstruction

into a metric one, has the following form [14], where � is the matrix of intrinsic pa-

rameters of the left camera, + � �!� �+ ��� the coordinates of the plane at infinity in the

reconstruction basis and � the focal length:

��� � ;= � � ; ��+ � �
@A B

which gives the
� � �

3D line upgrade matrix as:

� � � � ;= ;
� � � � �3�� � ; � �+ � 	 � � � ;

@A �
We compare the intrinsic parameters recovered for the left camera to those esti-

mated using off-line calibration [9]:

28

Figure 7: Reconstructed lines after self-calibration.

parameter self-calib. off-line calib. % error
�

1514.22 1461.02 3.51
��� 252.93 267.98 5.95
��� 250.68 241.03 3.84

where (�����	���) are the image coordinates of the principal point.

Figure 7 shows different points of view of the reconstruction we obtained from the

first pair. We hallucinate 3D end-points by intersecting the viewing rays of image end-

points with the reconstructed lines from the first pair (we use those from the left image

of the first pair). Qualitatively, the result seems to be correct.

7.2 Slightly Overlapping Reconstructions

We use two sets of images, shown on figures 8 and 9, taken with a calibrated camera.

For each image set, we use point correspondences to get camera positions and used

them to reconstruct 3D lines, as shown on figure 10 and 11.

The observed scene is composed of two stacks of boxes and a laptop. In the first

image set, the leftmost stack of boxes is not visible, while in the second image set, the

laptop is not visible. Hence, even if 40 lines are reconstructed from each image set, the

overlap is constituted by 15 lines only, lying on the middle stack of boxes and closely

located in space.

We apply our alignment algorithms to these data. The results are visible on figure

12. Visually, the results lie in two categories. The linear methods give very biased

29

Figure 8: The first set of images, overlaid with extracted lines.

30

Figure 9: The second set of images, overlaid with extracted lines.

31

Figure 10: The 40 lines reconstructed from the first set of images.

32

Figure 11: The 40 lines reconstructed from the second set of images.

33

Figure 12: The two reconstructed sets of lines, from to to bottom: without alignment,

alignment with linear methods and alignment with non-linear/quasi-linear methods.

The left column shows views of the reconstructions, while the right column shows the

reprojection in an original image.
34

results, leading to bad alignment, while the non-linear methods (including the quasi-

linear one) give reliable results.

We measure the reprojection error and computational cost for each method:

method reprojection error (pixel) computation time (second)

Lin 3D 14.49 0.12

Lin 2D 1 15.10 0.02

Lin 2D 2 13.28 0.01

NLin 2D 1 2.95 0.17

QLin 2D 2.91 0.08

NLin 2D 2 1.76 0.31

These measurements confirm the previous observation: the reprojection error is of an

order of 10 pixels for linear methods, which is large, while it is of an order of a few

pixels for non-linear/quasi-linear methods. These results are explained by the fact that

only a few line correspondences are available and that they are closely located in space.

8 Conclusions

We addressed the problem of estimating the motion between two line reconstructions

in the general projective case. We used Plücker coordinates to represent 3D lines and

showed that they could be transferred linearly between two reconstruction bases using

a
� � �

3D line homography matrix. We specialized this result to the affine, metric and

Euclidean cases. We investigated the algebraic properties of this matrix and showed

how to extract the usual � � � motion matrices (i.e. homography, affinity or rigid

displacement) from them.

We then proposed several 3D and image-based estimators for the motion between

two line reconstructions. Experimental results on both simulated and real data show

that the linear estimators perform worse than the non-linear ones, especially when the

cost function is expressed in 3D space. The non-linear and quasi-linear estimators,

based on orthogonal image errors give similar good results. Concerning the computa-

tional cost, we show that linear methods based on 2D cost functions are not expensive,

35

Figure 13: Some views of the reconstructions aligned with the non-linear method

NLin 2D 2, consisting of 65 lines and 14 cameras.

36

compared to non-linear methods, while the linear method based on a 3D cost function

may be as expensive as a non-linear method.

More specifically, when the overlap between the two reconstructions is large, as

it can be expected when a continuous image sequence is processed, the alignement

obtained with linear methods is reliable. Hence these methods could be used for real-

time stereo tracking of lines, in a manner similar to [6].

A Proofs and Derivations

In this appendix, we derive and prove some results mentioned in this paper.

Perspective projection matrix for lines. Consider a line with Plücker coordinates� � � � + ��-?� defined by two points � � � ���� ��� and & � � �6�& ��) that are

projected onto � and � respectively by the perspective projection matrix

�
. The cor-

responding image line is � . Expanding its expression leads to the perspective projection

matrix for lines,
�
�

as:� � �
�

�� �
� �! � �

� & � � �� �� � � " � � �� �& �) " � � �� ��! � � �� �& �� � " � � �� �& ?3) " � � �� �� � � � 	(� �� �� � � ���� � �& � � " � 	 �� � � �&43) �� � �
� � where

�
� � � � � 	 � �� �� � � � " � 	 �� � �

Deriving the 3D line homography matrix. Consider a line with coordinates � � ; �
� + � ; -?� ; defined by two points � � ; � � �� � ; � ; and & � ; � � �& � ;) ; in the first

projective basis and Plücker coordinates � � # � � + � # -?�# defined by points � � # �
� �� � # � # and & � # � � �& � #) #(in the second projective basis. Expanding the ex-

pressions for + # and
- # according to the definition of Plücker coordinates (1) gives

37

respectively the
� ���

upper and lower parts of
� � :+ # � �� # � �& #� � �� �� ;

� � ; 6 ; � � � ����& ; �) ; 6 ; �
� ��� 	 � �� �� � � � �� ; � �& ; �D� 6 ; � 	 �� � � ; �& ; 3) ; �� ; �
� ��� 	 � �� �� � � + ; � � 6 ; � 	 �� - ; B

- # � � # �& # 3) # �� #� 6 � # � �� ; �� �& ; 3 �& ; �� �� ; �
� 6 � # ���� ;�6<;) ; 3 �& ;�6<; � ; �
� � �� � � ; �& ; 3) ; �� ; � 3 ��!� 6 # � 	 + ; 3 6 ; 6 � # - ; � � �� - ; � �

The specialization of this result to the affine, metric and Euclidean spaces shown in
���

3.2 and 3.4 respectively is straightforward.

Deriving the 20 consistency constraints on the 3D line homography matrix. We

prove 20 non-linear consistency constraints that must hold on the entries of a 3D line

homography matrix. Note that there exist other possible constraints. We use the nota-

tion defined in
�
3.1.

Consider the product
�� ;
; � � � ; # . Its expansion leads to:

� � ; ; � � � ; # � �� � � �� � � 6 ; � 	� � 6 ; �	 B
which is a skew-symmetric matrix. It means that its diagonal entries vanish, which

corresponds to the following 3 constraints on the 3D line homography matrix:

��� � ; ; � � ��� ; #�� � �� 7 B � � &�� � � � �
Note that 3 other constraints could be derived from this equation based on the off-

diagonal entries.

38

Similarly, consider the product
� �?# ; �� � # # . Its expansion leads to:

� � # ; � � � # # � �� � 6 # � 	%� � �� � 3 6 # 6 � ; �� �� � 6 # � 	 � �� � 3 ��$� 6 # � 	 6 # 6 � ;� �� � 6 # � 	 �� �� � �� � � 6 # �
	 B
where we used the rule:� ���6� 	 � ��� 	 ��� �� � � � �6� 	 � � ; ��� � � � �6� 	 � � ; � (10)

As previously, we end up with a skew-symmetric matrix whose diagonal entries vanish,

giving another 3 constraints:

��� � # ; � � ��� # #�� � �� 7 B � � &�� � � � �
Similarly, observe that:

� � � ;
; � � # ; � �� � ; �� � 6 # � 	� � 6 # � 	 B
and that:

�� � ; # � � # # � �� � � 6<; �	<� � ���3 6<; 6 � # � �� � � 6<; �	 ��� � �� � ; 6 ; �
	 B
which gives, respectively, the following 6 constraints:

��
 � ;
; � � ��
 # ; � � �� 7 B ����&�� � � �
��
 � ; #�� � ��
 # #�� �� ��7 B �*� &�� � � � �

The first 12 constraints are derived. We derive the remaining 8 contraints as follows.

Consider the following equation:

� � ; ; � � � # # � � � ; # � � � # ; � � � 	 � �� �� � � � � �� � 3 6 # 6 � ; � � 6 ; �	 �� � 6 # �
	 �� � �
39

After expansion and by using equation (10) for the last term, we obtain:

�� ;
; �� � # # � � � ; # � � � # ; � � �.3 ���
	 � ��< �� � � 6 # 6 � ; �D� 6 ; �	 ��� 	 � �� � �� � � 6 # �	� � �.3 �� � � 6 # 6 � ; 3 � 6 ; � 	 � �� � � 6 # � � 	 �
Define + � ��!� � 6 # and

- � 6 ; and use the following rule:+ - � �D� - � 	 � + � � 	 ��� + � - � B
which gives:

� � ;
; � � � # # � � � ; # � � � # ; � � �?3 � 6 � # �� � ; 6 ; �� � �
From this equation, we deduce that all diagonal entries of matrix

� � ;
; � � � # # � � � ; # � � � # ; are

equal and all off-diagonal entries are zero, which gives the remaining 8 constraints:

��� � ;
; � � ���� # #�� ��� �� ��� � ; #�� � ���� # ; � ��� � 7 B � � & � � � � B � � � & � � � � B � �� �
�

��� � ;
; � ; ���� # #�� ; �� ��� � ; #�� ; ���� # ; � ; � ��� � ;
; � # ���� # #�� #(�� ��� � ; #�� # ���� # ; � #(� ��� � ;
; � � ���� # #�� � �� ��� � ; #�� � ���� # ; � � � �

Extracting the usual homography matrix from the 3D line homography matrix.

To prove the correctness of algorithm 1 we may reform the 3D line homography matrix
� � � corresponding to the extracted usual motion parameters (given by equation (3)) and

40

verify that each of its blocks corresponds to the original block of
� � , as follows:

� � � ; ; � ��� 	 � �� ��!� �� ��� 	
� ��� 4 ��� 	 � � � ;
; 4 � � � �;
;�� � ;� ���	��
� � � �� � � � ;
;� � � 4 ��� 	 � � � ; ; 4 � ;����
�� � � �� � ;� ������
� � ��� � � � � ; ;� � � � ; ;

� � � ; # � � 6 ; � 	 ��� � � � ; #1� � ��!� ; ��� � � � ; #
� � �# ; � 3 ��!� 6 # �	� 3 � ���� � �� � ; � � # ;� � � � # ;
� � �# # � � �� 3 6 ; 6 � #� � � � � # # � � � 6 ; �� � 6 � # �� � �� � ; �� 3 6 ; 6 � #� � � � # # � �

References

[1] N. Andreff, B. Espiau, and R. Horaud. Visual servoing from lines. In Interna-

tional Conference on Robotics and Automation, San Francisco, April 2000.

[2] A. Bartoli and P. Sturm. The 3D line motion matrix and alignment of line re-

constructions. In Proceedings of the Conference on Computer Vision and Pattern

Recognition, Kauai, Hawaii, USA, volume I, pages 287–292. IEEE Computer So-

ciety Press, December 2001.

[3] T. Buchanan. Critical sets for 3D reconstruction using lines. In G. Sandini,

editor, Proceedings of the 2nd European Conference on Computer Vision, Santa

Margherita Ligure, Italy, pages 730–738. Springer-Verlag, May 1992.

41

[4] J. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[5] G. Csurka, D. Demirdjian, and R. Horaud. Finding the collineation between

two projective reconstructions. Computer Vision and Image Understanding,

75(3):260–268, September 1999.

[6] D. Demirdjian and R. Horaud. Motion-egomotion discrimination and motion seg-

mentation from image-pair streams. Computer Vision and Image Understanding,

78(1):53–68, April 2000.

[7] F. Devernay and O. Faugeras. From projective to euclidean reconstruction. In

Proceedings of the Conference on Computer Vision and Pattern Recognition, San

Francisco, California, USA, pages 264–269, June 1996.

[8] O. Faugeras and B. Mourrain. On the geometry and algebra of the point and

line correspondences between
)

images. In Proceedings of the 5th International

Conference on Computer Vision, Cambridge, Massachusetts, USA, pages 951–

956, June 1995.

[9] O.D. Faugeras and G. Toscani. Camera calibration for 3D computer vision. In

Proceedings of International Workshop on Machine Vision and Machine Intelli-

gence, Tokyo, Japan, 1987.

[10] P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press,

1981.

[11] G. Hager and K. Toyama. X vision : A portable substrate for real-time vision

applications. CVIU, 69(1):23–37, 1998.

[12] R.I. Hartley. Lines and points in three views and the trifocal tensor. International

Journal of Computer Vision, 22(2):125–140, 1997.

[13] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, June 2000.

42

[14] R. Horaud, G. Csurka, and D. Demirdjian. Stereo calibration from rigid motions.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):1446–

1452, December 2000.

[15] R. Horaud, F. Dornaika, and B. Espiau. Visually guided object grasping. IEEE

Transactions on Robotics and Automation, 1997.

[16] B.K.P. Horn, H.M. Hilden, and S. Negahdaripour. Closed-form solution of ab-

solute orientation using orthonormal matrices. Journal of the Optical Society of

America A, 5(7):1127–1135, July 1988.

[17] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of

planes. In Proceedings of the Conference on Computer Vision and Pattern Recog-

nition, Santa Barbara, California, USA, pages 482–488, June 1998.

[18] Y. Liu, T.S. Huang, and O.D. Faugeras. Determination of camera location from

2D to 3D line and point correspondences. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 12(1):28–37, January 1990.

[19] Q.T. Luong and O. Faugeras. The fundamental matrix: Theory, algorithms and

stability analysis. International Journal of Computer Vision, 17(1):43–76, 1996.

[20] Q.T. Luong and T. Vieville. Canonic representations for the geometries of multi-

ple projective views. Computer Vision and Image Understanding, 64(2):193–229,

1996.

[21] N. Navab and O. D. Faugeras. The critical sets of lines for camera displacement

estimation: a mixed euclidean-projective and constructive approach. Interna-

tional Journal of Computer Vision, 23(1):17–44, 1997.

[22] C. Schmid and A. Zisserman. Automatic line matching across views. In Pro-

ceedings of the Conference on Computer Vision and Pattern Recognition, Puerto

Rico, USA, pages 666–671, 1997.

[23] M. Spetsakis and J. Aloimonos. Structure from motion using line correspon-

dences. International Journal of Computer Vision, 4:171–183, 1990.

43

[24] C.J. Taylor and D.J. Kriegman. Structure and motion from line segments in mul-

tiple images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(11):1021–1032, November 1995.

[25] Z. Zhang. Estimating motion and structure from correspondences of line seg-

ments between two perspective images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 17(12):pp. 1129–1139, June 1994.

[26] Z. Zhang. Determining the epipolar geometry and its uncertainty: A review.

International Journal of Computer Vision, 27(2):161–195, March 1998.

[27] Z. Zhang and O. D. Faugeras. Tracking and grouping 3D line segments. In

Proceedings of the 3rd International Conference on Computer Vision, Osaka, Ja-

pan, pages p. 577–580, December 1990.

44

