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Abstract. The reconstruction of rigid scenes from multiple images is a
central topic in computer vision. Approaches merging partial 3D models
in a hierarchical manner have proven the most effective to deal with large
image sequences. One of the key building blocks of these hierarchical
approaches is the alignment of two partial 3D models by computing a
3D transformation. This problem has been well-studied for the cases of
3D models obtained with calibrated or uncalibrated pinhole cameras.
We tackle the problem of aligning 3D models – sets of 3D points – ob-
tained using uncalibrated affine cameras. This requires to estimate 3D
affine transformations between the 3D models. We propose a factorization-
based algorithm estimating simultaneously the aligning transformations
and corrected points, exactly matching the estimated transformations,
such that the reprojection error over all cameras is minimized.
We experimentally compare our algorithm to other methods using sim-
ulated and real data.

1 Introduction

Three dimensional reconstruction from multiple images of a rigid scene, often
dubbed Structure-From-Motion, is one of the most studied problems in com-
puter vision. The difficulties come from the fact that, using only feature cor-
respondences, both the 3D structure of the scene and the cameras have to be
computed. Most approaches rely on an initialisation phase optionally followed by
self-calibration and bundle adjustment. Existing initialisation algorithms can be
divided into three families, namely batch, sequential and hierarchical processes.
Hierarchical processes [1] have proven the most successful for large image se-
quences. Indeed, batch processes such as the factorization algorithms [2] which
reconstruct all features and cameras in a single computation step, do not easily
handle occlusions, while sequential processes reconstruct each view on turn, may
typically suffer from accumulation of the errors. Hierarchical processes merge
partial 3D models obtained from sub-sequences, which allows to distribute the
error over the sequence, and efficiently handle open and closed sequences. A key
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Fig. 1. This paper deals with the estimation of 3D affine transformations between two
(or more) affine reconstructions obtained from uncalibrated affine cameras.

step of hierarchical processes is the fusion or the alignment of partial 3D models,
by computing 3D motion from 3D feature correspondences. This problem has
been extensively studied in the projective and metric cases.

We focus on the affine camera model, which is a reasonable approximation to
the perspective camera model when the depth of the observed scene is small com-
pared to the viewing distance. Partial 3D models obtained from sub-sequences,
i.e. multiple subsets of cameras, are related by 3D affine transformations. We
deal with the computation of such transformations from point correspondences,
as illustrated on figure 1. We propose a Maximum Likelihood Estimator based
on factorizing modified 3D point coordinates. We compute a 3D affine trans-
formation and a set of 3D point correspondences which perfectly match, such
that the reprojection error in all sets of cameras is minimized. The method can
be embedded in a robust ransac-like [3] framework to deal with data sets con-
taining outliers. It is intended to fit in hierarchical affine Structure-From-Motion
processes of which the basic reconstruction block is, e.g. the affine factorization
[2]. Our method, based on the new concept of orthonormal bases, requires a
single Singular Value Decomposition (svd) in the occlusion-free case.

This paper is organized as follow. We give our notation and preliminaries in
§2. In §3, we review the factorization approach to uncalibrated affine Structure-
From-Motion. Our alignment method is described in §4, while other methods
are summarized in §5. Experimental results are reported in §6. Our conclusions
are given in §7.

2 Notation and Preliminaries

Vectors are typeset using bold fonts, e.g. x, and matrices using sans-serif, cal-
ligraphic and greek fonts, e.g. A, Q and Λ. We do not use homogeneous co-
ordinates, i.e. image point coordinates are 2-vectors: xT = (x y), where T is
transposition. The different sets of cameras are indicated with primes, e.g. P1,
P′1 and P′′1 are the first cameras of the three first camera sets. Index i = 1 . . . n



is used for the cameras of a camera set and index j = 1 . . .m is used for the 3D
points. The identity matrix is denoted I and the zero matrix and vector by 0
and 0. The Frobenius or L2 norm of a matrix A or a vector x are respectively
denoted ‖A‖ and ‖x‖. The mean vector of a set of vectors, say {Qj}, is denoted
Q̄. The Moore-Penrose pseudoinverse of matrix A is denoted A†.

Let Qj be a 3-vector and xij a 2-vector representing respectively a 3D and
an image point. The uncalibrated affine camera is modeled by a (2× 3) matrix
Pi and a (2× 1) translation vector ti, giving the projection equation:

xij = PiQj + ti. (1)

Calligraphic fonts are used for the measurement matrices: e.g. X(2n×m) is made
with measured point coordinates xij and X =

(
Y1 · · · Ym

)
, where Yj contains

all the measured image coordinates for the j-th point. The so-called (2n × 3)
‘joint projection’ and (3 × m) ‘joint structure’ matrices are defined by PT =(
PT

1 · · · PT
n

)
and Q =

(
Q1 · · · Qm

)
. We assume that the noise on image point

positions is i.i.d., centred Gaussian. Under these hypotheses minimizing the re-
projection error yields Maximum Likelihood Estimates.

3 Structure-From-Motion Using Factorization

Given a set of point matches {xij}, the factorization algorithm is employed to
recover all cameras {P̂i, t̂i} and 3D points {Q̂j} at once [2]. Under the aforemen-
tioned hypotheses on the noise distribution, this algorithm computes Maximum
Likelihood Estimates by minimizing the reprojection error:

R2(P,Q, {ti}) =
1
nm

n∑
i=1

m∑
j=1

d2(xij ,PiQj + ti), (2)

where d(x,y) = ‖x−y‖ is the Euclidean distance between x and y. The problem
is thus formulated as minP̂,Q̂,{t̂i}R

2(P̂, Q̂, {t̂i}).

Step 1: Computing the translation. Given the uncalibrated affine projection (1),
the first step of the algorithm is to compute the translation t̂i of each camera in
order to cancel it out from the projection equation. This is achieved by nullifying
the partial derivatives of the reprojection error (2) with respect to t̂i: ∂R2

∂t̂i
= 0.

A short calculation shows that if we fix the arbitrary centroid of the 3D points
to the origin, then t̂i = x̄i. Each set of image points is therefore centred on
its centroid, i.e. xij ← xij − x̄i, to obtain centred coordinates. Henceforth, we
work in centred coordinates which allows to write the centred projection equation
xij = PiQj from (1).

Step 2: Factorizing. We rewrite R2(P,Q) = 1
nm

∑n
i=1

∑m
j=1 d

2(xij ,PiQj) the
reprojection error. The problem is thus reformulated as minP̂,Q̂R2(P̂, Q̂). The



reprojection error can be rewritten by gathering the terms using the measure-
ment, the ‘joint projection’ and the ‘joint structure’ matrices as R2(P,Q) ∝
‖X − PQ‖2, and the problem is solved by computing the Singular Value De-
composition (svd) [4] of matrix X : X2n×m = U2n×mΣm×mVT

m×m, where U and
V are orthonormal matrices and Σ is diagonal and contains the singular values
of X . Let Σ = ΣuΣv be any decomposition of matrix Σ, e.g. Σu = Σv =

√
Σ.

The motion and structure are obtained by, loosely speaking, ‘truncating’ the
decomposition or nullifying all but the 3 first singular values, which leads to
P = ψ(UΣu) and Q = ψT(VΣT

v ), where ψ(W) returns the matrix formed with
the 3 leading columns of matrix W. Note that the alternative solution P = ψ(U)
and Q = ψT(VΣ) has the property PTP = I which is useful for our alignment
method, see §4. The 3D model is obtained only up to a global affine transfor-
mation. Indeed, let B be a (3 × 3) invertible matrix: P̃ = P̂B and Q̃ = B−1Q̂
give the same reprojection error as P and Q since R2(P̃, Q̃) = ‖X − P̃Q̃‖ =
‖X − P̂BB−1Q̂‖2 = ‖X − PQ‖2 = R2(P,Q). As presented above, the factor-
ization algorithm do not handle occlusions. Though some algorithms have been
proposed, see e.g. [5], they are not appropriate for Structure-From-Motion from
large image sequences.

4 Alignment of 3D Affine Reconstructions

We formally state the alignment problem in the two camera set case and present
our algorithm, dubbed ‘FactMLE’. Its extension to the multiple camera set
case is trivial and is omitted.

4.1 Problem Statement

Consider two sets of cameras {(Pi, ti)}ni=1 and {(P′i, t′i)}n
′

i=1 and associated struc-
tures3 {Qj ↔ Q′

j}mj=1 obtained by reconstructing a rigid scene using e.g. the
above-described factorization algorithm. The reprojection error over these two
sets is given by:

C2(Q,Q′) =
1

2nm
(
R2(P,Q, {ti}) +R′2(P ′,Q′, {t′i})

)
. (3)

Let (Â, t̂) represent the aligning (3 × 3) affine transformation. The Maximum
Likelihood Estimator is formulated by:

min
Q̂,Q̂′
C2(Q̂, Q̂′) s.t. Q̂′

j = ÂQ̂j + t̂. (4)

4.2 A Factorization-Based Algorithm

Our method to solve problem (4) uses a three-step factorization strategy. We
describe it in the occlusion-free case only. An iterative extension for the missing
data case will be proposed in a forthcoming paper.
3 Without loss of generality, we assume the same number of points to be present in

the two reconstructions since only the correspondences are used for alignment.



Step 1: Orthonormalizing. We propose the important concept of orthonormal
bases. We define a reconstruction to be in an orthonormal basis if the joint pro-
jection matrix is column-orthonormal. Given a joint projection matrix P, one
can find a 3D affine tranformation N(3×3) such that PN is column-orthonormal,
i.e. such that NTPTPN = I(3×3). We call N an orthonormalizing transformation.
The set of orthonormalizing tranformations is 3-dimensional since for any 3D
rotation matrix U, NU still is an orthonormalizing transformation for P. We use
the qr decomposition P = QR, see e.g. [4], giving an upper triangular orthonor-
malizing transformation N = R−1. Other choices are possible for computing an
N, e.g. if P = UΣVT is an svd of P, then N = VΣ−1 has the required property.
Henceforth, we assume that all 3D models are expressed in orthonormal bases:
P ← PN, P ′ ← P ′N′, Q ← N−1Q and Q′ ← N′

−1Q′. An interesting property of
orthonormal bases is that P† = PT. Hence, triangulating points in these bases
is simply done by Q = PTX .

Note that the matrix P computed by factorization, see §3, may already satisfy
PTP = I. However, if at least one of the cameras is not used for the alignment,
e.g. if none of the 3D point correspondences project in this camera, or if the
cameras come as the result of the alignment of partial 3D models, then P will
not satisfy PTP = I, thus requiring the orthonormalization step.

Step 2: Eliminating the translation. The translation part of the sought-after
transformation can not be computed directly, but can be eliminated from the
equations. First, centre the image points to eliminate the translation part of
the cameras: xij ← xij − ti and x′ij ← x′ij − t′i. Second, consider that the
partial derivatives of the reprojection error (3) with respect to t̂ must vanish:
∂C2

∂t̂
= 0. By using the constraint Q̂′

j = ÂQ̂j + t̂ from equation (3) and ex-

panding:
∑n′

i=1

∑m
j=1

(
P′i

TP′it̂− P′i
Tx′ij + P′i

TP′iÂQ̂j

)
= mP ′TP ′t̂ − mP ′TȲ ′ +

mP ′TP ′Â ¯̂Q = 0, which leaves us with t̂ = (P ′TP ′)
−1

(P ′TȲ ′ − P ′TP ′Â ¯̂Q) that
further simplifies to t̂ = P ′†Ȳ ′− Â

¯̂Q and, thanks to the orthonormal basis prop-
erty P ′† = P ′T, we get:

t̂ = P ′TȲ ′ − Â
¯̂Q, (5)

Note that if the same entire sets of reconstructed points are used for the align-
ment, then we directly obtain t̂ = 0 since Ȳ ′ = 0 and ¯̂Q = 0. This is rarely the
case in practice, especially if the alignment is used to merge partial 3D models.

Third, consider that the m partial derivatives of the reprojection error (3)
with respect to each Q̂j must vanish as well: ∂C2

∂Q̂j
= 0, and expand as above:

PTPQ̂j − PTYj + ÂTP ′TP ′ÂQ̂j − ÂTP ′TY ′j + ÂTP ′TP ′t̂ = 0. The sum over j

of all these derivatives also vanishes:
(
∀j, ∂C2

∂Qj
= 0

)
⇒

(∑m
j=1

∂C2

∂Qj
= 0

)
, giving

PTP ¯̂Q − PTȲ + ÂTP ′TP ′Â ¯̂Q − ÂTP ′TȲ ′ + ÂTP ′TP ′t̂ = 0. By replacing t̂ by
its expression (5), and after some minor algebraic manipulations, we obtain
PTP ¯̂Q−PTȲ = 0 and ¯̂Q = P†Ȳ. By substituting in equation (5) and using the



orthonormal basis property P† = PT, we get:

t̂ = P ′TȲ ′ − ÂPTȲ. (6)

It is common in factorization methods to centre the data with respect to their
centroid to cancel the translation part of the transformation. Equation (6) means
that, according to the reprojection error criterion, the data must be centred with
respect to the reconstructed centroid of the image points, not with respect to the
actual 3D centroid.

Obviously, if the 3D models have been obtained by the factorization method
of §3, then the centroid of the 3D points corresponds to the reconstructed cen-
troid, i.e. Q̄ = PTȲ and Q̄′ = P ′TȲ ′, provided that the same sets of views are
used for reconstruction and alignment.

To summarize, we cancel the translation part out of the sought-after trans-
formation by translating the reconstructions and the image points by Qj ←
Qj −PTȲ and xij ← xij − PiPTȲ, and similarly for the second image set. The
reprojection error (3) is rewritten:

C2(Q,Q′) =
1

2nm
(
‖X − PQ‖2 + ‖X ′ − P ′Q′‖2

)
, (7)

and problem (4) is reformulated as minQ̂,Q̂′ C2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j .

Step 3: Factorizing. Thanks to the orthonormal basis property PTP = I, and
since for any column-orthonormal matrix A, ‖Ax‖ = ‖x‖, we can rewrite the
reprojection error on a single set of cameras as R2(P,Q) ∝ ‖X − PQ‖2 =
‖PTX −Q‖2. This allows to rewrite the reprojection error (7) as:

C2(Q̂, Q̂′) ∝ ‖PTX − Q̂‖2 + ‖P ′TX ′ − Q̂′‖2 = ‖
(
PTX
P ′TX ′

)
︸ ︷︷ ︸

Λ

−
(
Q̂
Q̂′

)
︸ ︷︷ ︸

∆

‖2.

By introducing the constraint Q̂′ = ÂQ̂ and, as in §3, an unknown global affine
transformation B:

∆ =
(

I
Â

)
BB−1Q̂ =

(
B

ÂB

)
︸ ︷︷ ︸
M̃

B−1Q︸ ︷︷ ︸
Q̃

.

The problem is reformulated as minM̃,Q̃ ‖Λ−M̃Q̃‖2. A solution is given by svd

of matrix Λ: Λ(6×m) = U(6×6)Σ(6×6)V
T
(6×m). As in §3, let Σ = ΣuΣv be any

decomposition of matrix Σ. We obtain M̃ = ψ(UΣu) and Q̃ = ψT(VΣT
v ). Using

the partitioning M̃T =
(
M̃T M̃′T

)
, we get B = M̃, Â = M̃′B−1 and Q̂ = BQ̃.

Obviously, one needs to undo the effect of the orthonormalizing transformations:
Â← N′ÂN−1 and Q̂ ← NQ̂. A minimal m ≥ 4 point correspondences is required.



Note that it is possible to solve the problem without using the orthonor-
malizing transformations. This solution requires however to compute the svd of
a (2(n + n′) ×m) matrix, made by stacking the measurement matrices X and
X ′, and is therefore much more computationally expensive than the algorithm
above, and may be intractable for large sets of cameras and points.

5 Other Algorithms

We briefly describe two other alignment algorithms. They do not yield Maximum
Likelihood Estimates under the previously-mentioned hypotheses on the noise
distribution. They rely on 3D measurements and naturally handle missing data.

5.1 Minimizing the Non-Symmetric Transfer Error

This algorithm, dubbed ‘TrError’, is specific to the two camera set case. It
is based on minimizing a non-symmetric 3D transfer error E(Â): minÂ,t̂ E

2(Â, t̂)
with E2(Â) = 1

m

∑m
j=1 ‖Q′

j − ÂQj − t̂‖2. Differentiating E2 with respect to t̂
and nullifying the result yields t̂ = Q̂′ − ÂQ̂. Henceforth, we assume that the
translation has been eliminated by translating each 3D point set on its centroid.
By rewriting the error function as E2(Â) ∝ ‖Q′ − ÂQ‖2 and applying standard
linear least-squares, one obtains the solution Â = Q′Q†.

5.2 Direct 3D Factorization

This algorithm, dubbed ‘Fact3D’, is based on directly factorizing the 3D recon-
structed points. It is not restricted to the two camera set case, but for simplicity,
we only describe this case. Generalization to multiple camera sets is trivial. The
algorithm computes the aligning transformation (Â, t̂) and perfectly correspond-
ing points {Q̂j ↔ Q̂′

j}. The reconstructed cameras are not taken into account
by this algorithm, which entirely relies on 3D measures on the reconstructed
points. This algorithm is equivalent to the proposed FactMLE under certain
conditions.

The problem is stated by minQ̂,Q̂′ D2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j + t̂, here the 3D

error function employed is defined byD2(Q̂, Q̂′) = 1
2m

(
‖Q − Q̂‖2 + ‖Q′ − Q̂′‖2

)
.

Minimizing this error function means that if the noise on the 3D point coordi-
nates were Gaussian, centred and i.i.d., which is not the case with our actual
hypotheses (the noise distribution in 3D depends on the noise distribution in the
images and the reconstruction method – hence it is not a priori Gaussian), then
this algorithm would yield the Maximum Likelihood Estimate.

Step 1: Computing the translation. By nullifying the partial derivatives of the
error function D2 with respect to t̂ and with respect to the Q̂j , and substituting
the latter expressions into the former one, we obtain t̂ = Q̄′−ÂQ̄. This equation



means that, as in most factorization methods, cancelling the translation part out
according to the error function D is done by centring each set of 3D points on
its actual centroid: Q̂j ← Q̂j − Q̄ and Q̂′

j ← Q̂′
j − Q̄′. Henceforth, we assume

to work in centred coordinates. The problem is rewritten as minQ̂,Q̂′ D2(Q̂, Q̂′)
s.t. Q̂′

j = ÂQ̂j .

Step 2: Factorizing. Following the approach in §4.2, we rewrite D as:

D2(Q̂, Q̂′) ∝ ‖
(
Q
Q′

)
−

(
Q̂
Q̂′

)
‖2 = ‖

(
Q
Q′

)
︸ ︷︷ ︸

Λ

−
(

B
AB

)
︸ ︷︷ ︸
M̃

B−1Q̂︸ ︷︷ ︸
Q̃

‖2.

Using svd of matrix Λ = UΣVT, we obtain M̃ = ψ(UΣu) and Q̃ = ψT(VΣT
v ).

By partitioning M̃T =
(
M̃T M̃′T

)
, we get B = M̃, Â = M̃′B−1 and Q̂ = BQ̃.

6 Experimental Evaluation

6.1 Simulated Data

We generated m 3D points and two sets of n weak perspective cameras: Pi =
AiR̄i, where Ai is the internal calibration matrix Ai = kidiag(τi, 1), R̄i a (2× 3),
truncated, 3D rotation matrix and ti is a 2-vector. The scale factor ki models
the average depth of the object and the focal length of the camera, and τ models
the aspect ratio that we choose very close to 1. The 3D points are chosen from
a uniform distribution inside a thin rectangular parallelepiped with dimensions
1 × 1 × (1 − d), and the internal camera scale factors ki are chosen so that the
points are uniformly spread in 400×400 pixel images. We usem points to perform
Structure-From-Motion on each camera set and mc points for the alignment. A
gaussian noise with zero mean and standard deviation σ is added in the images.
We define the overlap ratio of the two camera sets to be θ = mc/m, i.e. for
θ = 1 all points are seen in all views, while for θ = 0, the two sets of cameras do
not share corresponding points. The comparison of the algorithms being based
on the reprojection error, the point clouds used to compute it need to be re-
estimated so that this error is minimized, given an estimated transformation.
This must be done for TrError and Fact3D.

The default setting is: n = 2 views, m = 250 points, θ = 0.2 (i.e. a 20%
overlap and mc = 50 points common to the two 3D models), σ = 3.0 pixels,
d = 0.95 (flat 3D scene) and a = 1 (perfectly affine projections). Figure 2 shows
the reprojection error averaged over 500 simulations for varying the number n of
cameras and the level of noise σ. Whereas FactMLE and Fact3D have similar
behaviors, TrError is less robust with regard to both of these parameters.
Other experiments concern varying the overlap ratio and the number of points
mc, the former from 10% to 100% and the latter from 4 to 60, corresponding
respectively to m = 20 and m = 300 points. For small values of mc, FactMLE
and Fact3D yield very similar errors, whereas for higher numbers of points, the
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Fig. 2. Reprojection error versus (a) the number n of cameras and (b) the noise σ.

difference gets larger We see that for mc > 20, the number of points has a much
smaller influence on the errors. However, neither the error nor the difference
between the methods seems to change when the overlap changes and we thus
conclude that the overlap does not much influence the alignment algorithms,
when the number of points is high enough. In all cases, method TrError per-
forms very badly compared to the two other ones. Finally, the flatness of the
simulated data d is varied from 0 to 1, that is from a cube to a plane. The flat-
ness of the scene does not change the result of the alignment, except for very flat
scenes where TrError turns out to be unstable. This result was expected since
planar scenes are singular for the computation of a 3D affine transformation.
The result means that TrError is much more sensitive to noise than the two
other methods. We conclude that although FactMLE consistently outperforms
the other two algorithms, it is in critical situation that the difference seems to
be the most important. In particular, TrError is less robust with regard to
the number of cameras, the noise and the flatness of the scene.

6.2 Real Data

We applied the algorithms to real image sequences. For one of them, the ‘cylinder
head’ sequence, we show results. The video camera is not calibrated, that is, the
internal parameters are unknown but constant throughout the video footage.

The images are shown on figure 3 with the mc = 13 original, manually
entered, and reprojected points after we applied the FactMLE method. The
pictures were taken with a camera with 12 mm focal length, at a distance of
approximately 60 cm of the object, which is 40 cm long. The reprojection errors
we obtained are: 3.7683 pixels for FactMLE, 3.7692 pixels for Fact3D and
3.7764 pixels for TrError.

The ’statuette sequence’ is made of 4 images with mc = 14 points lying
very close to a plane, and m = m′ = 25, giving a 56% overlap. The points
were manually entered. The reprojection errors we obtained are: 2.8402 pixels
for FactMLE, 2.8415 pixels for Fact3D and 2.8446 pixels for TrError.



Fig. 3. (left) Both sets of images of the cylinder head sequence and (right) closeup over-
laid with the original points (black) and reprojected points (white) from FactMLE.

The ‘book sequence’ consists of 5 images with mc = 196, m = 628 and
m′ = 634 points given by an automatic correlation-based tracker, giving a 31%
overlap. The reprojection errors we obtained are: 1.8961 pixels for FactMLE,
1.9737 pixels for Fact3D and 2.1690 pixels for TrError.

In accordance with the results on simulated data, we observe that in critical
situations, FactMLE outperforms the other two methods. The reprojection
errors of the order of a few pixels indicate that the data are well-modeled.

7 Conclusions

We presented a method to compute the Maximum Likelihood Estimate of 3D
affine transformations, under standard hypotheses on the noise distribution,
aligning sets of 3D points obtained from uncalibrated affine cameras.

Future work could be devoted to the experimental validation of the method
in the missing data case, and the incorporation of other types of features, namely
line, planar curve and plane correspondences.

References

1. Fitzgibbon, A., Zisserman, A.: Automatic camera recovery for closed or open image
sequences. In: European Conference on Computer Vision. (1998) 311–326

2. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography:
A factorization method. International Journal of Computer Vision 9 (1992) 137–154

3. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Graphics and Image
Processing 24 (1981) 381 – 395

4. Golub, G., van Loan, C.: Matrix Computation. The Johns Hopkins University
Press, Baltimore (1989)

5. Jacobs, D.: Linear fitting with missing data: Applications to structure-from-motion
and to characterizing intensity images. In: Computer Vision and Pattern Recogni-
tion (1997) 206–212


