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Abstract

Image registration consists in estimating geometric and
photometric transformations that align a template and an
image as best as possible. The direct approach consists in
minimizing the intensity discrepancy between the aligned
template and image. The inverse compositional algorithm
has been recently proposed for the direct estimation of
groupwise geometric transformations. It is efficient in that
it performs most computationally expensive calculations at
the pre-computation phase.

We propose the gain and bias inverse compositional al-
gorithm which estimates, along with the geometric trans-
formation, a photometric one modeling for example global
lighting change. Our algorithm preserves the efficient pre-
computation-based design of the original inverse composi-
tional one. Previous attempts at incorporating appearance
variations to the inverse compositional algorithm spoils this
property.

We report experimental results on simulated and real
data, showing the improvement in computational efficiency
of our algorithm compared to previous ones.

1. Introduction

Image registration is the task of applying some transfor-
mations to a template and / or an image so that they match
as best as possible. This can be seen as the computation of
some geometric transformation, for example an homogra-
phy, used to deform the image to model camera pose, and
some photometric transformation, applied to the pixel inten-
sities, for example gain and bias to model global lighting.

Image registration has been an important research topic
for the past decades. It is central to many tasks in computer
vision, medical imaging, augmented reality and robotics.

Broadly speaking, two approaches have been proposed:
the feature-based and the direct approaches. The feature-
based approach, see e.g. [8], relies on abstracting the input
images by the geometric location of a set of carefully cho-

sen, salient features. The direct approach, see e.g. [6], uses
the intensity of all pixels in the region of interest.

This paper focuses on the direct approach, and brings as
its main contribution a computationally efficient registration
algorithm dealing with gain and bias, based on the inverse
compositional principle of Baker et al. [2].

The geometric registration problem is the minimization
of a nonlinear least squares error function, given by the dis-
crepancy in pixel intensities, between the template T and
the image I, warped onto the template by the geometric
transformation to be estimated. The geometric transforma-
tion, denoted G, maps a pixel q in the region of interest R
defined in the template to the corresponding pixel G(q;g)
in the image. Vector g encapsulates its parameters. We ex-
pect that given an ‘appropriate’ parameter vector g, T [q]
is ‘close to’ I[G(q;g)], for all q ∈ R. The direct image
registration problem is thus formally posed as:

min
g

∑
q∈R

(T [q]− I[G(q;g)])2. (1)

Note that other error functions can be used, to deal for
example with outliers, see e.g. [4]. Most algorithms lin-
earize each term in the transformation parameters g, and
iteratively update an initial guess by solving linear least
squares problems. The popular Lucas-Kanade algorithm
[7] and work by Bergen et al. [3] fall into this category.
Baker et al. [2] have recently proposed an efficient algo-
rithm for solving problem (1), the inverse compositional al-
gorithm, using a Gauss-Newton, local approximation to the
error function. The efficiency stems from the fact that the
Hessian matrix1 involved in the normal equations is con-
stant. Its inverse can thus be pre-computed.

The above-derived formulation (1) suffers from the fact
that it does not take into account photometric changes, i.e.
changes in the intensity of the pixels. These changes occur
for example when the lighting changes between acquisition
of the template and the image. They are modeled by a trans-
formation P with parameter vector p, and give rise to the

1We use the expression ‘Hessian matrix’ for the Gauss-Newton approx-
imation to the true Hessian matrix.
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following minimization problem:

min
g,p

∑
q∈R

(P(T [q];p)− I[G(q;g)])2. (2)

The photometric transformation is typically chosen as an
affine transformation modeling gain and bias, and account-
ing for global intensity changes between the template and
the image:

P(v;p) = av + b with pT = (a b). (3)

The contribution of this paper is an efficient method for
solving problem (2), the registration problem with gain and
bias. The proposed method is dubbed the gain and bias in-
verse compositional algorithm. It is based on the inverse
compositional approach of Baker et al. [2] and is thus ap-
plicable to the registration of images related by groupwise
geometric transformations such as homographies.

Estimating gain and bias jointly with geometric regis-
tration parameters makes the Hessian matrix vary accross
the iterations. Previous work thus re-estimate and invert it
at each iteration: this is the simultaneous inverse composi-
tional algorithm of Baker et al. [1], which not only deals
with gain and bias but also with general linear appearance
variations.

We show that the Hessian matrix has a strong block
structure with blocks constant up to some scale factors, de-
pending on the gain. From this analysis, we derive an al-
gorithm allowing us to pre-compute a block-wise inverse of
the Hessian matrix. The normal equations are then solved
by simply multiplying the right hand side by some constant,
appropriately rescaled matrices, which is very efficient in
terms of computational cost. We underline that our algo-
rithm performs exactly the same calculations as the simul-
taneous inverse compositional algorithm does. Experimen-
tal results show that the computational cost is reduced by
factors of at least 2.

Paper organization. We introduce background material,
namely the inverse compositional and the simultaneous in-
verse compositional algorithms of Baker et al. in §2. We
present our gain and bias inverse compositional algorithm
in §3. We report experimental results on simulated and real
data in §4. A discussion is provided in §5. The parameteri-
zation of homographic warps is detailled in §A.

Notation. Vectors are denoted using bold fonts, e.g. q,
matrices using sans-serif fonts, e.g. E, and scalars in ital-
ics, e.g. a. We deal with grey-level images only: the tem-
plate and image, respectively denoted T and I, are seen as
functions from R2 to R. For instance, T [q] is the intensity
at location q ∈ R2. Bilinear interpolation is used for sub-
pixel coordinates. The geometric and photometric transfor-
mations are respectively denoted G and P , with respective

parameter vectors g and p. The geometric transformation
is also called the warp.

2. The Inverse Compositional Algorithm

Baker et al. have recently published a series of five
papers on direct image registration. In the first one [2],
they propose the efficient inverse compositional algorithm.
Baker et al. show in [1] that the efficiency is lost if appear-
ance variations, in particular gain and bias transformations,
are incorporated in the general algorithm, making it much
more computationally expensive. Below, we describe this
algorithm in details since it forms the basis for the one we
propose.

2.1. Principle

The inverse compositional algorithm is an iterative pro-
cedure with, as is often the case for registration algorithms,
three main steps in its inner loop:

1. Image warping. Warp the image on the template using
the current warp parameters g.

2. Local registration. Compute the local warp parame-
ters δg between the warped image and the template.

3. Warp updating. Update the current warp parameters
by composing the current warp with the inverse of the
local warp.

The main advantages of this method is that it converges
rapidly, and is computationally cheap since computation-
ally demanding calculations are pre-computed.

2.2. Geometric Registration

The algorithm is summarized in table 1. Let Ĩ be the
warped image, i.e. Ĩ[q] = I[G(q;g)]. The geometric reg-
istration problem (1) is rewritten as:

min
δg

∑
q∈R

(T [G(q; δg]− Ĩ[q])2. (4)

Vector δg represents the parameters of the local geomet-
ric transformation. The error function in problem (4) is
linearized by first order Taylor expansion in δg to form a
Gauss-Newton approximation, giving, using the chain rule:

min
δg

∑
q∈R

(T [q] +∇T [q]T
∂G
∂g

∣∣∣∣
q;g̃

δg − Ĩ[q])2,

where ∇T [q] is the (2 × 1) template gradient at q and
∂G
∂g

∣∣∣
q;g̃

is the Jacobian of the warp, evaluated at q and at



warp parameters g̃, representing the identity warp2. The
advantage of this formulation is that the partial derivatives
of the error function are constant, and so are the gradient
vectors:

`T
q = ∇T [q]T

∂G
∂g

∣∣∣∣
q;g̃

. (5)

The normal equations induced by the linear least squares
minimization problem (4) are:∑

q∈R
`q`T

q


︸ ︷︷ ︸

Eg

δg =

∑
q∈R

`q(Ĩ[q]− T [q])


︸ ︷︷ ︸

bg

.

The solution δg = E−1
g bg for the local warp parameters can

thus be computed very efficiently since the inverse of the
constant Hessian matrix Eg can be pre-computed, as well as
the gradient vectors `q.

Once δg has been computed, the current warp parame-
ters g are updated by composing the current warp with the
inverse of the local warp. If one uses an homographic warp
for example, then the updated parameters are given by mul-
tiplying the current homography by the inverse of the local
one as detailled in §A. We write the warp update rule as:

g← Ug(g, δg).

The process is iterated until convergence, determined, in
our experiments, by thresholding the two-norm of δg by
ε = 10e − 8, or when the update increases the error. In
the latter case, the last update is cancelled before stopping
the iterations.

2.3. Incorporating Gain and Bias

We incorporate the global, affine illumination variation
model (3), referred to as gain and bias. The registration al-
gorithm is summarized in table 2. Applying the photometric
transformation to the template or to the image does not lead
to exactly the same error function. They are equivalent, up
to resampling issues, only when the geometric alignment is
the correct one. In both cases, the Hessian matrix is not
constant, thus spoiling the main advantage of the inverse
compositional approach. We apply the photometric trans-
formation to the template since it leads us to an efficient
minimization algorithm in §3.

We rewrite problem (2) as:

min
g,p

∑
q∈R

(aT [q] + b− I[G(q;g)])2. (6)

Using an additive update rule for the photometric parame-
ters, i.e. p ← p + δp, and the inverse compositional trick

2The warp is generally parameterized such that g̃ = 0.

OBJECTIVE

Register an image I to a template T by computing the parameters
g of a warp G(q;g) by minimizing the intensity error. Other in-
puts are the region of interestR in the template and an initial value
for g.

ALGORITHM

Pre-computations

1. Compute the gradient vectors `q from (5) for q ∈ R
2. Compute the Hessian Eg =

P
q∈R `q`T

q and its inverse

Iterations

1. Warp the image I to Ĩ using the warp parameters g

• Compute the right hand side of the normal equations
bg =

P
q∈R `q(Ĩ[q]− T [q])

• Solve for the update δg = E−1
g bg

2. Update the warp parameters: g← Ug(g, δg)

Table 1. The inverse compositional algorithm
of Baker et al. [2] for estimating a groupwise
geometric registration.

for the geometric parameters g, we transform problem (6)
to:

min
δg,δp

∑
q∈R

((a + δa)T [G(q; δg)] + b + δb − I[G(q;g)])2.

First order taylor expansion in δg yields:

min
δg,δp

∑
q∈R

((a + δa)(T [q] + `T
qδg) + b + δb − I[G(q;g)])2.

Expanding and neglecting second-order terms gives:

min
δg,δp

∑
q∈R

(a`T
qδg + δaT [q]+ δb +aT [q]+ b−Ĩ[q])2. (7)

Directly solving this linear least squares problem leads to
the simultaneous inverse compositional algorithm of Baker
et al. [1].

Defining the complete unknown parameter update vector
by δT

gp = (δT
g δT

p ), the normal equations are given by:∑
q∈R

 a`q
T [q]

1

 (
a`q T [q] 1

)
︸ ︷︷ ︸

Egp

δgp (8)

=

∑
q∈R

 a`q
T [q]

1

 (Ĩ[q]− aT [q]− b)


︸ ︷︷ ︸

dgp

. (9)



The Hessian matrix Egp is clearly not constant, thus spoiling
the main advantage of the inverse compositional approach.
Baker et al. [1] propose several approximations to reduce
the computational cost: the ‘project out inverse composi-
tional algorithm’ and the ‘normalization inverse composi-
tional algorithm’. They show that these approximations do
not perform well for high gain values, see [1].

OBJECTIVE

Register an image I to a template T by computing the parameters
g of a warp G(q;g) and gain and bias parameters p by minimizing
the intensity error. Other inputs are the region of interestR in the
template and an initial value for g and p.

ALGORITHM

Pre-computations

1. Compute the gradient vectors `q from (5) for q ∈ R
Iterations

1. Warp the image I to Ĩ using the warp parameters g

• Compute and invert the Hessian matrix Egp from (8)

• Compute the right hand side dgp of the normal equa-
tions from (9)

• Solve for the update δgp = E−1
gp dgp

2. Update the warp parameters: g← Ug(g, δg) and the photo-
metric parameters: p← p + δp

Table 2. The simultaneous inverse composi-
tional algorithm of Baker et al. [1] for estimat-
ing a groupwise geometric registration and
gain and bias parameters. Note that the orig-
inal algorithm handles general linear appear-
ance variations.

3. The Gain and Bias Inverse Compositional
Algorithm

We propose an algorithm which performs exactly the
same calculations as the simultaneous inverse composi-
tional algorithm of Baker et al., but which do not require
one to re-compute the Hessian matrix at each iteration, thus
preserving the computational advantage of the original in-
verse compositional algorithm. The proposed algorithm is
summarized in table 3.

3.1. The Structure of the Hessian Matrix

We expand the Hessian matrix Egp from equation (8):

Egp =
(

a2Eg aEc

aET
c Ep

)
,

with Eg , Ec and Ep depending only on the template and thus
constant matrices, given by:

Eg =
∑
q∈R

`q`T
q Ec =

∑
q∈R

`q(T [q] 1),

and Ep =
∑
q∈R

(
T [q]2 T [q]
T [q] 1

)
.

We observe that the Hessian matrix has thus a strong block
structure. More precisly, all the blocks are constant up to
some scale factors, depending on the gain a.

Similarly, the right hand side of the normal equations,
defined in equation (9), is:

dgp =
(

adg

dp

)
,

with:

dg =
∑
q∈R

`q(Ĩ[q]− aT [q]− b)

dp =
∑
q∈R

(
T [q]

1

)
(Ĩ[q]− aT [q]− b).

3.2. Solving the Normal Equations

We propose a way to solve the normal equations allow-
ing us to pre-compute some of the expensive steps. The so-
lution is obtained by simple multiplication of the right hand
side by rescaled constant matrices. The normal equations
we want to solve are Egpδgp = dgp, or:(

a2Eg aEc

aET
c Ep

) (
δg

δp

)
=

(
adg

dp

)
.

Borrowing from the standard photogrammetric block bun-
dle adjustment technique, see e.g. [5], we multiply to the
left by a full-rank matrix, as follows:(

I 0

−aET
c (a2Eg)

−1 I

) (
a2Eg aEc

aET
c Ep

) (
δg

δp

)

=
(

I 0

−aET
c (a2Eg)

−1 I

) (
adg

dp

)
,



OBJECTIVE

Register an image I to a template T by computing the parameters g of a warp G(q;g) and gain and bias parameters p by
minimizing the intensity error. Other inputs are the region of interestR in the template and an initial value for g and p.

ALGORITHM

Pre-computations

1. Compute the gradient vectors `q = ∇T [q]T ∂G
∂g

∣∣∣
q;g̃

for q ∈ R

2. Compute the three blocks forming the Hessian matrix:

Eg =
∑
q∈R

`q`T
q Ec =

∑
q∈R

`q(T [q] 1) Ep =
∑
q∈R

(
T [q]2 T [q]
T [q] 1

)

3. Compute matrices E−1
p , Z and Y:

Z = (Ep − ET
c E−1

g Ec)
−1

Y = −ZET
c E−1

g

Iterations

1. Warp the image I to Ĩ using the warp parameters g

• Compute the right hand side of the normal equations:

dg =
∑
q∈R

a`q(Ĩ[q]− aT [q]− b) dp =
∑
q∈R

(
T [q]

1

)
(Ĩ[q]− aT [q]− b)

• Solve for the update:

δp = Zdp + Ydg δg =
1
a
E−1

p (dg − Ecδp)

2. Update the warp and photometric parameters:

g← Ug(g, δg) p← p + δp

Table 3. The proposed gain and bias inverse compositional algorithm for estimating a groupwise
geometric registration and gain and bias parameters.



giving: (
a2Eg aEc

0 Ep − aET
c (a2Eg)

−1
aEc

) (
δg

δp

)

=
(

adg

dp − a2ET
c (a2Eg)

−1dg

)
.

This equation simplifies to:(
a2Eg aEc

0 Ep − ET
c E−1

g Ec

) (
δg

δp

)
=

(
adg

dp − ET
c E−1

g dg

)
.

The solution for the photometric parameters δp is obtained
directly from the second set of equations as:

δp = Zdp + Ydg,

where Z and Y are constant matrices, given by:

Z = (Ep − ET
c E−1

g Ec)
−1

Y = −ZET
c E−1

g .

The solution for the geometric parameters δg is given, from
the first set of equations, by:

a2Egδg = adg − aEcδp

δg =
1
a
E−1

p (dg − Ecδp).

In this equation, matrix E−1
p is constant and can be pre-

computed.

4. Experimental Results

We compared the simultaneous inverse compositional al-
gorithm of Baker et al. and the gain and bias inverse com-
positional algorithm we propose, as described in tables 2
and 3 respectively, in the case of homographic warps, see
§A. Note that both algorithms produce exactly the same re-
sults but with different computation times. Our experiments
are designed to assess to which extent these differences are
significant. We refer the reader to [1, 2] for a thorough set
of experiments on the behaviour of a great variety of differ-
ent algorithms. The cost of an iteration is constant for each
algorithm. We used our own, fairly optimized implementa-
tion in MATLAB.

4.1. Simulated Data

Figure 1 shows the computational time of an iteration
when varying image side length. The ranges of image side
lengths are 10 to 100 and 100 to 1000 respectively for the
left and right hand side graphs. We observed that their is
a factor of at least 2 between the two algorithms, in favor
of the gain and bias inverse compositional algorithm, in all
cases.

4.2. Real Data

We compared the algorithms on several sets of images.
We one of them, we show results. The template and the
image are both 600 × 800. They are shown on figure 3,
together with the region of interest. The region of interest
contains 255,210 pixels. Figure 2 shows the error in inten-
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Figure 2. Error in intensity through the itera-
tions for the images shown in figure 3.

sity through the 28 iterations that were necessary to register
the images. Figure 4 shows the error image at different it-
erations. The photometric parameters that were computed
are a = 0.98 and b = 3.77, and the final RMS intensity
error is 4.13. The computational time needed by the si-
multaneous inverse compositional algorithm was 76.91 sec-
onds, while the gain and bias inverse compositional algo-
rithm took 38.40 seconds.

5. Discussion

The proposed algorithm efficiently extends the inverse
compositional algorithm of Baker et al. [2] to handle gain
and bias. The computational time is reduced by a factor of at
least 2 compared to the general linear appearance variations
algorithm of Baker et al. [1].

There are several important issues that need to be inves-
tigated. The first one is about numerical conditioning: the
elements of the Hessian matrices have different orders of
magnitude, from 1 to O(k2s), where k is the image side
length (in pixels) and s the maximum image intensity (in
practice we expect s to be close to 255). Similarly to the
normalization used to improve the conditioning in the eight
point algorithm [5], we naturally wonder if normalizing the
image coordinates and intensity can improve the numerical
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Figure 1. Computational time of an iteration versus image side length.
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Figure 3. Real images used in the experiments.
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Figure 4. The error image at different iterations and corresponding RMS error on the intensity.



stability and thus the convergence properties of the algo-
rithms.

The second issue is about using color images, i.e. deter-
mine if the proposed algorithm extends to deal with indi-
vidual gain and bias for each color channel, or even for full
linear combinations of the color channels.

The MATLAB code used to produce the experimental re-
sults in this paper is available for download on the web
homepage of the author.
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A. Parameterizing Homographic Warps

The homographic warp, denotedH, has 9 parameters de-
fined up to scale. In homogenous coordinates, it is repre-
sented by a (3 × 3) homography matrix H. The represen-
tation of the warp by an homography matrix makes it easy
to invert a warp or compose two warps, as required by the

inverse compositional algorithm, respectively by inverting
the homography matrix and by multiplying the two homog-
raphy matrices.

Following [2], the local homography matrix is parame-
terized by an 8-vector δh as:

∆H ∼ I +

δh,1 δh,2 δh,3

δh,4 δh,5 δh,6

δh,7 δh,8 0

 . (10)

The corresponding warp is:

H(q; δh) =
1

δh,7q1 + δh,8q2

(
(1 + δh,1)q1 + δh,2q2 + δh,3

δh,4q1 + (1 + δh,5)q2 + δh,6

)
.

Note that δh = 0 corresponds to the identity warp since
H(q;0) = q.

In practice, we represent the warp by the (3×3) homog-
raphy matrix H, and implement the update rule as:

Ug(H, δh) = H ·∆H,

where ∆H is given by equation (10).
The Jacobian of the warp, evaluated around the identity

warp, is given by:

∂H
∂δh

∣∣∣∣
q;0

=
(

q1 q2 1 0 0 0 −q2
1 −q1q2

0 0 0 q1 q2 1 −q1q2 −q2
2

)
.


