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Abstract

Recent work shows that recovering pose and velocity
from a single view of a moving rigid object is possible with
a rolling shutter camera, based on feature point correspon-
dences.

We extend this method to line correspondences. Owing
to the combined effect of rolling shutter and object motion,
straight lines are distorted to curves as they get imaged with
a rolling shutter camera. Lines thus capture more informa-
tion than points, which is not the case with standard projec-
tion models for which both points and lines give two con-
straints.

We extend the standard line reprojection error, and pro-
pose a nonlinear method for retrieving a solution to the pose
and velocity computation problem. A careful inspection of
the design matrix in the normal equations reveals that it is
highly sparse and patterned. We propose a blockwise solu-
tion procedure based on bundle-adjustment-like sparse in-
version. This makes nonlinear optimization fast and numer-
ically stable. The method is validated using real data.

1. Introduction

CMOS cameras offer several advantages: low cost, low
power demand, easy region of interest selection, on-chip
characteristics and high frame rate. This makes them a nat-
ural fit for wireless hand-held applications, visual servo-
ing and some in-vehicle uses. In the last years, the per-
formances of CMOS sensors in terms of signal-to-noise
ratio have been considerably improved, reaching the level
of CCD sensors. This has made CMOS cameras more
and more used by the vision community in applications for
which a high frame rate and accurate feature detection is
necessary (fast robot control and identification, road traffic,
balistic).

Standard and cheap CMOS cameras frequently use
rolling shutter sensors. This shuttering mode enables ad-
equate exposure time without reducing the frame rate by
overlapping exposure and readout. It reduces the number

Figure 1. An example of distortion of a rotating ventilator observed
with a rolling shutter camera: static object (left image) and moving
object (right image).

of in-pixel transistors, improving the fill factor (percentage
of the pixel array sensitive to light) and the signal-to-noise
ratio. The drawback of rolling shutter cameras is that they
distort images of moving objects because the pixels are not
all exposed simultaneously but row by row with a time de-
lay defined by the sensor technology (Fig.1). This distortion
may represent a major obstacle in tasks such as localization,
3D reconstruction or default detection (the system may see
an ellipse where in fact there is a circular hole). Therefore,
CMOS rolling shutter cameras could offer a good compro-
mise between cost and frame rate performances if the prob-
lem of deformations is taken into account.

The work done by Wilburn et al. [11] concerned the cor-
rection of image deformations due to rolling shutter by con-
structing a single image using several images from a dense
camera array. Knowing the time delay due to rolling shutter
and the chronograms of release of the cameras, one com-
plete image is constructed by combining lines exposed at
the same instant in each image from the different cam-
eras. In [7] Meingast describes an approximated projec-
tion model of rolling shutter cameras which, in the case of
fronto-parallel motion, is similar to a Crossed-Slits camera
model [12]. Ait-Aider et al. [1] present a general and ex-
act perspective projection model by removing the assump-
tion of small motion during image acquisition. A nonlinear
algorithm for simultaneous pose and velocity computation
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using a single view is then developed. It extends bundle
adjustment with point correspondences, to the case of mov-
ing objects observed with a rolling shutter camera. A linear
algorithm is proposed in the particular case of planar ob-
jects. It provides an initial estimate of the pose and velocity
parameters. To our knowledge, there is no other work in
the vision community literature on taking into account ef-
fects of rolling shutter in pose recovery algorithms nor on
exploiting them to compute the velocity parameters using a
single view. Indeed, traditional pose recovery methods (for
instance [5, 8, 2, 3, 10]) make the assumption that all image
sensor pixels are exposed simultaneously.

In this paper, we propose an extension of the pose and
velocity computation algorithm presented in [1] to line cor-
respondences. When observed with a rolling shutter cam-
era, a moving 3D line is projected to a curve on the im-
age. A typical example is the observation of a polyhedral
object. Straight edges are detected by segmenting image
into contours. Why is this extension worthwhile? First,
in the point-based algorithm of [1] the local distorsions in
the image point neighborhood are neglected so that inter-
est point detectors and descriptors such as Harris or SIFT
remain usable. When motion artefacts are too important,
this approximation may result in both false negatives in
correlation-based matching and bad point localization. Us-
ing curves, even local distortions are modelled with an ac-
curacy only bounded by image resolution. Second, for a
rolling shutter projection model, lines capture more infor-
mation about the motion than points. This is not the case
with standard projection models for which both points and
lines give two constraints. Finally, using all the pixels of a
contour provides redundant information which is exploited
against noise. Note that the pixels are here used directly
without high level image processing. Conversely, detecting
a straight line (with a classical camera) implies finding the
function which best fits aligned pixels.

The main difficulty is that one can not derive an algebraic
formulation of the curve corresponding to the projection of
a straight line for a general motion. It is also difficult to
find a metric which measures the distance between two such
curves. We write the error between an observed and a repro-
jected curve as the sum of distances between the observed
contour pixels and the reprojected 3D line. The point-to-
curve distance does not however have a closed-form solu-
tion in general. The error is thus computed in practice by
introducing, for each contour point, a corresponding point
moving along the 3D line, so as to minimize the distance.
This is done by introducing additional unknowns called nui-
sance variables in addition to the desired pose and velocity
parameters. This results in a large but sparse Jacobian ma-
trix. The latter property is taken into account in the res-
olution process. The optimization is achieved thanks to a
blockwise solution procedure based on bundle-adjustment-

Figure 2. Reset and reading chronograms in rolling shutter sensor
(Silicon Imaging documentation).

like sparse inversion [9]. This ensures fast and numerically
stable nonlinear optimization.

In section 2, we briefly recall the point projection model
of a rolling shutter camera. In section 3, we formulate the
pose and velocity computation problem under the form of a
cost function derived from a set of line-to-curve correspon-
dences. In section 4, we focus on improving efficiency and
numerical stability of the nonlinear optimization of the cost
function by exploiting the sparse structure of the Jacobian
matrix. Finally, experimental results obtained with real im-
ages illustrate the performances of the method.

2. Rolling Shutter Camera Projection Model

In a CMOS camera operating in rolling shutter mode, the
sensor pixels are exposed sequentially starting at the top and
proceeding row by row to the bottom. The readout process
proceeds in exactly the same fashion and the same speed
with a time delay after the reset (exposure time). The ben-
efit of rolling shutter mode is that exposure and readout are
overlapping, enabling full frame exposures without reduc-
ing the frame rate. Each row in the image has the same
amount of integration, however the starting and ending time
of integration are shifted in time as the image is scanned
(rolled) out of the sensor array, as shown in Fig.2. If an ob-
served object is moving during the integration time, some
artefacts may appear and its image is distorted. The faster
the object the larger the distortion. A simple case where the
object undergoes a pure translational motion is illustrated
on Fig.3.

Assume that an object of known geometry, modelled by a
set of n points Pi = [Xi, Yi, Zi, 1]T, undergoing a motion
with instantaneous angular velocity Ω around an instanta-
neous axis of unit vector a = [ax, ay, az ]

T, and instanta-
neous linear velocity V = [Vx, Vy, Vz, 1]T, is snapped with
a rolling shutter camera at time t0. Denoting R and T the
instantaneous object pose at t0, it was demonstrated in [1]
that the 2D projection mi = [ui, vi, 1]T of Pi can be ex-
pressed up to an arbitrary scale factor s as follows:

smi = K [RδRi T + δTi]Pi (1)



Figure 3. Perspective projection of a moving 3D object: due to the
time delay, points P0 and P1 are not projected under the same
pose

.

with:

δRi = aaT (1 − cos (τviΩ))+Icos (τviΩ)+ âsin (τviΩ)
(2)

and:

δTi = τviV (3)

where I is the 3×3 identity matrix, â is the antisymmet-
ric matrix associated to a, τ is the image scanning speed
(in raws per second) and K contains the classical intrinsic
parameters of a pinhole camera. Note that V is the sum
of two vectors VL and VR. The first component is due to
the pure translational motion and is thus expressed in the
camera frame. The second component is induced by the
rotation (tangential velocity) and must be expressed in the
object frame. Thus we have V = RVR + VL.

Equation (5) is the expression of the projection of a 3D
point from a moving solid object using a rolling shutter
camera with respect to object pose, object velocity and the
parameter τ . Note that it contains the unknown vi on its
two sides. This is due to the fact that coordinates of the pro-
jected point on the image depend on both the kinematics of
the object and the imager sensor scanning velocity.

3. Pose and Velocity Computation with Lines

If a moving polyhedral object is observed with a rolling
shutter camera, its straight edges are projected into the im-
age as curved contours. Assume that a set of N straight
edges, defined in the object frame by their direction vectors

Lk, are matched with a set of curved image contours lk.
Considering an arbitrary point Mk0 on Lk , any other point
Mki on the latter edge can be expressed in the object frame
as follows:

Mki = Mk0 + σkiLk (4)

Thus, for each pixel on the curve one can write the fol-
lowing projection equation:

smki = K [RδRi T + δTi] (Mki + σkiLk) (5)

This means that each pixel of the contour yields a pair of
contraints of the form:

uki = αu
R1i(Mki+σkiLk)+Txi

R3i(Mki+σkiLk)+Tzi
+ u0

vki = αu
R2i(Mki+σkiLk)+Tyi

R3i(Mki+σkiLk)+Tzi
+ v0

(6)

It is obvious that matching a 3D straight edge with an
image curve does not tell us for each contour pixel which is
the corresponding 3D edge point. In other words, the values
of σki are unknown. Thus, equation (6) can be expressed as
follows:

uki
∆= ξuki (R,T, Ω, a,V,Σ)

vki
∆= ξvki (R,T, Ω, a,V,Σ)

(7)

where Σ is the vector of all the parameters σki.
Considering the observation of m pixels [ûki, v̂ki] on

each one of the n image curves matched with a straight
edge, and comparing them with the theoretical projections
using (6) we obtain a n × m equation system representing
the reprojection error:

εki =
[

ûki − ξuki (R,T, Ω, a,V,Σ)
v̂ki − ξvki (R,T, Ω, a,V,Σ)

]
(8)

From this, a cost function in the least square sense is
expressed with respect to pose and velocity parameters
R,T, Ω, a,V and also with respect to the so-called nui-
sance variables Σ:

ε =
∑n

k=1

∑m
i=1 [ûki − ξuki (R,T, Ω, a,V,Σ)]2

+ [v̂ki − ξvki (R,T, Ω, a,V,Σ)]2
(9)

This cost function is minimized using the Levenberg-
Marquardt algorithm [6].

4. Blockwise Nonlinear Minimization

Let y be the vector of image projections in the left hand
side of equation (7) and x the vector of pose, velocity and
nuisance parameters Π = [R,T, Ω, a,V,Σ]. The relation-
ship between these two vectors is denoted y = ξ (x). Given



Figure 4. Structure of the Jacobian matrix J.

a set of noisy observations ŷ, we want to converge toward
the value x̂ so that the error ê in the relation ŷ = ξ (x̂) + ê
is minimal. The minimization starts from an initial guess
x0 and is updated iteratively by applying variations δ to x̂.
This is generally achieved by assuming local linearity of ξ
under which one can write ξ (x0 + δ) = ξ (x0)+Jδ with J
the Jacobian matrix of ξ (x). This implies to solve at each
iteration the so called normal equations:

JTJδ = JTe (10)

In our case, the Jacobian matrix is very sparse because
each image pixel mki on a matched contour depends on all
the pose and velocity parameters P = [R,T, Ω,a,V] but
only on its own nuisance variable σki. Thus ∂mki

∂σlj
�= 0 only

for k = l and i = j but is null elsewhere. This results for J
in the structure illustrated in Fig.4, which in turn produces
the JTJ pattern illustrated in Fig.5 with:

Up,q =
∑

k

∑
i

(
∂mki

∂Pp

) (
∂mki

∂Pq

)
(11)

Vp,q =
∑

k

∑
i

(
∂mki

∂Σp

) (
∂mki

∂Σq

)
(12)

Wp,q =
∑

k

∑
i

(
∂mki

∂Pp

) (
∂mki

∂Σq

)
(13)

A similar strucutre is exploited in bundle adjustment, for
instance in [9], to reduce the computational cost for solving
the normal equations by rewriting it as follows:

[
U W

WT V

] [
δP
δΣ

]
=

[
EP

EΣ

]
(14)

where δP and δΣ contains the small variations of respec-
tively P and Σ. The blocks EP and EΣ form the vector
on the right hand side of the normal equation (10). Their
components are defined as follows:

Figure 5. Structure of JT J in the normal equations.

EPq =
∑

k

∑
i

(
∂mki

∂Πq

)
εki (15)

EΣq =
∑

k

∑
i

(
∂mki

∂Πq

)
εki (16)

Equation (14) can be rewritten as follows:

[
U − WV−1WT 0

WT V

] [
δP
δΣ

]
=

[
EP − WV−1EΣ

EΣ

]

(17)
which can be decomposed into two separate equation

systems:

(
U − WV−1WT

)
δP = EP − WV−1EΣ (18)

and

δΣ = V−1
(
EΣ − WTδP

)
(19)

Equation (18) can be solved very efficiently because V
is diagonal. Equation (19) is then solved by substituting the
solution of (18).

5. Experimental Evaluation

The pose and velocity computation algorithm was tested
on real image data. A reference 3D polyhedral object with
both point and line features was used. A Silicon Imaging
CMOS rolling shutter camera SI1280M-CL was first cali-
brated using the method described in [4] and then used to
capture image sequences of the reference polyhedral object
while undergoing rotational and translational motion at a
high velocity. Fig.6 shows samples of images from these
sequences.



Table 1. Differences between results of point-based algorithm and
line-based algorithm (Mean value and standard deviation on the
basis of 20 test images)

Parameter R (deg) T (m) V (perc.) Omega (perc.)
mean value 1.4 0.015 1.55 2.60
stand. dev. 1.0 0.006 1.05 1.80

Acquisition was done with a resolution of 640×480
square pixels and at a rate of 30 frames per second so that
τ = 39.5 × 10−6 s.

Point features served to generate groundtruth values for
pose and velocity parameters. Indeed, since the point based
algorithm was validated and evaluated in [1] using ground
truth values, it was used here as a reference, simultaneously
with the line-based algorithm and on the same image data.
Image point coordinates were accurately obtained to sub-
pixel accuracy estimation of the white spot centers and cor-
rected according to the lens distortion parameters.

Thin image curves were detected thanks to Canny’s cri-
terion and chained to obtain contour curves. No additional
processing was done on the contour pixels. The pixel coor-
dinates were used directly in the algorithm.

For the nonlinear optimization, all nuisance and veloc-
ity parameters were initialized to zero. The position was
initialized at [0, 0, 1]T (the object is in front of the camera)
with a random orientation.

Both point and line correspondences with the model
points and lines were established with a supervised method.
The pose and velocity parameters were computed for each
image using first our line-based algorithm, and compared
with results obtained using the point-based algorithm and
the classical pose recovery algorithm described in [4]. In
the latter, an initial estimate of the solution is first com-
puted using the algorithm of Dementhon [2] and then the
pose parameters are refined thanks to a nonlinear method.

As shown in Fig.7, the trajectories and velocities com-
puted by the line and the point-based algorithms are very
close. The differences between the position, orientation,
and velocity computed by the two algorithms are given in
Table 1. Pose results obtained with a classical algorithm
(which does not take into account the rolling shutter effects)
show a shift proportional to the speed in the direction of the
motion.

Fig.8 shows an example of correcting the object image
by removing the velocity parameters in the projection equa-
tion. This corresponds to a global shutter image taken at t0
(the instant of exposure of the first line of the sensor).

5.1. Conclusion and Perspectives

We presented a method for simultaneously computing
the pose and instantaneous velocity (both translational and

Figure 6. Samples of rolling shutter images of the moving refer-
ence object.
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Figure 7. A comparison between two sets of trajectories and ve-
locities computed by the line-based (red curve and arrows) and the
point-based (green curve and arrows) algorithms respectively. The
’*’ symbols represent results obtained with a classical algorithm
which does not take into account rolling shutter distorsions

rotational) of rigid objects from a single rolling shutter im-
age of straight lines. It benefits of an inherent defect of
rolling shutter CMOS cameras consisting in exposing one
after the other the rows of the image, yielding optical dis-
tortions due to high object velocity. The approach extends
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Figure 8. An example of reprojecting edge points using a rolling
shutter model (triangles). Image correction: lines represented by
square symbols are obtained by removing rolling shutter distor-
sions.

previous point-based methods to line correspondences. This
offers, in the case of rolling shutter projection, real ad-
vantages (more information about motion, redundant in-
formation). An efficient optimization procedure was also
proposed to improve numerical stability and computational
cost of the approach.

The approach was validated on real data showing its rel-
evance and feasibility. Hence, the proposed method is as
accurate as similar classical algorithms in the case of static
objects, but also preserves the accuracy of pose estimation
when the object moves. In addition to pose estimation, the
proposed method gives the instantaneous velocity using a
single view. Thus, it avoids the use of finite differences
between successive images (and the associated constant ve-
locity assumption) to estimate a 3D object velocity.

Hence, carefully taking into account rolling shutter turns
a low cost imager into a powerful pose and velocity sen-
sor. Indeed, such a tool can be useful for many research
areas. For instance, instantaneous velocity information may
be used as evolution models in motion tracking to predict
the state of observed moving patterns. It may also have ap-
plications in robotics, either in visual servoing or dynamic
identification. In the latter domain our approach can make
the difference when image processing leaves little time to
other tasks (control, data fusion) by reducing drastically the
amount of data necessary for motion analysis by using a
single view instead of image sequences.

From a more theoretical point of view, several issues
open. First, the proposed method uses a rolling shutter cam-
era model based on instantaneous row exposure, but it could
be easily extended to more general models where each pixel

has a different exposure time. One could also imagine that
an uncalibrated version of this method could be derived for
applications where Euclidean information is not necessary
(virtual/augmented reality or qualitative motion reconstruc-
tion, for instance). This certainly will make this work rele-
vant to a broader range of scenes (where the identity of lines
is not known a-priori).
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