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Abstract. Direct image registration methods usually treat shadows as
outliers. We propose a method which registers images in a 1D shadow
invariant space. Shadow invariant image formation is possible by project-
ing color images, expressed in a log-chromaticity space, onto an ‘intrinsic
line’. The slope of the line is a camera dependent parameter, usually ob-
tained in a prior calibration step. In this paper, calibration is avoided
by jointly determining the ‘invariant slope’ with the registration param-
eters. The method deals with images taken by different cameras by using
a different slope for each image and compensating for photometric vari-
ations. Prior information about the camera is, thus, not required. The
method is assessed on synthetic and real data.
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1 Introduction

The registration of image pairs consists in finding the transformation that best
fits two images. That has been a key issue in computer vision, robotics, aug-
mented reality and medical imagery. Although it was thoroughly studied in the
past decades, there remain several open problems. Roughly speaking, there are
two kinds of approaches: direct and feature based methods. The formers rely
on fiducial points described by local properties, which allows matching despite
geometric and photometric transformations. The geometric registration is thus
formed by minimizing an error between the fiducials position expressed in pixels.
As opposed to the local approach, direct methods use pixel discrepancy as a reg-
istration error measure. The brightness constancy assumption states that pixel
values are equivalent under the sought after transformation. The warp relating
two images consists of some geometrical transformation (e.g. an homography or
an affine transformation) and some photometric model (e.g. channel intensity
bias and gain or full affine channel mixing).

One of the main problems that arises in direct methods is the existence of
partial illumination or shadow changes in the scene to register. In such cases,
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the brightness constancy assumption is violated. This paper addresses the prob-
lem of directly registering such kind of images. Our proposal is based on ex-
pressing the error in a transformed space different from the usual one based
on image intensities. In this space which is onedimensional the change of illu-
mination or shadows are removed. This invariant space is governed by a single
parameter which is camera-dependent and defines a transformation between the
log-chromaticity values of the original RGB image and the invariant image. We
propose a method for jointly computing the sought after geometric registration
and the parameters defining the shadow invariant space for each image.

Paper Organization

We review previous work and give some background in §2. In §3 we state our
error function and give an algorithm for effectively registering images in §4.
Results on synthetic and real images are presented in §5. Finally, conclusions
are presented in §6.

2 Previous Work

The content of this section is divided into two major parts. First, some previous
work about direct image registration is briefly described. The general approach
and the most common problems are described. Secondly, some background on
color image formation is presented, necessary for describing the process of shadow
invariant image formation, which is finally stated.

2.1 Direct Image Registration

The registration of two images is a function P, which models the transformation
between a source image, S and a target image T over a region of interest R.
Function P(T (q), q;φ) is parametrized by a vector φ composed of geometric and
photometric parameters in the general case.

The error function to be minimized make is the sum of square differences of
intensity values, over the parameter vector φ.

The problem is formally stated as:

min
φ

∑

q∈R

‖S(q) − P(T (q), q;φ)‖2. (1)

A linearization of each residual, which allows to solve it in an iterative Linear
Least Square fashion, was popularized by the Lucas-Kanade algorithm [1]. There
exist remarkably fast approaches for warps functions forming groups. It is known
as the Inverse Compositional algorithm [2] and it has been successfully applied
with geometric transformations and in [3] an affine photometric model is also
included.

The presence of shadows or illumination changes affect the applicability of
equation (1), producing registration errors or divergence in the algorithm. There
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exist plenty of proposals in the literature to extend the direct registration with
a certain grade of immunity against perturbations. The most common approach
is to mark shadow areas as outliers. The use of robust kernels inside the mini-
mization process [4] allows the algorithm to reach a solution. Other approaches
try to model the shadows and changes of illumination. In [5] a learning approach
is used to tackle illumination changes by using a linear appearance basis.

2.2 Background on Color Image Formation

We present the physical model used to describe the image formation process. The
theory of invariant images is described later in terms and under the assumptions
stated below.

We consider that all the surfaces are lambertian, that the lights follow a
planckian model and that the camera sensor is narrow-band. The RGB color
obtained at a pixel is modeled by the following physical model:

ρk = σS(λk)E(λk, T )Qkδ(λ − λk) k = 1, 2, 3, (2)

where σS(λk) represents the surface spectral reflectance functions times the
lambertian factor. The term Qkδ(λ−λk) represents the sensor spectral response
function for each color channel k centered at wavelength λk. E(λk, T ) is the
spectral power distribution of the light in the planckian model. This is modeled
by the following expression:

E(λ, T ) = Ic1λ
(−5)e

 

−c2

Tλ

!

(3)

This model holds for a high rank of color temperatures T = [2500o, 10000o].
The term I is a global light intensity and the constants c1 and c2 are fixed.

According to this model, the value obtained by the camera at any pixel ρk

is directly obtained by:

ρk = σIc1(λk)−5e

 

−c2

Tλk

!

S(λk)Qk. (4)

2.3 Shadow Invariant Image Theory

The transformation which allows invariant image formation is based on the orig-
inal work of [6] in which a method for obtaining an illumination invariant, in-
trinsic image from an input color image is developed . The method relies on the
above presented image formation model, based on the assumption of lambertian
surfaces, narrow-band sensors and planckian illuminants.

Given the three channel color components ρ = (ρ1, ρ2, ρ3) described in (4),
the logarithm of chromaticity ratios are formed.
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X1 = log

(

ρ1

ρ3

)

= log(s1/s3) + (e1 − e3)/T

X2 = log

(

ρ2

ρ3

)

= log(s2/s3) + (e2 − e3)/T,

(5)

where ek = −c2/λk only depends on camera spectral response and not on

the surface and sk = c1λ
(−5)
k S(λk)Qk does not depend on color temperature T .

The pair of values X1 and X2 lie on a line with direction vector ē = (e1 −
e3, e2 − e3). Across different illumination temperature T , vector X = (X1,X2)
moves along the line.

An illumination invariant quantity can be formed by projecting any vector X
onto the orthogonal line defined by ē⊥ = (cos(θ), sin(θ)). Therefore, two pixels
from the same surface viewed under different illuminations get projected at the
same place.

To reduce the arbitrary election of the chromaticity ratios, in [6], is proposed
a method to use the geometrical mean (ρ1ρ2ρ3)

(1/3) of the three channel values
as denominator. A vector of three linearly dependent coordinates is obtained.
By choosing a proper decomposition, a twodimensional equivalent vector X is
obtained that preserve the essential properties of equation (5).

The transformation L is simply obtained by projecting vector X onto the
invariant line parametrized by its slope angle θ:

L(ρ, θ) = X1(ρ) cos(θ) + X2(ρ) sin(θ) (6)

This transformation, as it has been previously stated, represents the mapping
between a color image and its corresponding shadow invariant representation.
By explicitly describing the whole color image S as an input in (6), the result of
L(S, θ) is a 1D shadow invariant image. The transformation is therefore global
so it does not depend on pixel position q ∈

� 2, but only on its color value.

The slope angle θ of the invariant line only depends on camera spectral
properties, so it varies across different cameras. In [6] it is presented a method
to obtain the slope by a calibration step using a color pattern or by a set of
preregistered images from the same camera under illumination changes. In [7] an
autocalibration approach is presented by finding the slope for which the entropy
of the invariant image is minimum. The later method is proved to be capable to
find the correct slope with only one image.

The entropy based method unless simple and powerful requires images in
which remarkable shadow areas are present. In the case of images in which the
change of illumination is global and no shadow is present, the method is not able
to produce the correct slope.
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3 Joint Image Registration and Photometric Camera

Calibration

Image registration is proposed under invariant transformation L(S(q), θ), applied
to both the target and the source image.

The new cost function, is expressed as follows:

min
φ,θ1,θ2

∑

q∈R

‖L(S(q), θ1) − L(P(T , q;φ), θ2)‖
2 (7)

As previously stated, the slope parameter θ is, in general, different in both
images (θ1 and θ2). According to the camera model, any change of illumina-
tion intensity and temperature will be discarded in the invariant image once
parameter θ is obtained. Therefore, in theory, P can only be geometrical.

The validity of (7) is based on the assumption that in different cameras,
intrinsic images are comparable. However as is stated in this section, in general
such an hypothesis does not hold due to differences in camera response functions.
A photometric model is proposed for compensating such differences.

3.1 Camera Response Dependent Parameters

In this section it will be shown that besides the slope, between two cameras it is
of importance the inclusion of photometric parameters over RGB space so that
the invariant space of two images is directly comparable. Such parameters will
not try to compensate for global illumination as in previous attempts [3], but
instead they will represent a compensation between different camera responses.

Multiple Gain Compensation Assuming that each camera has similar spec-
tral response, so that the values of λk are similar, the slope and surface re-
flectance will produce similar values. However for different channel gains Qk the
log-chromaticity values are affected.

It is thus reasonable to include multiple gains compensation ak per channel
for the target image before computing its log-chromaticity values:

Xk = log

(

akρk

a3ρ3

)

= log(ak/a3) + log(ρk/ρ3) (8)

According to (6), the projection reduces the photometric compensation into
a one dimensional offset dL.

L(ρ, θ) = log

(

ρ1

ρ3

)

cos(θ) + log

(

ρ2

ρ3

)

sin(θ) + dL, (9)

where dL = log(a1/a3) cos(θ) + log(a2/a3) sin(θ).
In the case where both cameras where different by only constant gains, it

is still enough as a way to compensate camera responses, to compute a single
offset.
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Multiple gain and bias for each channel compensation As stated in [8],
the real response for most digital cameras is not linear. Under certain range of
values we can consider that the camera response can be approximated by a gain
and bias function. The presence of bias over RGB represents a problem since the
assumption of the invariant line is no longer valid.

Adding bias and gain over RGB results in the following invariant represen-
tation:

L(ρ, θ) = log

(

ρ1 + b1

ρ3 + b3

)

cos(θ) + log

(

ρ2 + b2

ρ3 + b3

)

sin(θ) + dL. (10)

Where dL is the same commented in the multiple gain model, and bk are
biases added to color values.

The total number of required photometric parameters is four under the as-
sumption that only one of the cameras suffer from the bias problem. In the case
that both images are suitable to be affected, an extra bias model is introduced
for the source image. For such critical case the number of parameters is increased
to seven.

The new cost function, which includes photometric parameters (φ1
p, φ

2
p) in

source and target images, is presented:

min
φ,θ1,θ2,φ1

p
,φ2

p

∑

q∈R

‖L(S(q), θ1, φ
1
p) − L(P(T , q;φ), θ2, φ

2
p)‖

2 (11)

Besides the commented models, specially amateur cameras suffer from many
artificial perturbations which includes saturation boosting, channel mixing and
digital filters applied to the raw image sensed.

4 Minimizing the Error Function

In this section, the optimization process involved in obtaining image registration
and invariant space parameters is presented in details.

Given the more general expression (11), which includes a photometric model,
a Gauss-Newton approach is derived as an optimization method.

A first order approximation of the warped image around current estimation of
parameters Φ = (φ, θ1, θ2, φS , φT ) is obtained. The residue in the error function
is also renamed by using two different functions W1 and W2 depending on vector
Φ.

The renamed cost function becomes:

min
Φ

∑

q∈R

‖W1(S(q), Φ) −W2(T (q), q, Φ)‖2. (12)

The Gauss-Newton approximation is:

ε2 ≈
∑

q∈R

‖W1(S(q), Φ) −W2(T (q), q, Φ) + (LW1
(q) + LW2

(q))∆Φ‖2, (13)
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where LW1
(q) and LW2

(q) represents respectively the first derivatives of func-
tions W1 and W2. ε2 is the residual error from the cost function to minimize.

The parameter increment ∆Φ is given by solving the following linear system:

EΦ∆Φ = bΦ, (14)

where EΦ represents the approximated Hessian of the error function:

EΦ =
∑

q∈R

(LW1
(q) + LW2

(q))(LW1
(q) + LW2

(q))T . (15)

The right hand side of the linear system bΦ includes the error image:

bΦ =
∑

q∈R

(LW1
(q) + LW2

(q))(W1(S(q), Φ) −W2(T (q), q, Φ)). (16)

Once the increment ∆Φ is obtained Φ is updated accordingly with each model.

4.1 Using an Homography for the Geometric Model

The used geometric model consists of an homography transformation. Homo-
graphies are fully representative as global geometrical models. They are suitable
for registering planar scenes or under camera rotation. It is a groupwise homo-
geneous transformation represented by a full rank 3 × 3 matrix H with eight
degrees of freedom. The homography is applied to the homogeneous coordinates
q in the target image for composing the warp. It is assumed that the first eight
coordinates of vector Φ represent the values of ∆H at each iteration.

5 Experimental Results

In this section some of the results are presented in order to validate the proposal.
The experiments are designed to compare the convergence properties of our
algorithm and to test the photometric models we proposed.

5.1 Synthetic Image Registration

A set of synthetic images is generated according to the model presented in §2.
Each image consists of a set of quadrangular color patches under different il-
luminations, covering a range of color temperatures from 2500o to 10000o. By
modifying camera response parameters we are able to simulate images taken by
different cameras. Two models are considered for the experiment.

– Multiple gains: described by only one bias parameter dL in the invariant
space.

– Multiple gains and biases: Considering the complete case, the model has five
parameters for the target image φpT and three parameters φpS for the source
image.
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compared Algorithms In all the experiments the following algorithms are
compared:

– DRSI-NP: Direct Registration in Shadow Invariant space with No Photo-
metric model to compensate between cameras.

– DRSI-MG: Direct Registration in Shadow Invariant space with Multiple
Gains as a photometric model to compensate between cameras.

– DRSI-MGB: Direct Registration in Shadow Invariant with Multiple Gains
and Biases in target image and only bias in source image.

– DR: Direct Registration over greylevel values

Simulation Setup Given two differently illuminated sequences of patches, we sim-

ulate a 2D homography by displacing the corners in the target image in random direc-

tions by some value γ with default value of 5 pixels. The target image is contaminated

by gaussian noise with variance σ and a default value of 25.5. The value of photomet-

ric parameters for target and source image has been chosen fixed for the simulations:

φT = (b1 = 3.2, b2 = 2.1, b3 = 1) and φS = (b1 = 0.8, b2 = 4, b3 = 3.5) . Both tar-

get and source image has a slope parameter of θ1 = θ2 = 169.23o. Interest area R is

obtained by using strong edges in greylevel image and dilating them by a factor of 8..

Fig. 1. Pair of synthetic images

Results In Figure 2.a and 2.b the geometric error is presented against noise
variance σ and initial pixel displacement γ. In Figure 2.c and 2.d the slope angle
error is presented against noise variance σ and initial pixel displacement γ.

5.2 Real Image Registration

For testing the presented proposal with real images, the same planar surface is
acquired with two different low-cost commercial cameras. By manually clicking
in the four corners of the planar shape, an interest area R is obtained. If the
two regions are far from 10 pixels of displacement a pre-registration is used
using manual clicked points. The results presented show the error measured
between a pair of images transformed into its respective invariant spaces across
the iterations.
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Fig. 2. Residual Error vs σ and Geometrical Error vs γ

a) Source Image b) Target Image c) DRSI-MGB
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Fig. 3. Real images and its resulting registration
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6 Conclusions

A new method to achieve direct image registration in the presence of shadows
is proposed. The approach is based on minimizing the registration error directly
in a transformed space from RGB space. The new space is parametrized by a
single camera dependent parameter, the invariant line slope. Such parameter is
in general different from each camera, so it is included in the optimization stage.
Solving registration parameters in the invariant space from images taken by dif-
ferent cameras offers difficulties due to the response function of each camera. In
this paper, two models are proposed to compensate such differences: Multiple
Gain compensation and Multiple Gain and Bias. Results on synthetic data show
that the last one obtains better registration performance against pixel displace-
ment and noise. In real images, under some conditions the use of the multiple
gains and biases model is crucial to achieve registration. If both cameras are of
similar response, the simple algorithm which avoid photometric model calcula-
tions is the best choice. The use of invariant space in direct methods allows to
avoid shadows directly without the need of using complex methods which use
illumination modeling or robust kernel optimization.
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