
Groupwise Geometric and Photometric
Direct Image Registration

Adrien Bartoli

Abstract—Image registration consists of estimating geometric and photometric transformations that align two images as best

possible. The direct approach consists of minimizing the discrepancy in the intensity or color of the pixels. The inverse compositional

algorithm has been recently proposed by Baker et al. for the direct estimation of groupwise geometric transformations. It is efficient in

that it performs several computationally expensive calculations at a precomputation phase. Photometric transformations act on the

value of the pixels. They account for effects such as lighting change. Jointly estimating geometric and photometric transformations is

thus important for many tasks. such as image mosaicing. We propose an algorithm to jointly estimate groupwise geometric and

photometric transformations while preserving the efficient precomputation-based design of the original inverse compositional

algorithm. It is called the dual inverse compositional algorithm. It uses different approximations than the simultaneous inverse

compositional algorithm and handles groupwise geometric and global photometric transformations. Its name stems from the fact that it

uses an inverse compositional update rule for both the geometric and the photometric transformations. We demonstrate the proposed

algorithm and compare it to previous ones on simulated and real data. This shows clear improvements in computational efficiency and

in terms of convergence.

Index Terms—Image registration, geometric warp, photometric transformation, inverse composition.

Ç

1 INTRODUCTION

IMAGE registration is the task of applying some transfor-
mations to two images so that they match as best possible.

This can be seen as the computation of some geometric
transformation, for example, a homography, used to deform
one of the images to model camera pose, and some
photometric transformation, applied to the intensity or
color of the pixels, to account, for example, for lighting
change.

Image registration has been an important research topic

for the past decades. It is central to many tasks in computer

vision, medical imaging, augmented reality, and robotics.

Applications include image mosaicing [8], object and

feature tracking [5], [7], [9], [11], superresolution [6], and

visual servoing.
Broadly speaking, two approaches have been proposed:

The feature-based and the direct approaches. The feature-

based approach, see, e.g., [12], relies on abstracting the

input images by the geometric location of a set of carefully

chosen, salient features. The direct approach, see, e.g., [8],

uses the value, that is, the intensity or color, of the pixels of

interest. The inverse compositional algorithm of Baker et al. [2]

estimates groupwise geometric transformations, such as

homographies.1 It has been shown to be one of the most

reliable and computationally efficient registration methods.
The efficiency stems from the so-called inverse compositional
trick, making the Hessian matrix2 constant (it is the design
matrix involved in the linear least squares problem to be
solved at each iteration). This makes it possible to
precompute its inverse.

This paper is about the registration of two images related
by a geometric and a photometric transformation. An
example of photometric transformation is “gain and bias,”
which rescales and offsets the value of the pixels. The
simultaneous inverse compositional algorithm proposed in [1]
by Baker et al. estimates such transformations but at the
expense of recomputing and inverting the Hessian matrix at
each iteration. An efficient variant called the project out
inverse compositional algorithm is proposed in [1]. Due to an
approximation of the photometric error function, it per-
forms worse than the simultaneous inverse compositional
algorithm in terms of convergence frequency and number
of iterations.

We propose the dual inverse compositional algorithm,
which uses the inverse compositional trick for both the
geometric and photometric counterparts of the registration,
thereby preserving the possibility of precomputing the
inverse of the Hessian matrix. We originally proposed this
method in [3]. It deals with gray-level and color images and
groupwise photometric transformations. The dual inverse
compositional algorithm takes different steps to converge
compared to the simultaneous inverse compositional algo-
rithm of Baker et al. Thorough experiments show similar
convergence properties for these algorithms, with a sig-
nificantly lower computational cost in favor of the proposed
algorithm, and an improved stability compared to the
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1. To be precise, transformations parameterized such that there is a
group structure on the parameter vector.

2. We use the expression “Hessian matrix” for the Gauss-Newton
approximation to the “true Hessian matrix.”
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project out inverse compositional algorithm. The dual

inverse compositional algorithm is based on the assumption

that the geometric and photometric transformations com-

mute. This assumption prevents its use for estimating

nonglobal photometric transformations such as Linear

Appearance Variations. It is thus useful mainly for global

changes such as lighting and camera setting changes that

can mix the different color channels.
Paper organization. We formally state the problem and

review previous work in Section 2. We present as back-

ground material the inverse compositional, the simulta-

neous inverse compositional, and the project out inverse

compositional algorithms of Baker et al. in Section 3. We

propose the dual inverse compositional algorithm in

Section 4. Some groupwise color photometric transforma-

tions are presented in Section 5. We report experimental

results on simulated data in Section 6. A conclusion is

provided in Section 7. The parameterization of homo-

graphic warps is detailed in Appendix A and a proof

showing that nonglobal transformations cannot be used

with the dual inverse compositional algorithm is reported

in Appendix B. We report experimental results on real data

in Appendix C. Finally, the proposed dual inverse

compositional algorithm is summarized.
Notation. Vectors are denoted using bold fonts, for

example, q, matrices using roman fonts, for example, E,

and scalars in italics, for example, a. The entries of a vector

or matrix are written, as in xT ¼ ðx1 � � � xnÞ, where x is

transposed in this equation. The two norm of a vector r is

written krk. The gradient of a scalar-valued function f , in

other words, its partial derivative vector with respect to

vector x, is denotedrxf . It is evaluated at 0, that is, the zero

vector, unless specified as in ðrxfÞðx0Þ:

rxf ¼ ðrxfÞð0Þ ¼
@f

@x1

� �
ð0Þ � � � @f

@xn

� �
ð0Þ

� �T

:

Note that, for vector-valued functions, r gives the Jacobian

matrix, that is, the matrix containing all of the partial

derivatives of the function. Columnwise matrix vectoriza-

tion is written vect.
The source and target images to be registered are

denoted S and T , respectively. They are seen as functions

from IR2 to IRc, where c is the number of channels, that is,

c ¼ 1 in the gray-level case and c ¼ 3 in the color case. For

instance, T ðqÞ is the image value at pixel q 2 IR2. Bilinear

interpolation is used for subpixel coordinates. The unit

column vector is denoted 1 with length given by the

context. The geometric and photometric transformations are

respectively denoted G and P, with respective parameter

vectors to be estimated denoted g and p. We make the

distinction between the target to source image photometric

parameters and the reverse one, respectively denoted p and

~p. Note that G and P refer to global parameterizations as

opposed to local, minimal parameterizations written �G and
�P with parameters ��g and ��p or ��~p, respectively, defined

such that the zero vector induces the identity transforma-

tion. The geometric transformation is also called the warp.

2 PROBLEM STATEMENT AND PREVIOUS WORK

The geometric registration problem is the minimization of a
nonlinear least squares error function, given by the
discrepancy in the value of the pixels, between the source
image S and the target image T warped onto the source one
by the unknown warp. The warp maps a pixel q in the
region of interest R defined in the source image to the
corresponding pixel Gðq; gÞ in the target image. We expect
that, given an “appropriate” parameter vector g, SðqÞ is
“close to” T ðGðq; gÞÞ, for all q 2 R: This is the brightness
constancy assumption. The direct image registration pro-
blem is thus formally posed as the minimization of the
photometric error:

min
g

X
q2R
SðqÞ � T ðGðq; gÞÞk k2: ð1Þ

Note that other error functions can be used to deal with, for
example, occlusions. Most algorithms linearize each term in
the transformation parameters g and iteratively update an
initial guess by solving linear least squares problems.
Hardie et al. [6] register several images at once while
computing a superresolved one. Baker and Matthews [2]
propose the efficient inverse compositional algorithm for
solving problem (1). More details are given in the next
section. It uses a Gauss-Newton, local approximation to the
error function. The efficiency stems from the fact that the
Hessian matrix involved in the normal equations to be
solved at each iteration is constant. Its inverse is thus
precomputed.

Problem (1) does not take into account photometric
changes, that is, changes in the pixel values. These changes
occur, for example, when lighting changes between the
acquisition of the two images or when two different cameras
are used. They are modeled by a transformation P with
parameter vector p and give rise to the following mini-
mization problem:

min
g;p

X
q2R
kSðqÞ � PðT ðGðq; gÞÞ; pÞk2: ð2Þ

A commonly employed photometric model P is an affine
transformation modeling gain and bias (or contrast and
brightness). More complex transformations are reviewed in
Section 5.

Jin et al. [9] use this model for feature tracking in gray-
level images, in contrast to [11], which normalizes the image
patches by using the mean and standard deviation of the
pixel values. Heigl et al. [7] track points in color images by
summing the error over the three channels. Lai and Fang
[10] register images with low-order polynomials for model-
ing spatially varying gain and bias. Vemuri et al. [13] use a
forward compositional framework for estimating spline-
based free-form deformations. Their modified Newton
optimization scheme uses a constant approximation of the
Hessian matrix evaluated at the optimum.

Baker et al. extend the inverse compositional algorithm in
[1] to deal with linear appearance variations of the source
image. In their framework, the photometric transformation is
applied to the source image. As will be seen in Section 3.2, this
makes the Hessian matrix vary across the iterations, thereby
spoiling the computational efficiency of the inverse composi-
tional algorithm: The simultaneous inverse compositional
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algorithm estimates and inverts the Hessian matrix at each
iteration. Baker et al. propose several approximations to
reduce the computational cost, namely, the “project out
inverse compositional algorithm” and the “normalization
inverse compositional algorithm.” They show that these
approximations do not behave well for high gain values.

One reason for Baker et al. to apply the photometric
transformation to the source image is to handle general linear
appearance variations, i.e., based on linear combinations of
“eigenimages.” This is used in conjunction with 3D Morph-
able Models of, e.g., faces that do not form a group. In the case
of, e.g., homography estimation, there is however no practical
reason to handle such transformations.

3 BACKGROUND

This section is devoted to the description of the inverse
compositional and simultaneous inverse compositional
algorithms of Baker et al. proposed in [2] and [1],
respectively.

3.1 The Inverse Compositional Algorithm

The inverse compositional algorithm, or IC for short, forms
the basis for our dual inverse compositional algorithm,
presented in Section 3.2. Its advantages are twofold. First, it
converges rapidly compared to other optimization schemes.
Second, as already mentioned, each iteration is performed
efficiently.

The inverse compositional algorithm iteratively up-
dates an initial guess of the sought-after transformation.
The key idea is to express the updated transformation as
the composition of the current transformation Gð�; gÞ and
the inverse of an incremental transformation �G�1ð�; ��gÞ—
this is the inverse compositional update rule—
Gð�; gÞ  Gð �G�1ð�; ��Þ; gÞ. Notation �G refers to a local
parameterization of the warp, as opposed to the global
parameterization denoted G. This update rule is written
g Ugðg; ��gÞ. Details on the global and local parameteriza-
tions and the update rule are given in Appendix A for
homographic warps.

The optimization is performed over ��g, the para-
meter vector of the incremental warp, instead of g.
The geometric registration problem (1) is rewritten
min��g

P
q2R kSðqÞ � T ðGð �G�1ðq; ��gÞ; gÞÞk2. Let W be the

warped target image, that is, WðqÞ ¼ T ðGðq; gÞÞ. The
incremental transformation is then applied to the
source image, instead of the target one, leading to
min��g

P
q2R kSð �Gðq; ��gÞÞ �WðqÞk2. This is the inverse com-

positional trick. Note that this only approximates the
original problem (1) since the error function is expressed
within the warped and not within the source image. The
error function is approximated by first-order Taylor
expansion in ��g, forming a Gauss-Newton approximation:
min��g

P
q2R kSðqÞ þ LT

g ðqÞ��g �WðqÞk
2. This is a linear least

squares problem, which is solved via its normal equations.
We define ðrSÞðqÞ to be the ð2� cÞ Jacobian matrix of the
source image at q and ðrg

�GÞðq; 0Þ to be the Jacobian matrix
of the local warp, evaluated at q and at warp parameters 0.
It is assumed for simplicity that 0 represents the identity
warp, as discussed in Appendix A. The Jacobian matrices
LgðqÞ are thus obtained using the chain rule as

LT
g ðqÞ ¼ ðrSÞðqÞ

Tðrg
�GÞðq; 0Þ. They only depend on the

source image at the pixels of interest and are thus constant
over the iterations. Let DðqÞ ¼ WðqÞ � SðqÞ be the error
image; the normal equations are Eg��g ¼ bg, where the
Hessian matrix Eg and the right-hand side bg are Eg ¼P

q2R LgðqÞLT
g ðqÞ and bg ¼

P
q2R LgðqÞDðqÞ. The solution

��g ¼ E�1
g bg for the local warp parameters is thus computed

very efficiently since the Jacobian matrices LgðqÞ, as well as
the inverse E�1

g of the Hessian matrix, are precomputed.
Once ��g has been computed, parameters g are updated

by composing the current warp with the incremental warp
with the update rule g Ugðg; ��gÞ. If one uses a homo-
graphic warp, for example, then the updated parameters
are given by multiplying the current homography by the
inverse of the local one. The process is iterated until
convergence, determined in our experiments, by threshold-
ing k��gk by " ¼ 10e� 8.

3.2 The Simultaneous Inverse Compositional
Algorithm

The simultaneous inverse compositional algorithm, or SIC

for short, aims at registering two images by computing both
a warp and a parametric photometric transformation P
acting on the pixel values, that is, their intensity of color.

Let ~p denote the parameter vector for the photometric
transformation from the source to the target image. Baker
et al. [1] pose the registration problem as

min
g;~p

X
q2R
kPðSðqÞ; ~pÞ � T ðGðq; gÞÞk2: ð3Þ

We note that the minimization takes place in the geometric
space of the source image but in the photometric space of
the target image.

Baker et al. use an inverse compositional update
rule for the warp and a forward additive update rule
for the photometric transformation. Applying the
inverse compositional trick as in the previous section,
with WðqÞ ¼ T ðGðq; gÞÞ the warped image, yields
min��g;��~p

P
q2R kPðSð �Gðq; ��gÞÞ; ~pþ ��~pÞ �WðqÞk2, where we

switched the warp and the photometric transformation,
i.e., ðPðS; ~pþ ��~pÞÞð �Gðq; ��gÞÞ ¼ PðSð �Gðq; ��gÞÞ; ~pþ ��~pÞ. The
first-order Taylor expansion in ��g and in ��~p gives

min
��g;��ð~pÞ

X
q2R

����PðSðqÞ þ LT
g ðqÞ��gÞ; ~pÞ

þ ðrpPÞTðSðqÞ þ LT
g ðqÞ��g; ~pÞ��~p �WðqÞ

����
2

:

Further expansion is achieved using the assumption

that P is an affine transformation for its parameters

p, which include many different photometric trans-

formations and linear appearance variations. We

define �p as the linear counterpart of the parameters, i.e.,

where the intercept vanishes, in other words, without its

affine counterpart. For example, if Pðv; ~pÞ ¼ ~p1vþ ~p2, i.e.,

the gain and bias photometric transformation, then
�pT ¼ ð~p1 0Þ. This allows us to simplify the first term

as PðSðqÞ þ LT
g ðqÞ��g; ~pÞ ¼ PðSðqÞ; ~pÞ þ PðLT

g ðqÞ; �pÞ��g. Ne-

glecting the second order terms, we approximate the second

t e r m a s ðrpPÞTðSðqÞ þ LT
g ðqÞ��g; ~pÞ��~p � LT

p ðqÞ��~p, w i t h
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LpðqÞ ¼ ðrpPÞðSðqÞ; ~pÞ. Note that LpðqÞ is independent of p

due to the affine nature of P. It is thus precomputed. Let the

e r r o r i m a g e b e DðqÞ ¼ WðqÞ � PðSðqÞ; ~pÞ; w e g e t

min��g;��~p

P
q2R kPðLT

g ðqÞ; �pÞ��g þ LT
p ðqÞ��~p �DðqÞk2. We see in

this linear least squares problem that the associated Jacobian

matrix has a constant part associated to the photometric

parameters ��~p and a nonconstant part associated to the warp

parameters ��g. This makes nonconstant the Hessian matrix of

the normal equations since the current photometric transfor-

mation has to be applied to the Steepest Descent images (the

columns of the Jacobian matrix). The optimization problem is

rewritten min��g~p

P
q2R kKT

g~pðq; ~pÞ��g~p �DðqÞk2, with ��T
g~p ¼

ð��T
g ��

T
~p Þ the joint incremental parameter vector

and Kg~p the joint Jacobian matrices given by

KT
g~pðq; ~pÞ ¼ ðPðLT

g ðqÞ; �pÞ LT
p ðqÞÞ. The normal equations are

Eg~p��g~p ¼ bg~p, with the Hessian matrix Eg~p and the right-

hand side bg~p given by Eg~p ¼
P

q2RKg~pðq; ~pÞKT
g~pðq; ~pÞ and

bg~p ¼
P

q2RKg~pðq; ~pÞDðqÞ.

3.3 The Project Out Inverse Compositional
Algorithm

The project out inverse compositional algorithm, or PO for
short, proposed by Baker et al. in [1], aims at reducing the
computational cost required by each iteration of the
simultaneous inverse computational algorithm. We start
its derivation from (3) and rewrite the error function in
matrix form using the L2-norm:

min
g;~p

..

.

PðSðqÞ; ~pÞ � T ðGðq; gÞÞ
..
.

0
BB@

1
CCA

��������

��������

2

:

The error vector is projected into a linear subspace B chosen
as a basis for the affine photometric models we use, see
Section 5, and its orthogonal complement B?, giving

min
g;~p

..

.

PðSðqÞ; ~pÞ � T ðGðq; gÞÞ
..
.

0
BBB@

1
CCCA

���������

���������

2

B

þ

..

.

SðqÞ � T ðGðq; gÞÞ
..
.

0
BBB@

1
CCCA

���������

���������

2

B?

:

We observe that the second term is independent of the
photometric transformation. The project out inverse com-
positional algorithm consists in minimizing the second term
with respect to the geometric parameters g. Minimizing the
first term with respect to p subsequently gives the
photometric parameters through a closed-form solution.
Minimizing the second term is performed by using a
weighted L2-norm, see [1] for the details, and is implemen-
ted with a weighted inverse compositional algorithm.

It is shown that this algorithm has problems with
determining the optimal magnitude of the update vector.
This arises when a gain is estimated in the photometric
transformation, which is the case for all of the transforma-

tions we show in Section 5. In the absence of noise, it is
shown in [1] that the computed update vector ��g is a gain-
weighted version of the ideal one. Two solutions are then
suggested. The first one is to use Levenberg-Marquardt
instead of Gauss-Newton as a local optimization engine
since it dynamically adjusts the step size. The second
solution is a step size correction scheme based on dividing
��g by the current estimate of the gain. We implemented both
solutions. Both work well, but, as reported in [1], they
sometimes oscillate around the sought-after solution and
may even diverge. Assessing convergence is thus difficult
and one has to define a fixed number of iterations and select
the best estimate computed so far.

As reported in [1], the project out inverse compositional
algorithm has poorer performances than the simultaneous
one. The reason is that the algorithm is based on the fact
that the error projected in the B? subspace does not depend
on the photometric transformation parameters. This is,
however, true only when the alignment is correct. There-
fore, in practice, parameter updates are subject to un-
expected perturbations that may prevent convergence.

4 THE DUAL INVERSE COMPOSITIONAL ALGORITHM

We extend the inverse compositional algorithm to estimate a
groupwise photometric transformation along with the warp,
as stated in problem (2). The algorithm is summarized in
Table 1 and illustrated in Fig. 1. It is dubbed DIC for short.

The main difference compared to the simultaneous
inverse compositional algorithm resides in the problem
formulation: One of the images, namely, the target one, is
taken as a “generator” for the other one, namely, the source
image. In other words, while the minimization takes place
in the geometric frame of the source image and in the
photometric frame of the target image in the formulation by
Baker et al., it takes place in the frame of the source image
for both photometry and geometry in our formulation. The
algorithms also differ in the update rule they employ for the
photometric parameters. Baker et al. use a forward additive
update rule, while we use an inverse compositional update
rule. This allows us to apply the inverse compositional trick
for both the geometric and photometric transformations,
under the assumption that these transformations commute.

Consider problem (2) and plug in an inverse
compositional update rule for both the geometric and
photometric transformations, i.e., Gð�; gÞ  Gð �G�1ð�; ��gÞ; gÞ
and Pð�; pÞ  �P�1ðPð�; pÞ; ��pÞ. Note that the incremental
photometric transformation is composed to the left and not
to the right of the current transformation, contrarily to the
case of the warp. For more details, see Section 5. This gives

min
��g;��p

X
q2R
kSðqÞ � �P�1ðPðT ðGð �G�1ðq; ��gÞ; gÞÞ; pÞ; ��pÞk2: ð4Þ

The optimization is now to be performed on the incremental
parameters ��g and ��p, the latter accounting for the
incremental photometric transformation. Using the inverse
compositional trick on the photometric transformation, i.e.,
applying the incremental photometric transformation to the
source image instead of the target image, gives
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min
��g;��p

X
q2R
k �PðSðqÞ; ��pÞ � PðT ðGð �G�1ðq; ��gÞ; gÞÞ; pÞk2: ð5Þ

We now use the assumption that the order used to apply the

warp and the photometric transformation to an image does

not matter, i.e., that PðT ðGð�; gÞÞ; pÞ ¼ ðPðT ; pÞÞðGð�; gÞÞ.
This assumption allows us to switch the photometric

transformation and the warps in the second term of (5).

Applying the inverse compositional trick once again on the

incremental warp gives

min
��g;��p

X
q2R
k �PðSð �Gðq; gÞÞ; ��pÞ � PðT ; pÞðGðq; gÞÞk2:

Switching the warp and photometric transformation
again, on the second term, and letting W be the
warped and photometrically transformed image, i.e.,
WðqÞ ¼ PðT ðGðq; gÞÞ; pÞ, yields

min
��g;��p

X
q2R
k �PðSð �Gðq; ��gÞÞ; ��pÞ �WðqÞk2: ð6Þ

We show below that the normal equations induced by the
Gauss-Newton approximation to problem (6) have a
constant Hessian matrix. Similarly to the simultaneous
inverse compositional algorithm, we use the first-order
Taylor expansion in ��g and ��p, giving

min
��g;��p

X
q2R
kSðqÞ þ LT

g ðqÞ��g þ ðrp
�PÞðSðqÞ þ LT

g ðqÞ��g; 0Þ��p

�WðqÞk2:

Using the assumption that P is an affine transformation and
neglecting the second-order terms yield

min
��g;��p

X
q2R
kðLT

g ðqÞ LT
p ðqÞÞ��gp �DðqÞk

2;

where D is the error image, i.e., DðqÞ ¼ WðqÞ � SðqÞ. We
denote the joint incremental parameter vector ��T

gp ¼ ð��T
g ��

T
p Þ

and define the joint Jacobian matrices LgpðqÞ by

LT
gpðqÞ ¼ ðLT

g ðqÞ LT
p ðqÞÞ: ð7Þ

The Jacobian matrices LpðqÞ for the photometric parameters
are LpðqÞ ¼ ðrp

�PÞðSðqÞ; 0Þ. As in the original inverse
compositional algorithm, the Jacobian matrices only depend
on the source image at the pixels of interest. They are thus
constant, as well as the Hessian matrix Egp of the normal
equations Egp��gp ¼ bgp, with

Egp ¼
X
q2R

LgpðqÞLT
gpðqÞ; ð8Þ

bgp ¼
X
q2R

LgpðqÞDðqÞ: ð9Þ

The warp is updated as in the inverse compositional
algorithm,: g Ugðg; ��gÞ, and the photometric transforma-
tion update rule is written p Upðp; ��pÞ. The proposed
dual inverse compositional algorithm handles most group-
wise photometric transformation such as those given in
Section 5.

5 SOME GROUPWISE COLOR PHOTOMETRIC

TRANSFORMATIONS

We mention some photometric transformations that can be
employed within our framework. The dual inverse composi-
tional algorithm is based on the assumption that the
geometric and photometric transformation commute. We
show in Appendix B that this prevents the use of nonglobal
photometric transformations. Spatially varying transforma-
tions such as the polynomial one in [10] are usually nonglobal.
However, transformations such as the one in [5], which
approximates specular highlights to the first order, can be
employed. It is spatially varying but has a constant weight for
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for Groupwise Geometric and Photometric Registration

of Gray-Level or Color Images

The Hessian matrix is constant throughout the iterations.
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each pixel, depending only on its distance with some point of
interest, making its parameters global.

The most common photometric transformation for gray-

level images is the aforementioned gain and bias. In the

color image case, we use affine transformations, that is,

transformations that can be written as Avþ b, where A is a

(3 � 3) matrix combining the three color channels and b is a

3-vector, modeling a per-channel bias. Finlayson et al. [4]

show that linear transformations are well adapted for color

constancy in practice. We have tried several variants,

summarized below. Note that, similarly to the warp, we

use a global and a local parameterization for each

transformation. The local parameterizations all guarantee
�Pðv; 0Þ ¼ v.

The update rules are obtained by writing the transforma-

tion in matrix form by reshaping vector ��p to a matrix A and

vector b. Inversion and composition are then performed

and the resulting set of parameters is vectorized to get the

updated vector p.

Single gain and bias. This is the direct transposition of the

gain and bias transformation of gray-level images to color

images. It is due to account for global and uniform lighting

change. The global and local transformations are

Pðv; pÞ ¼ p1vþ p21 and �Pðv; ��pÞ ¼ P v;
1

0

� �
þ ��p

� �
:

The (3 � 2) Jacobian matrix is LT
p ðqÞ ¼ ðSðqÞ 1Þ

and the inverse compositional update rule is

Upðp; ��pÞ ¼ 1
1þ�p;1 ðp1 p2 � �p;2ÞT.

Multiple gain and bias. This is a generalization of the gain

and bias transformation to color images, with independent

gain and bias applied to each color channel. This models

global lighting change and the fact that each color channel

may have a different behavior when lighting changes.

Finlayson et al. [4] show that this model is effective for color

constancy. The global and local transformations are

Pðv; pÞ ¼
p1

p2

p3

0
B@

1
CAvþ

p4

p5

p6

0
B@

1
CA;

�Pðv; ��pÞ ¼P v;
1

0

� �
þ ��p

� �
;

where 1 and 0 are (3�1) vectors. The (3�6) Jacobian matrix is

LT
p ðqÞ ¼ ðdiagðSðqÞÞ IÞ and the inverse compositional update

rule is Upðp; ��pÞ ¼ ð p1

1þ�p;1
p2

1þ�p;2
p3

1þ�p;3
p4��p;4
1þ�p;1

p5��p;5
1þ�p;2

p6��p;6
1þ�p;3 Þ

T.

Full affine channel mixing. This generalizes the other

photometric transformations by mixing the different color

channels and applying a per-channel bias. This is mainly

useful for images taken by different cameras or under

different lighting colors. The global and local transforma-

tions are

Pðv; pÞ ¼
p1 p2 p3

p4 p5 p6

p7 p8 p9

0
B@

1
CAvþ

p10

p11

p12

0
B@

1
CA;

�Pðv; ��pÞ ¼Pðv; uþ ��pÞ;

with uT ¼ vectðIð3�3ÞÞ ¼ ð1 0 0 0 1 0 0 0 1 0 0 0Þ. The (3 � 12)

Jacobian matrix is

LT
p ðqÞ ¼ diag SðqÞT;SðqÞT;SðqÞT

� �
I

� �
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Fig. 1. DIC. The proposed dual inverse compositional algorithm extends the inverse compositional algorithm to jointly compute a geometric and a

photometric registration, Gð�; gÞ and Pð�; pÞ, by iterating the three main steps mentioned in the schema. One of the strengths of this approach is that,

as in the inverse compositional algorithm, the Hessian matrix involved in the normal equations in Step 2 is constant.
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and the inverse compositional update rule is

Upðp; ��pÞ ¼

vect

1þ �p;1 �p;2 �p;3

�p;4 1þ �p;5 �p;6

�p;7 �p;8 1þ �p;9

0
B@

1
CA
�1

p1 p2 p3

p4 p5 p6

p7 p8 p9

0
B@

1
CA

0
B@

1
CA

1þ �p;1 �p;2 �p;3

�p;4 1þ �p;5 �p;6

�p;7 �p;8 1þ �p;9

0
B@

1
CA
�1

p10 � �p;10

p11 � �p;11

p12 � �p;12

0
B@

1
CA

0
BBBBBBBBB@

1
CCCCCCCCCA
:

6 EXPERIMENTAL RESULTS ON SIMULATED DATA

Our experiments are designed to compare the converge
properties and the computational cost of the proposed dual
inverse compositional algorithm to other algorithms in
various conditions, as well as different photometric
transformations, as described in Section 5. All comparisons
are done by estimating homographies. Our implementation
uses Matlab with a number of routines written in C through
Mex files (for example, bilinear image warping and error
computation). Timing is measured on a PC equipped with a
Pentium M at 1.6 GHz. We report results for SIC (see
Section 3.2), PO (see Section 3.3), and the proposed DIC (see
Section 4).

Simulation setup. Given a texture image, we simulate a
2D homography by displacing four points in random
directions by some magnitude � with default value � ¼ 5
pixels. This is used to generate the target image in conjunction
with a gain � and a bias � with default values � ¼ 1:2 and
� ¼ 15. For the multiple gains and biases and full affine
channel mixing photometric models, we use � with
10 percent Gaussian perturbation for the diagonal entries,
some random values for the off-diagonal entries, and � with
10 percent Gaussian perturbations for the biases. Finally,
centered Gaussian noise with variance � is added to the
pixel values in the source and target images, with default
value � ¼ 25:5, that is, 10 percent of 255 (the maximum
value of intensity and of each color channel). Finally, the
pixel values are clamped between 0 and 255 in order to
simulate sensor saturation. The source image is 600 � 800
and 25,392 pixels of interest are used.

We vary some parameters of this setup independently,
namely, the noise variance � from 0 percent to 20 percent

(that is, 0 to 51 pixel intensity or color units), the geometric

magnitude � from 0 to 20 pixels and the gain from 0.2 to 3.

The results are average values over 100 trials.
The algorithms are run for 20 iterations. Results are

shown for the gray-level gain and bias model (two

parameters) and the full affine channel mixing model

(12 parameters).
Computational time. We can see in Fig. 2a that the overall

computational time needed by DIC and PO is much lower

than the one needed by SIC. This also holds against the

geometric transformation magnitude and the gain value.

Fig. 2b shows that DIC needs slightly more computational

time than PO, at worst 1.69 times more. The table below

shows detailed timing results in seconds for the parameter

update step for a single iteration:

The image-warping step respectively takes 0.0270 seconds

and 0.0312 seconds in the gray-level and color cases,

respectively. We observe that DIC and PO have computa-

tional times of the same order of magnitude, while SIC is

two orders of magnitude more expensive.
Geometric error. This is measured by comparing the

estimated transformation at convergence to the true one

and reflects the accuracy of the algorithms. As can be seen

in Fig. 2c, the geometric error is almost the same for all

algorithms. This is also the case for the other experiments

we performed and means that all algorithms reach the same

accuracy on the estimated transformation when they

converge to the sought-after solution.
Number of iterations. Fig. 3a shows that the proposed DIC

needs about the same number of iterations as SIC, while PO

needs more iterations and usually reaches a maximum

20 iterations. Given that the computational cost of an

iteration is lower for PO and DIC than for SIC, this explains

why the computational time needed by SIC is much larger

than the one needed by DIC and PO.
Photometric error. The photometric errors (not shown

here) reached by all algorithms in all our experiments are

identical, meaning that they all are able to minimize the
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Fig. 2. (a) Computational time versus the variance of pixel noise. (b) A zoom of the graph in (a). (c) Geometric error versus the variance of pixel

noise.
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error function to the same extent and, thus, that they all
converge to the right solution.

Convergence frequency. We observe in Fig. 3b that, beyond
a noise variance of 50, the converge frequency drops from
100 percent. Fig. 3c shows that the convergence frequency
also decreases when the geometric transformation magni-
tude � increases. The decrease starts at about 6 pixels for PO

and 8 pixels for SIC and DIC and is slightly faster for PO

than for the two other methods. Overall, PO has a clearly
lower convergence frequency than SIC and DIC. Varying the
gain does not affect convergence. The convergence frequen-
cies for DIC and SIC are equivalent.

Overall. All three methods are equivalently accurate. PO

requires more iterations than SIC and DIC. SIC is much more
expensive than PO and DIC and DIC is slightly more
expensive than PO. SIC and DIC have equivalent conver-
gence frequencies, significantly higher than the conver-
gence frequency of PO. This means that DIC combines both
the stability of SIC with the efficiency of PO and is thus the
algorithm we recommend for this kind of groupwise image
registration problem.

7 CONCLUSION

An algorithm is proposed for the direct registration of two
images: the dual inverse compositional algorithm. It is
original in that it considers one of the images to be
registered as a “generator” for the other one. Its main
advantage compared to the simultaneous inverse composi-
tional algorithm is that the Hessian matrix involved in each
iteration is constant, making the algorithm very efficient in
terms of computational cost. This stems from the fact that,
as with the geometric transformation, the photometric one
is dealt with using the inverse compositional trick. It is
more stable than the project out inverse compositional
algorithm. The proposed dual inverse compositional algo-
rithm handles any global groupwise geometric and photo-
metric transformation.

APPENDIX A

PARAMETERIZING HOMOGRAPHIES

Groupwise geometric transformations include translations,
rotations, affinities, and homographies. We describe the case
of homographies. They have 8 degrees of freedom and can be

represented by (3�3) homogeneous matrices (i.e., defined up
to scale). The representation of the warp by a homography
matrix makes it easy to invert a warp or compose two warps,
as required by the inverse composition trick, respectively, by
inverting the homography matrix and by multiplying the two
homography matrices. We use a homography matrix H for
the parameterization of the global warp G:

Gðq; HÞ ¼ 1

H31q1 þH32q2 þH33

H11q1 þH12q2 þH13

H21q1 þH22q2 þH23

� �
:

We constrain H to have a unit two norm. This is enforced
each time the update rule is applied by simply dividing H
by its two norm.

Following [2], the local warp �G is parameterized by an
8-vector ��h as

�Gðq; ��hÞ ¼ G q; Iþ
�h;1 �h;2 �h;3
�h;4 �h;5 �h;6
�h;7 �h;8 0

0
@

1
A

0
@

1
A:

This parameterization is such that, as required for deriving
the registration algorithms, the identity local warp is
obtained for ��h ¼ 0:

�Gðq; 0Þ ¼ Gðq; IÞ ¼ q:

A short calculation shows that the Jacobian of the local
warp is

ðr��h
�GÞðq; 0Þ ¼ q1 q2 1 0 0 0 �q2

1 �q1q2

0 0 0 q1 q2 1 �q1q2 �q2
2

� �
:

Inverse composition is performed by multiplying the
current homography matrix to the right by the inverse of
the incremental one:

UgðH; ��hÞ ¼ H Iþ
�h;1 �h;2 �h;3
�h;4 �h;5 �h;6
�h;7 �h;8 0

0
@

1
A

0
@

1
A
�1

:

APPENDIX B

THE DUAL INVERSE COMPOSITION ALGORITHMS AND

NONGLOBAL PHOTOMETRIC TRANSFORMATIONS

We show that the dual inverse compositional algorithm
does not handle nonglobal varying photometric models
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Fig. 3. (a) Number of iterations versus the magnitude of the geometric transformation. (b) Convergence frequency versus the variance of pixel noise.

(c) Convergence frequency versus the magnitude of the geometric transformation.
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such as the Linear Appearance Variations used in Active
Appearance Models. We note that the photometric trans-
formation P now depends on the pixel location q:

Pðv; pÞ ) Pðv; p; qÞ:

We derive the proof for the Linear Appearance Variation
model, but the reasoning holds for general nonglobal
photometric models. The Linear Appearance Variation
model combines basis images Ak as

Pðv; p; qÞ ¼ vþ
Xl
k¼1

pkAkðqÞ:

For the case where the basis images are aligned with the
source image, the following property holds:

PðSðqÞ; p; qÞÞ ¼ PðS; pÞð ÞðqÞ: ð10Þ

When they are aligned with the target image, this trans-
forms as

PðT ðqÞ; p; qÞÞ ¼ PðT ; pÞð ÞðqÞ: ð11Þ

We examine the case where the basis images are aligned
with the source image and then when they are aligned with
the target image.

B.1 Basis Images Aligned with the Source Image

The error function. Each term of the nonlinear least squares
error in (4) is

eðqÞ ¼ SðqÞ � �P�1ðPðT ðGð �G�1ðq; ��gÞ; gÞÞ; p; qÞ; ��p; qÞ:

We use the inverse compositional trick on the photometric
transformation, giving

eðqÞ � �PðSðqÞ; ��p; qÞ � PðT ðGð �G�1ðq; ��gÞ; gÞÞ; p; qÞ:

We then switch the incremental geometric transformation
ð��gÞ and the current photometric transformation ðpÞ and, to
avoid notational burden, we apply the inverse composi-
tional trick on the geometric transformation at the same
time, giving

eðqÞ � �PðSð �Gðq; ��gÞÞ; ��p; �Gðq; ��gÞÞ
� PðT ðGðq; gÞÞ; p; �Gðq; ��gÞÞ:

B.1.2 First Term

By switching the order of the photometric and geometric
transformations, the leading term rewrites as

e1ðqÞ ¼ �PðSð �Gðq; ��gÞÞ; ��p; �Gðq; ��gÞÞ ¼ �PðS; ��pÞ
� �

ð �Gðq; ��gÞÞ

and thus has a constant Jacobian matrix since the photo-
metric transformation does not depend on the pixel
location. We rewrite it as

e1ðqÞ ¼ �PðS; ��pÞ
� �

ð �Gðq; ��gÞÞ ¼ S þ
Xl
k¼1

�kpAk

 !
ð �Gðq; ��gÞÞ;

@e1

@��kp
ðq; ��p ¼ 0; ��g ¼ 0Þ ¼AkðqÞ;

@e1

@��g
ðq; ��p ¼ 0; ��g ¼ 0Þ ¼ ðrSÞðqÞTðrg

�GÞðq; 0Þ:

B.1.2 Second Term

The second term has a varying Jacobian matrix. Define

e2ðqÞ ¼ PðT ðGðq; gÞÞ; p; �Gðq; ��gÞÞ:

We expand it as

e2ðqÞ ¼ T ðGðq; gÞÞ þ
Xl
k¼1

pkAkð �Gðq; ��gÞÞ:

We get

@e2

@�kp
ðq; ��p ¼ 0; ��g ¼ 0Þ ¼0;

@e2

@�g
ðq; ��p ¼ 0; ��g ¼ 0Þ ¼

Xl
k¼1

pkðrAkÞðqÞTðrg
�GÞðq; 0Þ:

These partial derivatives are not constant since they depend
on p, which is updated every iteration.

B.2 Basis Images Aligned with the Target Image

B.2.1 The Error Function

We replace the argument q of the photometric transforma-
tion by its corresponding point in the target image, which
we dub �� ¼ Gð �G�1ðq; ��gÞ; gÞ. Each term of the error in (4) is
thus

fðqÞ ¼ SðqÞ � �P�1ðPðT ð��Þ; p; ��Þ; ��p; ��Þ:

Using the inverse compositional trick on the photometric
transformation gives

fðqÞ � �PðSðqÞ; ��p; ��Þ � PðT ð��Þ; p; ��Þ:

Switching the incremental photometric and geometric
transformations and using the inverse compositional trick
on the geometric transformation gives

fðqÞ � �PðSð �Gðq; ��gÞÞ; ��p;Gðq; gÞÞ � PðT ðGðq; gÞÞ; p;Gðq; gÞÞ:

B.2.2 Second Term

The second term f2 ¼ PðT ðGðq; gÞÞ; p;Gðq; gÞÞ is rewritten as

f2ðqÞ ¼ PðT ðGðq; gÞÞ; p;Gðq; gÞÞ ¼ ðPðT ; pÞÞðGðq; gÞÞ:

This is the warped imageW, which does not depend on the
unknown incremental parameters ��g and ��p.

B.2.3 First Term

The first term has a varying Jacobian matrix. Define

f1ðqÞ ¼ �PðSð �Gðq; ��gÞÞ; ��p;Gðq; gÞÞ:
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We expand it as

f1ðqÞ ¼ Sð �Gðq; ��gÞÞ þ
Xl
k¼1

�kpAkðGðq; gÞÞ:

We get

@f1

@��g
ðq; ��p ¼ 0; ��g ¼ 0Þ ¼ ðrSÞðqÞTðrg

�GÞðq; 0Þ;

@f1

@�kp
ðq; ��p ¼ 0; ��g ¼ 0Þ ¼ �Akð �Gðq; gÞÞ:

Therefore, the partial derivatives with respect to ��g are
constant, but those with respect to the �kp are varying—they
are the warped basis images, depending on the current
geometric parameters that are updated every iteration.

APPENDIX C

EXPERIMENTAL RESULTS ON REAL DATA

Our goal is to validate our algorithms and compare them to
different algorithms on real data sets, to evaluate the
photometric transformations presented in Section 5, and to
compare the results obtained when using gray-level and
color images. We show results for the pair of images shown
in Fig. 1. They have been used in Fig. 1 to illustrate the
inverse compositional and the dual inverse compositional
algorithms. They were acquired by the same camera under
different lighting conditions, namely, natural daylight and
electric light. The image resolution is 640 � 480. The initial
warp was chosen as the identity since the images are close
enough to enable convergence to the sought-after solution
for all methods. The number of pixels of interest chosen
near the image edges is 53,889.

We launched the simultaneous inverse compositional,
the project out, and the dual inverse compositional
algorithms with the images converted to gray level for
estimating gain and bias and with the color images and
different photometric models (single gain and bias, multiple
gains and biases and full affine channel mixing). We show
the results in Fig. 4 for the gray-level gain and bias (two
parameters) and the color full affine cases (12 parameters).
Note that, for PO, we compute the best photometric
transformation at each iteration to measure the photometric
error, but this is not counted into the measured computa-
tional time.

In the gray-level gain and bias case, PO converges to the
solution in 53 iterations, while DIC and SIC both require
79 iterations and behave very similarly. All three of them
converge to the same solution.

In the color affine case, SIC converges first in 69 iterations,
followed by DIC, which requires 95 iterations. Finally, PO

uses 204 iterations to converge. All three algorithms
converge to the same solution.

We observe that the first iteration increases the photo-
metric error for both SIC and DIC. The magnitude of error
variation, both at the increasing and the decreasing phases,
is strongly related to the number of parameters in the
photometric model. In other words, the more flexible the
photometric model is, the steeper the error variation. This
behavior is discussed below.

All three algorithms diverge when no photometric model
is used. Fig. 5 shows the error image at convergence for the
different photometric models.

Finally, we report the total computational time in
seconds for each algorithm and each photometric model:

It is clear that SIC is the most expensive algorithm in all
cases, being 4 to more than 10 times slower than DIC, while
PO is faster in the gray-level gain and bias case but slower in
all three color cases.

We observed in our experiments that the photometric
error measured throughout the iterations is often increased
by the first iteration and, very rarely, by the second iteration
for SIC and DIC. This phenomenon is thus not related to the
form of the update rule. We have the following hints to
understand this behavior:

. The higher the number of parameters in the
photometric transformation, the steeper the photo-
metric error curve, both at the increasing and
decreasing phases.

. Using edge pixels only makes this behavior stronger
compared to using the whole region of interest.

The geometric error reflects the closeness of the estimated
warp to the true one. Using simulated data, we assessed the
change in the geometric error caused by the first iteration.
As already observed by Baker et al. [1], it always decreases.
This holds true even if the photometric error increases. In
other words, the first iteration brings the warp closer to the
sought-after solution, while it takes the photometric
transformation away from it since the value of the error
function, namely, the photometric error, increases.

The reasons are given as follows: The initial warp causes a
geometric misalignment of the images. The intensity or color
correspondences from which the photometric transformation
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Fig. 4. Color photometric error through the iterations for the image pair

shown in Fig. 1 for different photometric transformations and the dual

inverse compositional algorithm.
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is estimated are thus erroneous. All tested algorithms are
based on a Gauss-Newton approximation of the error
function, which is not fully second order, and thus do not
fully preserve the tight coupling between the incremental
warp and photometric transformation. The badly esti-
mated incremental photometric transformation, along with
the incremental warp, can thus make the photometric
error grow, as we observed. This phenomenon is
amplified by the fact that the error function is an affine
function of the photometric transformation parameters
that thus exactly fits the intensity or color correspon-
dences conditioned on the current warp estimate.
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Fig. 5. The error images for different color photometric transformations applied to the image pair in Fig. 1 with the dual inverse compositional

algorithm.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 03:14 from IEEE Xplore.  Restrictions apply.


