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Abstract

Triangulation consists in finding a 3D point reprojecting the best as
possible onto corresponding image points. It is classical to minimize the
reprojection error, which, in the pinhole camera model case, is nonlinear
in the 3D point coordinates. We study the triangulation of points lying
on a 3D line, which is a typical problem for Structure-From-Motion in
man-made environments. We show that the reprojection error can be
minimized by finding the real roots of a polynomial in a single variable,
which degree depends on the number of images. We use a set of transfor-
mations in 3D and in the images to make the degree of this polynomial
as low as possible, and derive a practical reconstruction algorithm. Ex-
perimental comparisons with an algebraic approximation algorithm and
minimization of the reprojection error using Gauss-Newton are reported
for simulated and real data. Our algorithm finds the optimal solution
with high accuracy in all cases, showing that the polynomial equation is
very stable. It only computes the roots corresponding to feasible points,
and can thus deal with a very large number of views – triangulation from
hundreds of views is performed in a few seconds. Reconstruction accu-
racy is shown to be greatly improved compared to standard triangulation
methods that do not take the line constraint into account.

Index Terms: Triangulation, Structure-From-Motion, Point, Line.
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1 Introduction

Triangulation is one of the main building blocks of Structure-From-Motion algo-
rithms. Given image feature correspondences and camera matrices, it consists
in finding the position of the underlying 3D feature, by minimizing some error
criterion. This criterion is often chosen as the reprojection error – the Maximum
Likelihood criterion for a Gaussian, centred and i.i.d. noise model on the image
point positions - though other criteria are possible [5, 9, 10].

Traditionally, triangulation is carried out by some sub-optimal procedure
and is then refined by local optimization, see e.g. [7]. A drawback of this is that
convergence to the optimal solution is not guaranteed. Optimal procedures for
triangulating points from two and three views were proposed in [6, 13].

We address the problem of triangulating points lying on a line, that is, given
image point correspondences, camera matrices and a 3D line, finding the 3D
point lying on the 3D line, such that the reprojection error is minimized.

Our main contribution is to show that the problem can be solved by comput-
ing the real roots of a degree-(3n-2) polynomial, where n is the number of views.
Extensive experiments on simulated data show that the polynomial is very well
balanced since large number of views and large level of noise are handled. The
method is valid whatever the calibration level of the cameras is – projective,
affine, metric or Euclidean.

One may argue that triangulating points on a line only has a theoretical
interest since in practice, triangulating a line from multiple views is done by
minimizing the reprojection error over its supporting points which 3D positions
are hence reconstructed along with the 3D line. Indeed, most work consider the
case where the supporting points do not match accross the images, see e.g. [3].
When one identifies correspondences of supporting points accross the images,
it is fruitful to incorporate these constraints into the bundle adjustment, as is
demonstrated by our experiments. This is typically the case in man-made en-
vironments, where one identifies e.g. matching corners at the meet of planar
facades or around windows. Bartoli et al. [2] dubbed Pencil-of-Points or ‘pop’
this type of features. In order to find an initial 3D reconstruction, a natural
way is to compute the 3D line by some means (e.g. by ignoring the matching
constraints of the supporting points, from 3D primitives such as the intersection
of two planes, or from a registered wireframe cad model) and then to trian-
gulate the supporting point correspondences using point on line triangulation.
The result can then be plugged into a bundle adjustment incorporating the
constraints.

We review some related work in §2. Our triangulation method is derived in
§3. A linear least squares method minimizing an algebraic distance is provided
in §4. Gauss-Newton refinement is summarized in §5. Experimental results are
reported in §6 and our conclusions in §7.

Notation. Vectors are written using bold fonts, e.g. q, and matrices using
sans-serif fonts, e.g. P. Almost everything is homogeneous, i.e. defined up to
scale. Equality up to scale is denoted ∼. The inhomogenous part of a vector
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is denoted using a bar, e.g. qT ∼ (q̄T 1) where T is transposition. Index i =
1, . . . , n, and sometime j are used for the images. The point in the i-th image
is qi. Its elements are qT

i ∼ (qi,1 qi,2 1). The 3D line joining points M and N
is denoted (M,N). The L2-norm of a vector is denoted as in ‖x‖2 = xTx. The
Euclidean distance measure de is defined by:

d2
e(x,y) =

∥∥∥∥ x
x3
− y

y3

∥∥∥∥2

=
(

x1

x3
− y1

y3

)2

+
(

x2

x3
− y2

y3

)2

. (1)

2 Related Work

Optimal procedures for triangulating points in 3D space, and points lying on
a plane were previously studied, as summarized in table 1. Hartley and Sturm
[6] showed that triangulating points in 3D space from two views, in other words
finding a pair of points satisfying the epipolar geometry and lying as close as
possible to the measured points, can be solved by finding the real roots of a
degree-6 polynomial. The optimal solution is then selected by straightforward
evaluation of the reprojection error. Stewénius et al. [13] extended the method
to three views. The optimal solution is one of the real roots of a system of 3
degree-6 polynomials in the 3 coordinates of the point. Chum et al. [4] show
that triangulating points lying on a plane, in other words finding a pair of points
satisfying an homography and lying as close as possible to the measured points,
can be solved by finding the real roots of a degree-8 polynomial.

Type of triangulation Number of views Polynomial system ReferenceNumber Degree Variables

Point in 3D space 2 1 6 1 [6]
3 3 6/6/6 3 [13]

Point on plane 2 1 8 1 [4]

Point on line

1 1 1 1

This paper
2 1 4 1
3 1 7 1
4 1 10 1
n 1 3n− 2 1

Table 1: Different types of triangulation and methods minimizing the L2-norm
reprojection error. The number of polynomials to be solved, their degrees and
the number of variables is given in the column ‘Polynomial system’.

Error functions different from the reprojection error were considered in the
literature. The directional error in two views is proposed in [10], along with
a triangulation method for calibrated cameras. The L∞-norm is considered in
[5, 9], instead of the usual L2-norm. A triangulation method for two views is
given in [9], while it is shown in [5] that the n-view case can be cast as a convex
optimization problem.
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3 Minimizing the Reprojection Error

We derive our optimal triangulation algorithm for point on line, dubbed ‘Poly’.

3.1 Problem Statement and Parameterization

We want to compute a 3D point Q, lying on a 3D line (M,N), represented by
two 3D points M and N. The (3× 4) perspective camera matrices are denoted
Pi with i = 1, . . . , n the image index. The problem is to find the point Q̂ such
that:

Q̂ ∼ arg min
Q∈(M,N)

C2n(Q),

where Cn is the n-view reprojection error:

C2n(Q) =
n∑

i=1

d2
e(qi,PiQ). (2)

We parameterize the point Q ∈ (M,N) using a single parameter λ ∈ R as:

Q ∼ λM + (1− λ)N ∼ λ(M−N) + N. (3)

Introducing this parameterization into the reprojection error (2) yields:

C2n(λ) =
n∑

i=1

d2
e(qi,Pi(λ(M−N) + N)).

Defining bi = Pi(M−N) and di = PiN, we get:

C2n(λ) =
n∑

i=1

d2
e(qi, λbi + di). (4)

Note that a similar parameterization can be derived by considering the inter-
image homographies induced by the 3D line [12]. The main motivation to re-
ducing the number of parameters with parameterization (3) instead of using,
e.g. a Lagrange multiplier for the point on line constraint, is that it allows us to
find the global minimum of the reprojection error through a simple polynomial
formulation.

3.2 Simplification

We simplify the expression (4) of the reprojection error by changing the 3D
coordinate frame and the image coordinate frames. This is intended to lower
the degree of the polynomial equation that will ultimately have to be solved.
Since the reprojection error is based on Euclidean distances measured in the
images, only rigid image transformations are allowed to keep invariant the error
function, while full projective homographies can be used in 3D. We thus setup a

4



standard canonical 3D coordinate frame, see e.g. [8], such that the first camera
matrix becomes P1 ∼ ( I 0). Note that using a projective basis does not
harm Euclidean triangulation since the normalization is undone once the point
is triangulated. The canonical basis is setup by the following simple operations:

H←
(

P1

0 0 0 1

)
Pi ← PiH

−1 M← HM N← HN.

Within this coordinate frame, we can write MT = (• • 1 •) and NT = (• •
1 •) without loss of generality, as pointed out in [7, §A6], from which we get:

b1 = P1(M−N) = (b1,1 b1,2 0)T

d1 = P1N = (d1,1 d1,2 1)T.

We then apply a rigid transformation Ti in each image defined such that Tibi

lies on the y-axis and such that Tidi = TiPiN lies at the origin. This requires
that point N does not project at infinity in any of the images. We ensure this
by constraining N to project as close as possible to one of the image points1, say
q1. The reprojection error (4) for the first view is C21(λ) = d2

e(q1, λb1 + d1) =
‖λb̄1 + d̄1 − q̄1‖2. We compute λ as the solution of ∂C2

1
∂λ = 0, which gives, after

some minor calculations, λ = (q̄1 − d̄1)
Tb̄1/‖b̄1‖2. Substituting in equation (3)

yields the following operations:

N ← (P1N− q1)
TP1(M−N)

‖P1(M−N)‖2
(M−N) + N.

Obviously, the di = PiN must be recomputed. These simplications lead to:
b1 = (0 b1,2 0)T

d1 = (0 0 1)T

bi>1 = (0 bi,2 bi,3)
T

di>1 = (0 0 di,3)
T
.

The rigid transformations Ti are quickly derived below. For each image i, we
look for Ti mapping di to the origin, and bi to a point on the y-axis. We
decompose Ti as a rotation around the origin and a translation:

Ti =
(

Ri 0
0T 1

)(
I −ti

0T 1

)
.

The translation is directly given from Tidi ∼ (0 0 1)T as ti = d̄i/di,3. For the
rotation, we consider Tibi ∼ (0 • •)T, from which, setting ri = b̄i− bi,3ti, we

obtain Ri =
(

ri,2 −ri,1

ri,1 ri,2

)
/‖r̄i‖.

1Note that this is equivalent to solving the single view triangulation problem. Point N
does not project at infinity in any of the views since both point q1 and the supporting line
have observable correspondences in all images.
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This leads to the following expression for the reprojection error (4) where
we separated the leading term:

C2n(λ) = d2
e(q1, λb1 + d1) +

n∑
i=2

d2
e(qi, λbi + di)

= q2
1,1 + (λb1,2 − q1,2)2 +

n∑
i=2

(
q2
i,1 +

(
λbi,2

λbi,3 − di,3
− qi,2

)2
)

.

The constant terms q2
1,1 and q2

i,1 represent the vertical counterparts of the
point to line distance in the images. This means that only the errors along the
lines are to be minimized.

Objective

Given a point correspondence qi over n ≥ 1 views (i = 1, . . . , n), a 3D line (M,N) and camera

matrices Pi, compute the 3D point Q̂ lying on (M,N) such that the reprojection error e in
all images is minimized.

Algorithm

• Canonical 3D coordinate frame. Express the 3D line and the cameras in a canonical
3D coordinate frame:

H←
„

P1

0 0 0 1

«
Pi ← PiH

−1 M← HM N← HN

Normalize the homogeneous coordinates: M←M/M3 and N← N/N3.

• Line reparameterization. Reparameterize the 3D line by shifting point N such that
it projects to a finite point in every views:

N ←
(P1N− q1)TP1(M−N)

‖P1(M−N)‖2
(M−N) + N

Project the 3D line onto the images: bi ← Pi(M−N) and di ← PiN.

• Rigid image transformations. Align the projected line with the y-axis in each view
such that point N projects to the origin:

ti ← d̄i/di,3 ri ← b̄i − bi,3ti Ri ←
„

ri,2 −ri,1

ri,1 ri,2

«
/‖r̄i‖ Ti ←

„
Ri −Riti

0T 1

«
di ← Tidi bi ← Tibi Pi ← TiPi qi ← Tiqi

• Solving. See §3.3 for how to find the real roots λk of the polynomial D̃(λ) given by

equation (5). Select the root λ̂ for which the reprojection error is minimized: λ̂ =
arg mink C2n(λk).

• Finishing. Compute the mean reprojection error e =

r
1
n
C2n

“
λ̂

”
and recover the 3D

point in the original coordinate frame: Q̂ ∼ H−1
“
λ̂M +

“
1− λ̂

”
N

”
.

Table 2: The proposed point on line triangulation algorithm ‘Poly’.
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3.3 Solving the Polynomial Equation

Looking for the minima of the reprojection error C2n is equivalent to finding the
roots of its derivative, i.e. solving ∂C2

n

∂λ = 0. Define Dn = 1
2

∂C2

∂λ :

Dn(λ) = (λb1,2 − q1,2)b1,2 +
n∑

i=2

(
λbi,2

λbi,3 + di,3
− qi,2

)(
bi,2di,3

(λbi,3 + di,3)2

)
.

This is a nonlinear function. Directly solvingDn(λ) = 0 is therefore very difficult
in general. We thus define D̃n(λ) = Dn(λ)Kn(λ), where we choose Kn in order
to cancel out the denominators including λ in Dn. Finding the zeros of D̃n

is thus equivalent to finding the zeros of Dn. Inspecting the expression of Dn

reveals that Kn(λ) =
∏n

i=2(λbi,3 + di,3)3 does the trick:

D̃n(λ) = (λb1,2 − q1,2)b1,2

n∏
i=2

(λbi,3 + di,3)3

+
n∑

i=2

bi,2di,3 (λbi,2 − qi,2(λbi,3 + di,3))
n∏

j=2,j 6=i

(λbj,3 + dj,3)3

 .

(5)

As expected, D̃n is a polynomial function, whose degree depends on the number
of images n. We observe that cancelling the denominator out for the con-
tribution of each (i > 1)-image requires to multiply Dn by a cubic, namely
(λbi,3 + di,3)3. Since the polynomial required for image i = 1 is linear, the
degree of the polynomial to solve is 3(n− 1) + 1 = 3n− 2.

Given the real roots λk of D̃n(λ), that we compute as detailed below for
different number of images, we simply select the one for which the reprojection
error is minimized, i.e. λ̂ = arg mink C2n(λk), substitute it in equation (3) and
transfer the recovered point back to the original coordinate frame:

Q̂ ∼ H−1
(
λ̂M +

(
1− λ̂

)
N
)

.

A single image. For n = 1 image, the point is triangulated by projecting its
image onto the image projection of the line. The intersection of the associated
viewing ray with the 3D line gives the 3D point. In our framework, equation
(5) is indeed linear in λ for n = 1:

D̃1(λ) = (λb1,2 − q1,2)b1,2 = b2
1,2λ− q1,2b1,2.

A pair of images. For n = 2 images, equation (5) gives:

D̃2(λ) = (λb1,2 − q1,2)b1,2(λb2,3 + d2,3)3 + b2,2d2,3(λb2,2 − q2,2(λb2,3 + d2,3)),
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which is a quartic in λ that can be solved in closed-form using Cardano’s for-
mulas: D̃2(λ) ∼

∑4
d=1 cdλ

d, with:
c0 = −q2,2d

2
2,3b2,2 − b1,2q1,2d

3
2,3

c1 = d2,3(b2
2,2 − 3b1,2q1,2b2,3d2,3 + b2

1,2d
2
2,3 − q2,2b2,3b2,2)

c2 = 3b1,2b2,3d2,3(b1,2d2,3 − q1,2b2,3)
c3 = b1,2b

2
2,3(3b1,2d2,3 − q1,2b2,3)

c4 = b2
1,2b

3
2,3.

Multiple images. Solving the n ≥ 3 view case is done in two steps. The
first step is to compute the coefficients cj , j = 0, . . . , 3n-2 of a polynomial. The
second step is to compute its real roots. Computing the coefficients in closed-
form from equation (5), as is done above for the single- and the two-view cases,
lead to very large, awkward formulas, which may lead to roundoff errors. We
thus perform a numerical computation, while reparameterizing the polynomial,
as described below.

A standard root-finding technique is to compute the eigenvalues of the ((3n-
2)×(3n-2)) companion matrix of the polynomial, see e.g. [1]. Computing all the
roots ensures the optimal solution to be found. This can be done if the number
of images is not too large, i.e. lower than 100, and if computation time is not an
issue. However, for large numbers of images, or if real-time computation must
be achieved, it is not possible to compute and try all roots. In that case, we
propose to compute only the roots corresponding to feasible points.

Let λ0 be an approximation of the sought-after root. For example, one
can take the result of the algebraic method of §4, or even λ0 = 0 since our
parameterization takes the sought-after root very close to 0. Obviously, we
could launch an iterative root-finding procedure such as Newton-Raphson from
λ0 but this would not guarantee that the optimal solution is found.

One solution to efficiently compute only the feasible roots is to reparameter-
ize the polynomial such that those lie close to 0, and use an iterative algorithm
for computing the eigenvalues of the companion matrix on turn. For example,
Arnoldi or Lanczos’ methods, compute the eigenvalues with increasing magni-
tude starting from the smallest one. Let λc be the last computed eigenvalue,
and Q1 and Q2 the reconstructed points corresponding to λc and −λc. If both
Q1 and Q2 reproject outside the images, the computation is stopped. Indeed,
the next root that would be computed would have greater magnitude than λc,
and would obviously lead to a point reprojecting further away than the previous
one outside the images.

The reparameterization is done by computing a polynomial Pn(λ) = D̃n(λ+
λ0). A simple way to achieve this reparameterization is to estimate the coef-
ficients cj , j = 1, . . . , 3n-1, of Pn, as follows. We evaluate z ≥ 3n-1 values
vk = D̃n(λk + λ0) from equation (5) for λk ∈ [−δ, δ], and solve the associated
Vandermonde system:

3n−2∑
j=0

cjλ
j
k = vk for k = 1, . . . , z.
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We typically use z = 10(3n-1). The parameter δ ∈ R∗+ reflects the size of the
sampling interval around λ0. We noticed that this parameter does not influence
the results, and typically chose δ = 1. Obviously, in theory, using z = 3n-1, i.e.
the minimum number of samples, at distinct points, is equivalent for finding the
coefficients. However we experimentally found that using extra samples evenly
spread around the expected root λ0 has the benefit of ‘averaging’ the roundoff
error, and stabilizes the computation.

One could argue that with this method for estimating the coefficients, the
simplifying transformations of §3.2 are not necessary. A short calculation shows
that this is partly true since if the canonical 3D projective basis were not used
along with the normalization of the third entries of M and N to unity, then the
degree of the polynomial would be 3n instead of 3n-2. While this makes little
difference for large n, this is important e.g. for finding a closed-form solution
in the two-view case. Such low n cases are likely to be embedded in RANSAC
schemes, making triangulation time critical.

4 An Algebraic Criterion

We give a linear algorithm, dubbed ‘Algebraic’, based on approximating the
reprojection error (2) by replacing the Euclidean distance measure de by the
algebraic distance measure da defined by d2

a(x,y) = S[x]×y with S = ( 1 0 0
0 1 0 ),

and:

d2
a(x,y) = S[x]×y with S(2×3) =

(
1 0 0
0 1 0

)
,

where [x]× is the (3 × 3) skew-symmetric matrix associated to cross-product,
i.e. [x]×y = x× y. This gives an algebraic error function:

E2
n(λ) =

n∑
i=1

d2
a(λbi + di,qi) =

n∑
i=1

‖λS[qi]×bi + S[qi]×di‖2,

in matrix form:

E2
n(λ) =

∥∥∥∥∥∥∥
 · · ·

S[qi]×bi

· · ·


(2n×1)

λ +

 · · ·
S[qi]×di

· · ·


(2n×1)

∥∥∥∥∥∥∥
2

.

A closed-form solution is obtained, giving λa in the least squares sense:

λa = −
∑n

i=1 bT
i [qi]×Ĩ[qi]×di∑n

i=1 bT
i [qi]×Ĩ[qi]×bi

with Ĩ ∼ STS ∼
(

1 0 0
0 1 0
0 0 0

)
.

Algorithms based on algebraic distances are highly conditioned by the image co-
ordinate frame, see e.g. [7]. We experimentally tried the classical normalization
used in e.g. the eight-point algorithm in [7], and did not notice any difference
with the normalization proposed in §3.2 for the polynomial algorithm.
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5 Gauss-Newton Refinement

As is usual for triangulation and bundle adjustment [7], we use the Gauss-
Newton algorithm for refining an estimate of λ̂ by minimizing the nonlinear
least squares reprojection error (2). The algorithm, that we do not derived in
details, is dubbed ‘Gauss-Newton’. We use the best solution amongst Poly
and Algebraic as the initial solution.

6 Experimental Results

6.1 Simulated Data

We simulated a 3D line observed by n cameras Pi. In order to simulate realistic
data, we reconstructed the 3D line as follows. We projected the line onto the
images, and regularly sampled points on it, that were offset orthogonally to
the image line with a Gaussian centred noise with variance σl. The 3D line
was then reconstructed from the noisy points using the Maximum Likelihood
triangulation method in [3], which provided2 M and N. Note that any line
triangulation method, see e.g. [14], can be used. Finally, a point lying on the
true 3D line was projected onto the images, and corrupted with a Gaussian
centred noise with variance σp, which gave the qi. We varied some parameters
of this setup, namely n and σp, and the spatial configuration of the cameras, in
order to compare the algorithms under different conditions. We compared two
cases for the cameras: a stable one, in which they were evenly spread around
the 3D line, and an unstable one, in which they were very close to each other.
The default parameters of the setup are σl = 0.1 pixels, σp = 3 pixels, n = 10
views and stable cameras.

We had two main goals in these experiments. First, we wanted to determine
what in practice is the maximum number of views and noise that the proposed
triangulation method can deal with, for stable and unstable camera configu-
rations. Second, we wanted to determine to which extent the line constraint
improves the accuracy of the reconstructed 3D point, compared to standard
unconstrained triangulation. We measured two kinds of error: the reprojection
error, quantifying the ability of the methods to fit the measurements, and a 3D
error, quantifying the accuracy of the reconstruction.

We compared the three algorithms, described in the paper (Poly, §3 ; Alge-
braic, §4 ; Gauss-Newton, §5) and 3DTriangulation, which is a standard
Maximum Likelihood triangulation, ignoring the line constraint, e.g. [7].

Figure 1 shows the results for varying noise level on the image points (σp =
1, . . . , 10 pixels), and figure 2 for varying number of views (n = 2, . . . , 200).
Note the logarithmic scaling on the abscissa. General comments can be made
about these results:

2The line triangulation method in [3] provides the Plücker coordinates of the 3D line.
Points M and N are extracted as the two singular vectors associated to the two non-zero
singular values of the rank-two Plücker matrix using SVD. Note that the position of M and
N along the line does not change the result.
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Figure 1: Reprojection error (left) and 3D error (right) versus the level of noise.

• 3DTriangulation always gives the lowest reprojection error.

• Algebraic always gives the highest reprojection error and 3D error.

• Poly and Gauss-Newton always give the lowest 3D error.

Small differences in the reprojection error may lead to large discrepancies in
the 3D error. For example, Poly and Gauss-Newton are undistinguisable on
figures 1 (left) and 2 (left), showing the reprojection error, while they can clearly
be distinguished on figures 1 (right) and 2 (right), showing the 3D error. This is
due to the fact that Gauss-Newton converges when some standard precision
is reached on the reprojection error. Increasing the precision may improve the
results, but would make convergence slower.

For n = 10 views, figure 1 shows that the accuracy of the 3D reconstruction is
clearly better for the optimal methods Poly and Gauss-Newton using the line
constraint, compared to 3DTriangulation that does not use this constraint.
The difference in 3D accuracy is getting larger as the noise level increases. For
a σp = 1 pixel noise, which is what one can expect in practice, the difference in
accuracy is 1 cm, corresponding to 1% of the simulated scene scale. This is an
important difference.

However, for σp = 3 pixels, beyond 20 views, figure 2 (left) shows that
the reprojection error for 3DTriangulation and Poly/Gauss-Newton are
hardly distinguishable, while we expect from figure 2 (right) the difference in
3D error to be negligible beyond 200 views.

The results presented above concern the stable camera setup. For the un-
stable case, we obtained slightly lower reprojection errors, which is due to the
fact that the 3D model is less constrained, making the observations easier to
“explain”. However, as was expected, the 3D errors are higher by a factor of
around 2. The order of the different methods remains the same as in the stable
case. We noticed that incorporating the line constraint improves the accuracy
compared to 3DTriangulation to a much higher extent than in the stable
case.
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Figure 2: Reprojection error (left) and 3D error (right) versus the number of
views.

Figure 3: The two original images of the ‘office’ sequence, overlaid with 5 match-
ing segments, 10 corresponding end-points (in white), and their epipolar lines
(in gray).

12



6.2 Real Data

We tested the four reconstruction algorithms on several real data sets. For three
of them, we show results. We used a Canny detector to retrieve salient edgels
in the images, and adjusted segments using robust least squares. Finally, we
matched the segments by hand between the images, except for the 387 frame
‘building’ sequence where automatic traking was used. The point on line cor-
respondences were manually given, again besides for the ‘building’ sequence for
which correlation based tracking was used. We reconstructed the 3D lines from
the edgels by the Maximum Likelihood method in [3].

The ‘office’ sequence. This data set consists of two images of an indoor
scene, shown overlaid with 5 input segments and 10 input points on figure 3. A
standard nonlinear least squares algorithm was used to recover the fundamental
matrix, from which we extracted a pair of uncalibrated projection matrices.
Note that for two views, line triangulation is an exact process. The end-points
of matching segments correspond to the same physical point. We thus use
them as input to our algorithms. A calibration grid was used to get the radial
distortion parameters, that was corrected.

Figure 4: Close up on some reprojected features, around the two end-points for
the segment in the left hand corner of figure 3 (left) and in the right most part
(right). The epipolar lines are shown in gray, and the segments in white, with
their end-points plotted with squares. The diamonds are the points predicted
from method Algebraic, and the circles from methods Poly and Gauss-
Newton (they are undistinguishable).

This data set is interesting in particular for the reason that one of the seg-
ments almost lies on the epipolar lines associated to its end-points, which is
one case where line triangulation is singular. Indeed, any 3D line lying on the
epipolar plane reprojects to the same image lines. For this segment, we used
the fact that the end-points are corresponding, and can thus be triangulated on
their own using standard unconstrained triangulation, to disambiguate the 3D
line.

Algebraic and Poly/Gauss-Newton gave respectively a 3.45 pixels and
a 1.42 pixels reprojection error3, while 3DTriangulation achieved 0.98 pixels.
A close up on the reprojected points can be seen on figure 4.

3These are RMS (Root Mean of Squares) errors over all images and all points.
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The ‘Valbonne church’ sequence. We used 6 views from the popular ‘Val-
bonne church’ image set. Some of them are shown on figure 5, together with the
6 input segments and 13 inputs points. The cameras were obtained by Euclidean
bundle adjustment over a set of points [11]. The RMS reprojection errors we
obtained were:

Algebraic Poly Gauss-Newton 3DTriangulation
1.37 pixels 0.77 pixels 0.77 pixels 0.56 pixels

Frame 1 Frame 3 Frame 6

Figure 5: 3 out of the 6 images taken from the ‘Valbonne church’ sequence,
overlaid with 6 matching segments and 13 corresponding points.

Figure 6 (a) shows lines and points reprojected from the 3D reconstruction. The
reprojection errors we obtained for the points shown on figure 6 (b) were:

Point Algebraic Poly Gauss-Newton 3DTriangulation
1 4.03 pixels 2.14 pixels 2.14 pixels 1.83 pixels
2 6.97 pixels 1.95 pixels 1.95 pixels 1.52 pixels
3 2.84 pixels 2.21 pixels 2.21 pixels 1.61 pixels
4 4.65 pixels 2.14 pixels 2.14 pixels 1.79 pixels

The reprojection error for 3DTriangulation is slightly lower than for Poly
/ Gauss-Newton. This indicates that the point on line constraint is feasible
on these data.

The ‘Building’ sequence. This sequence is a continuous video stream con-
sisting of 387 frames, showing a building imaged by a hand-held camera, see
figure 7. We reconstructed calibrated cameras by bundle adjustment from in-
terest points that were tracked using a correlation based tracker.

14



11

22
33

44

(a)
Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

1

2

3

4

(b)

Figure 6: Reprojected 3D lines and 3D points. (a) shows 4 different numbered
points, for which (b) shows a close up for all the 6 images. The squares are the
original points, the diamonds are the points reconstructed by Algebraic, and
the circles are the points reconstructed from Poly and Gauss-Newton (they
are undistinguishable).
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The segment we tracked is almost the only one that is visible throughout
the sequence, and thus allows to test our triangulation methods for a very large
number of views, namely 387. For the 7 points we selected, we obtained a mean
reprojection error of 4.57 pixels for Algebraic, of 3.45 pixels for Poly and
Gauss-Newton. Unconstrained triangulation gave a 2.90 pixels reprojection
error. These errors which are higher than for the two previous data sets, are
explained by the fact that there is non negligible radial distortion in the images,
as can be seen on figure 7.

Frame 1

Frame 200

Frame 387

Figure 7: 3 out of the 387 images of the ‘building’ sequence, overlaid with the
matching segments and 7 corresponding points.
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7 Conclusions

We proposed an algorithm for the optimal triangulation, in the Maximum Like-
lihood sense, of a point lying on a given 3D line. Several transformations of
3D space and in the images lead to a degree-(3n-2) polynomial equation. An
efficient algorithm computes the real roots leading to feasible points only. Ex-
perimental evaluation on simulated and real data show that the method can
be applied to large numbers of images, up to 387 in our experiments. The
experiments were done for many different real data sets, indoor and outdoor,
small, medium and large number of images, calibrated and uncalibrated recon-
structions. Comparison of triangulated points with ground truth for the case of
simulated data show that using the line constraint greatly improves the accuracy
of the reconstruction.

Future work will be devoted to extending the method to the triangulation
of points lying on parameterized curves.

Acknowledgements. The first author thanks Frederik Schaffalitzky and An-
drew Zisserman for the projection matrices of the ‘Valbonne church’ sequence.
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