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Robust deformation capture from
temporal range data for surface rendering

By Umberto Castellani*, Vincent Gay-Bellile and Adrien Bartoli
..........................................................................

Imagine an object such as a paper sheet being waved in front of some sensor. Reconstructing
the time-varying 3D shape of the object finds direct applications in computer animation.
The goal of this paper is to provide such a deformation capture system for surfaces. It uses
temporal range data obtained by sensors such as those based on structured light or stereo.
So as to deal with many different kinds of material, we do not make the usual assumption
that the object surface has textural information. This rules out those techniques based on
detecting and matching keypoints or directly minimizing color discrepancy. The proposed
method is based on a planar mesh that is deformed so as to fit each of the range images. We
show how to achieve this by minimizing a compound cost function combining several data
and regularization terms, needed to make the overall system robust so that it can deal with
low quality datasets. Carefully examining the parameter to residual relationship shows
that this cost function can be minimized very efficiently by coupling nonlinear least squares
methods with sparse matrix operators. Experimental results for challenging datasets
coming from different kinds of range sensors are reported. The algorithm is reasonably fast
and is shown to be robust to missing and erroneous data points. Copyright © 2008
John Wiley & Sons, Ltd.
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Introduction

Capturing time-varying surface deformations is an
important problem which has been recently tackled
thanks to the advances in real-time range sensors
engineering.1–3 A range sensor gives images where
the intensity of a pixel is to be interpreted as its
depth. Research on deformable models is active in the
fields such as computer graphics for 3D morphing
and animation,4 medical image processing for data
alignment and segmentation,5,6 and computer vision,
for example, contour detection,7 face synthesis and
expression recognition.8

The aim in this paper is to provide an effective system
that allows one to capture the deformation of a physical
surface being smoothly waved, such as the page of
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a book being turned, in front of a range sensor. As
opposed to most of the existing methods,9–13 we do
not use keypoint tracks9,10,12 or optical flow.11,13 Instead,
we only use the range images. This has the advantage
that the method is independent of the appearance of
the surface. In particular, those textureless surfaces that
defeat existing methods are handled. We have to face
the two problems of reconstructing the observed surface
at each time instant, and registering the reconstructed
surfaces. While most of the existing approaches bypasses
the first problem,14–17 the one we propose solves both
simultaneously. We target applications such as 3D
data compression, augmented reality and computer
animation, all requiring an accurate registration of the
range point clouds over time, as well as a reconstruction
of the underlying surface. As an example, videos can be
synthesized from the captured deformations and a user-
provided texture map. The advantage of using range data
is that real 3D deformations are obtained, as opposed to
a 2D flow field in the monocular image registration case,
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see for example,18 The input data are a sequence of range
images and a coarse boundary of the surface of interest.
The whole process is highly robust, filling in possible
holes in the range data and detecting erroneous points,
while establishing reliable registration even for flat areas
that usually defeat shape-based registration methods. We
model the surface with a mesh as18,19 do for 2D image
registration.

Our framework is implemented through two main
lines of contributions extending our previous work.20

First, we show that the problem is well modeled by
using a mesh that is deformed to fit each point cloud.
This model allows us to write a cost function whose
global minimum is the sought after solution. This cost
function has several data and penalty terms. The data
terms incorporate surface to data points distances
and boundary information. Furthermore, it explicitly
embeds a min operator, thus avoiding the traditional
two steps in iterated closed point (ICP)-like algorithms
through distance transform. The penalty terms include
spatial, that is, surface-related and temporal smoothness
as well as inextensibility of the surface, if applicable.
The data terms are robustified in order to deal with
missing and erroneous points. Second, following,21

we use the Levenberg–Marquardt (LM) algorithm
to minimize the error function. A careful analysis
reveals that the Jacobian matrix involved in the normal
equations to be solved at each iteration is highly sparse,
for all the data and penalty terms we use. This makes
tractable and fast the estimation of dense deformation
fields.

Roadmap. The Section ‘Previous Work’ describes the state-
of-the-art. The problem statement is given in Section
‘Problem Statement’, and the minimization strategy is
described in Section ‘Minimization Procedure’. Exper-
imental results are reported in ‘Experiments’ Section.
Finally, conclusions are drawn in ‘Discussion’ Section.

Previous Work

We review existing work on surface motion capture and
non-rigid shape registration.

Surface Motion Capture

Several works have been proposed in computer graphics
on surface deformation modeling, especially for cloth

motion capture.9–13 In Reference [10] a calibrated
multi-camera setup is proposed to observe real-time
cloth deformation. SIFT keypoints are used to identify a
pattern printed on the cloth. The keypoints are tracked in
the video thanks to a seed-and-grow approach adapted
to the deforming geometry. In Reference [9], quad-
marked surfaces are tracked by using a multi-baseline
stereo system. Markov Random Fields models are used
to introduce additional assumptions on the surface
appearance and neighborhood consistency. In Reference
[12] the authors use a color-coded cloth texture for
reliably matching circular features between different
camera views. In Reference [13], a direct estimation
of the deformable motion parameters is proposed for
range image sequences. The range flow is estimated by
introducing depth constraints to the 2D displacements.
Similarly in Reference [11], the optical flow is computed
from frame to frame using the depth.

Nonrigid Shape Registration

The registration of 3D point clouds is a challenging
topic mainly tackled in the framework of ICP for
rigid scenarios.21,22 However, researchers have recently
addressed the case of deformable objects. Roughly
speaking the literature on nonrigid registration can be
divided into two main categories. The first one directly
uses the point clouds. The second one abstracts the point
clouds with some probabilistic model.

In Reference [14] the authors propose to jointly
compute the correspondences and the nonrigid trans-
formation parameters between two point clouds. The
algorithm uses the expectation-maximization (EM)
paradigm. It combines the soft-assign and deterministic
annealing within a robust framework. Thin-plate splines
(TPS) are used for representing the spatial mapping.
Nonrigid alignment is proposed in Reference [23] to
account for errors in the point clouds, obtained by
scanning a rigid object. The authors use TPS to represent
the nonrigid warp between a pair of views, that they
estimate through hierarchical ICP.22 Medical applications
are proposed in References [5,6]. In Reference [6], MR
brain scan registration is performed by a modified
Newton method over a hierarchical spline-based optical
flow representation. In Reference [5], a localized radial
basis function (RBF) is proposed, making a point to
depend only on its neighboring centers.

Probabilistic approaches15–17 are based on modeling
each of the point sets by a kernel density function.24 The

............................................................................................
Copyright © 2008 John Wiley & Sons, Ltd. 592 Comp. Anim. Virtual Worlds 2008; 19: 591–603

DOI: 10.1002/cav



DEFORMATION CAPTURE FROM TEMPORAL RANGE DATA
...........................................................................................

(dis)similarity among such densities is computed
by introducing appropriate distance functions.
Registration is carried out without explicitly establishing
correspondences. In Reference [15], the authors propose
a correlation-based approach24 to point set registration
by representing the point sets as Gaussian mixture
models (GMMs). A closed-form solution for the L2 norm
distance between two Gaussian mixtures makes fast
computation possible. In Reference [17], registration
is carried out simultaneously for several 3D range
datasets. The method proposes an information–theoretic
approach based on the Jensen–Shannon divergence
measure. In Reference [16], nonrigid registration is
treated as a maximum likelihood (ML) estimation
problem by introducing the coherent point drift (CPD)
paradigm. Smoothness constraints are introduced based
on the assumption that points close to one another tend
to move coherently over the velocity field. The proposed
energy function is minimized with the EM algorithm.

The Proposed Approach

Our method draws on the strengths of some of the above
mentioned approaches. It combines a deformable surface
represented by a mesh with an ICP-like registration
method that takes spatial and temporal smoothness into
account, as well as the range image data and boundary
information, required to prevent the computed surface to
shrink or slide arbitrarily. The optimization is performed
very efficiently using a distance transform of the range
image.

Problem Statement

Surface Representation

The range sensor provides a sequence of range images
that we interpret as 3D point clouds Di with li points
each:

Di =




dx
i,1 d

y

i,1 dz
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The reconstructed surface at time i is represented by a
geometry image.25 The model M is organized as three R ×
C matrices, representing the deformation of a regular flat
grid. Each matrix is reshaped in a single vector of size

µ = RC, giving Mi as
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In practice, the number of data points is much larger
than the number of model points, that is, li � µ.
Upon convergence, our algorithm determines for each
model point if there is a corresponding point in the
current point cloud. Points may be missing because of
occlusions or corrupted sensor output. This approach has
the advantage that it naturally gives the reconstructed
surface by interpolating the mesh points. Point cloud
registration is obtained by composing the deformation
fields.

Cost Function

Our cost function combines two data and three penalty
terms:

e(M) = eg(M) + λbeb(M) + λses(M) + λtet(M) + λxex(M)

(1)

where λb, λs λx, and λt are weighting parameters. Note
that we drop the frame index i for clarity purposes, and
denote Mi as M and Mi−1 as M̃.

The data terms are used to attract the estimated
surface to the actual point cloud. The first term eg is
for global attraction, while the second one eb deals with
the boundary. These terms must account for possible
erroneous points by using robust statistics. The penalty
terms are es, et , and ex. The two first ones respectively
account for spatial smoothness and temporal smoothness es.
The third one penalizes the surface stress and is related
to the non-extensibility of the surface, and therefore to
material properties of the surface.

This cost function is minimized in an ICP-like manner,
as described in the next section. All the five terms are
explained below in details.

Data Term: Global Surface Attraction. This term
globally attracts the model to the data points in a closest
point manner.22 In order to avoid the traditional two steps
arising in ICP-like algorithms, we explicitly embed the
min operator in this data term, as suggested in Reference
[21]. Denoting EM and ED the sets of boundary points
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in the model and in the data, we get the following data
term, integrating the model to data points matching step:

∑
m∈M\EM

min
d∈D\ED

‖d − m‖2 (2)

where d and m are 3D vectors respectively representing
a data and a model point. It is worth noting that,
as opposed to Reference [21], our unknowns are not
the rigid motion parameters (i.e., the classical roto-
translations) but correspond to the whole nonrigid motion
field in M.

An outliers rejection strategy is introduced by defining
a robust function w. Following the X84 rule,26 function
w discards (i.e., it puts their residual to 0) those
correspondences which residual error differs by more
than 5.2 median absolute deviation (MAD) from the
median. The value 5.2 corresponds to about 3.5
standard deviations, which includes more than 99.9%
of a Gaussian distribution. Therefore, Equation (2) is
modified so as to get the following robustified data term:

eg(M) =
∑

m∈M\EM

w

(
min

d∈D\ED

‖d − m‖2

)
(3)

Data Term: Boundary Attraction. This term
attracts boundary model points to boundary data points.
It is defined in a similar manner to the global attraction
term (3) except that the sum and min operators are over
the boundary points:

eb(M) =
∑
m∈EM

w

(
min
d∈ED

‖d − m‖2

)
(4)

Note that the detection of boundaries points in the range
image is out of scope of the paper. In the ‘Experiments’
Section we describe some ad hoc boundary detection
methods for the proposed applicative scenarios.

Penalty Term: Spatial Smoothness. This term
discourages surface discontinuities by penalizing its
second derivatives, as an approximation to its curvature.
According to the definition of the geometry image,25 the
model M is a displacement field parameterized† by (u,
v) with u = [1 · · · R] and v = [1 · · · C], that is, M(u, v) =

†Recall that the model points lie on a grid.

[Mx(u, v), My(u, v), Mz(u, v)]. The spatial smoothness
term can thus the taken as the surface bending energy:

es(M) =
∫
R

∫
R

(
∂M2

∂2u

)2

+ 2

(
∂M2

∂u∂v

)2

+
(

∂M2

∂2v

)2

du dv

Using a finite difference approximation for the first
and second derivatives,19 the bending energy can be
expressed in discrete form as a quadratic function of M:

es(M) = vect(M)�Kvect(M) (5)

where K is a 3µ × 3µ, highly sparse matrix, and vect(M)
is the vectorization operator which rearranges matrix M
to a vector.

Penalty Term: Temporal Smoothness. This de-
fines a dependency between the current and the previous
point clouds, M and M̃:

et(M) = ‖M − M̃‖2 (6)

This makes the surface deformation smooth over
time and can be used within a sequential processing
approach. It is obviously not used on the first frame of the
sequence.

Penalty Term: Non-Extensibility. This term dis-
courages surface stretching. It favors the mesh vertices to
preserve their distance with their local neighborhood:27

eX(M) =
∑
m∈M

∑
k∈N(m)

(‖m − k‖2 − L2
m,k

)2
(7)

where Lm,k are constants which are computed at the
first frame after robust initialization and N(m) is the
neighborhood of the mesh vertex m, with #N(m) = 8.

Minimization Procedure

The above described cost function (1) is a sum of squared
residuals nonlinearly depending on the unknowns in
M. In order to minimize this cost function, we use a
nonlinear least squares optimization algorithm, namely
the LM algorithm. We extend the LM–ICP approach
proposed in Reference [21] to deformable objects. LM
requires one to provide the partial derivatives of the
residuals through a Jacobian matrix.
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Figure 1. Example of Jacobian (left) and Hessian (right) matrix patterns: dark means non-zero. The size of these matrices is
3760 × 900 and 900 × 900, so they respectively have 3 384 000 and 810 000 entries. They, however, have only 25 626 and 46 716

non-zero entries.

The Hessian matrix‡ H = J�J + λI must be inverted
at each LM iteration, the problem is not tractable if the
number of model points is too high (if the deformation
field is too dense). The Jacobian matrix stacks the
individual Jacobian matrices for all the five terms in the
cost function:

J� = (
J�

d J�
b J�

s J�
t J�

x

)

where J
µ×3µ

d , J
EB×3µ

b , J3µ×3µ
s , Jξ×3µ

x , J
µ×3µ
t are related

to the global attraction, boundary attraction, spatial
smoothness, temporal smoothness, and non-extensibility
terms, respectively, and ξ = #N(M). For instance, a
grid with 15 × 20 points has a Jacobian matrix with
3760 × 900 elements (µ = 300, EB = 66, ξ = 2194). It
is worth noting that the most expensive Jacobian
computation is Jd since it requires the estimation
of closest points at each iteration. As suggested in
Reference [21], we solve this step with the distance
transform: the distance between data points and a
set of points lying on a discrete volumetric grid is
pre-computed by defining a proper distance field data
structure. In this fashion, the closest point computation
is carried out in one step for all points.21 Therefore, the
Jacobian matrix Jd is estimated by finite differences on
such distance fields which remain constant through the
minimization.

‡We use ‘Hessian matrix’ for the damped Gauss–Newton
approximation to the true Hessian matrix.

One advantage of the proposed approach is that
the Jacobian matrix J is very sparse. We thus use the
sparsity to speed up each iteration using the technique
in Reference [28]. In particular, we use the sparse
Cholesky factorization package29 included in the Matlab
routines§. Figure 1 shows a plot of the Jacobian matrix
J3760×900 (left), and the corresponding Hessian matrix
H (right). Dark points show non-zero entries. The
sparsity of the Jacobian and Hessian matrices is clearly
evidenced.

Experiments

Two kinds of experiments have been set up. In the first
one, a structured-light 3D scanner‖ is used for scanning
different deformations of a paper sheet. In the second
experiment, the sensor is a passive-stereo system¶ which
allows us to acquire a sequence of 3D point clouds in
realtime. The deformation of a portion of a blanket is
modeled.

Initial conditions determine an estimate for both
the model position, and the grid size. In practice, a
correct starting grid allows LM to converge, as well
as to determine the parameters Lm,k in Equation (7).
In the absence of any texture information, that is,

§More precisely, we use the ‘mldivide’ matlab function.
‖Data courtesy of Johnny Park from Purdue University
(http://web.ics.purdue.edu).
¶Data courtesy of eVS (http://www.evsys.net).
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Figure 2. The paper sequence. Three examples of point clouds with the grid mesh superimposed at the starting position (top) and
after model fitting (middle). Boundary points are evidenced. The reconstructed model is shown with a new texture (bottom).

in experiment 1, we detect them as strong depth
discontinuities in the range image. In experiment 2, we
use the intensity information to segment the boundary.
The result is however quite noisy, but our system
handles it thanks to its robustified data terms.

Experiment 1: Paper Sheet from a
Structured-light Scanner

Several scans have been carried out while bending the
paper. The sensor provides accurate and high-resolution
3D point clouds. The initial orientation of the grid is
estimated by fitting a plane to the data. By projecting the
points to the plane, both the grid size and boundaries
are easily computed. There is no temporal dependency
between the scans since they show totally different paper
deformations. The temporal smoothness constraint et is
thus inhibited.

Figure 2 shows three examples. Images on the top
row visualize the model and data before surface fitting.
Boundary points are highlighted. In the first example
(Figure 2(a)), the deformation is mainly on the horizontal
boundary. In the second one (Figure 2(b)), the paper
is bent from the top-right to the bottom-left corner.
In the third one (Figure 2(c)), the deformation is
basically spread to the whole paper. Images on the
central row show the result of our robust fitting. The

registration is accurate for both the interior points and the
boundary. The recovered meshes are smooth as expected.
Finally, three synthetic reconstructions are shown on
the bottom row. Any texture can be overlaid onto the
model, for rendering realistic paper deformation from
arbitrary points of view. Figure 3 shows the paper sheet
reconstruction with different textures.

Finally, since the same grid is fit on all the images, the
correspondences between different frames are recovered
as a by-product (i.e., the corresponding points are those
lying on the same grid position). In this manner, it is
possible to synthetically interpolate the intermediate
frames between two or more reference images. Figure 4
shows some intermediate frames between the actual
scanned images shown in Figure 2(a), (b), and (c),
respectively. Here, intermediate grids are recovered
by simple linear interpolation between corresponding
mesh vertices. More sophisticated interpolation schemes
incorporating the non-extensibility penalty ex could be
used so as to make the surface behave similarly to a real
paper sheet.

Experiment 2: Blanket from a
Stereo System

A long sequence of point clouds is acquired for the
second experiment. The sensor acquires the images at
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Figure 3. Textured views. Once the surface deformation is captured, any image can be used as a texture.

Figure 4. Synthetically interpolated views. Images are generated by linear interpolation between Figure 2(a), (b), and (c),
respectively.
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Figure 5. The blanket sequence: intensity image of the blanket (a) and the 3D point cloud (b).

25 frames-per-second (FPS), and provides both intensity
(i.e., 2D) and 3D information. The quality of the 2D
images is very low, and the range data are noisy.
Moreover, the sensor can operate only on a very limited
field of view (i.e., 30 cm3). We use a blanket as the
object of interest. Figure 5(a) shows a picture of the
blanket. Note that although 2D correspondences are
recovered by the stereo system between the left and
right images, the 2D correspondences between the
frames contiguous in time are not reliable due to the
distortions introduced by the surface deformation. In this
experiment, we aim at observing the blanket deformation
only on the portion delimited by the dark square.
Figure 5(b) shows the 3D point cloud. There are many
spurious points especially on the boundaries, and the
scene is not easily recognizable. We use the intensity
image** for selecting automatically our region of interest
(i.e., the dark square), from which we recovered both
the 3D data and the boundary. Figure 6(a) shows the
image-boundary extracted by standard image processing
techniques, while Figure 6(b) depicts the 3D data (i.e., the
selected point cloud and 3D boundary). The sequence
is made of 100 point clouds. Model initialization is

**The intensity is the left image of the stereo-pair, which is
associated to the disparity map. Indeed, there is a mapping
between the 2D and 3D information. Note that we do not use
intensity information for fitting.

Figure 6. Data extraction: 2D boundary (a) and selected 3D
data (b). 3D boundary is highlighted with dark color.

carried out for the first cloud only. Each iteration uses
the output of the previous one as an initial condition.
Figure 7 shows a selection of the output sequence.
For each frame, is visualized: (1) the intensity image,
with the extracted 2D boundary and the 2D projection
of the estimated model and (2) the point cloud—after
the region of interest selection, evidencing both the 3D
boundary and the grid. The blanket is handled from
the bottom-left and upper-right corners, respectively. On
the early frames, the blanket is gradually bent toward the
square center, then it is strongly stretched, moving the
corners far from each other. Finally, in the late frames,
random deformations are generated especially around
the corners. Some frames are particularly challenging. In
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Figure 7. Blanket sequence: 10 selected frames. For each frame the 2D intensity (·,1) and the 3D data (·,2) is visualized. The grid
models are shown in the 3D space as well as their projection in the 2D image.
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Figure 8. Synthesized movie: some selected frames. Each frame of the movie is projected to the reconstructed model by simulating
a deforming video screen.

frame (c) a strong shrinking is evidenced on the top-right
corner. In frame (f) a wide hole appears on the top-right
side. In frames (h) and (i) data boundaries are clearly
wrong on the bottom-left side. Results are satisfying since
the fitting is correct for the whole sequence. The mesh
grids are well superimposed on data points maintaining
a smooth shape. Nevertheless, the projections of the grids
to the 2D images confirm the accuracy of the registration.
Finally, after the mesh fitting, a dense set of accurate
deformations is available. We used them to synthesize

a movie rendered as if it was projected to a deforming
screen. We project every frame of the movie to a model
of our sequence††. Some frames are shown in Figure 8.

Performance Evaluation. For both experiments, a
model of size 15 × 20 is used. We have seen that a
higher value of λb is necessary (i.e., λb = 1.5) for a correct

††We loop over the extracted 100 models.
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Experiment Pre-process (s) Energy (s) # LM iter Time per frame (second) # Frames Total time (second)

Exp. 1 19.36 2.22 11 24.42 1 43.78
Exp. 2 15.24 2.34 7 16.34 100 1649.34

Table 1. Performances of the main steps of the proposed framework. Running times (second) and
iterations are mean values

convergence of the algorithm to the optimal solution.
The other terms are set almost equally to 1. The distance
transform parameters are important: the size of the
voxels trades off speed and result accuracy. Here, we
have divided the volume into 36 × 36 × 18 voxels.

Table 1 shows the running times of both the proposed
experiments. For each experiment we highlight the time
spent for pre-processing (i.e., grid pre-alignment and
the computation of constants Lm,k), the total energy
computation, the mean number of LM iterations, the
total time for each frame and the total time of the whole
experiment. Note that the computational cost of one LM
iteration is very similar for both experiments. This is due
to the fact that it depends only on the chosen grid size,
being independent on the amount of input data. The
computational cost of pre-processing instead depends of
the total number of points and thus the first experiment
takes a longer time.

The method has been implemented in Matlab on a
Pentium M 1.86 GHz. Note that since the pre-processing
is carried out only for the first frame of the sequence it
strongly affects the total time of the first experiment (for
which only single frames are processed) while being less
relevant for the second experiment.

Discussion

We proposed a new approach for capturing the
deformation of 3D surfaces from range image or 3D
scans. As a surface model, we deform a generic
geometry image, which is aligned with the observed
data points. A cost function is devised that combines a
priori information, such as spatio-temporal smoothness,
and observations. Both non-extensibility and boundary
attraction terms are crucial for disambiguating this
intrinsically ill-posed problem. The optimization phase
is solved with the LM algorithm, while taking advantage
of the sparsity of the Jacobian and Hessian matrices.

Results are promising since the performances are
satisfying for the analyzed cases. The method has been
tested onto two kinds of datasets, thereby evidencing

the versatility in dealing with different sensors. In the
first experiment, the source data were accurate and the
estimated models was according to what we expected.
In the second experiment, a whole sequence of 3D
point clouds has been processed. This has allowed
us to capture cloth deformations without using any
markers nor special projected patterns. Although data
were very noisy, especially around the boundary, the
method performed robustly. We discussed the behavior
of our algorithm in the presence of holes and broken
boundary. Moreover, since the captured deformation
depends only on the size of the chosen grid, the
proposed method allows one to use an arbitrary level
of deformable details in the captured surfaces. We also
highlight that the method is easy to implement and
that it is reasonably fast. Finally, some graphical results
were shown for generating new synthetic deformations,
and for changing the appearance of the original surface,
as well as for synthesizing a deforming video. This
shows the usefulness of the method for computer
animation. Several applications are made possible by
the proposed method, including (i) cloth motion capture,
with no marker or pattern, (ii) dense augmented reality
for special effects such as a liquid spreading on a
deformable surface, and (iii) surface completion and
interpolation in the presence of missing or erroneous
frames. The main limitation regards the hypothesis to
work on planar-like surfaces. The extension to shapes
with more complex topology will be addressed in
future work.
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