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Abstract— Building an accurate three dimensional map is an is reasonable to add a continuity or smoothing prior on
important task for autonomous localisation and navigation In the camera trajectory, encouraging each camera to lie close
a sequential approach to reconstruction from video streams 5 the previous ones. This prior is not too restrictive, and
we show how adding prior knowledge about camera motion . s T
improves reconstruction accuracy, obtaining a more precie rea_son_able for every tra1ect0ry_. W_e minimise a cost fumctio
trajectory estimation and preventing failures over time. We add ~ Which is the sum of the reprojection error and the smooth-
a smoothing penalty on camera trajectory and the smoothing ing penalty, whose strength is regulated by a smoothing
parameter, usually fixed by trial and error, is automatically  parameter. Usually the smoothing term is implemented as
estimated using Cross-Validation. The method is substardted the distance between camera matrices, but this formalisati

by experimental results on synthetic and real data. They she . icall table. In thi " tributien i
that it improves accuracy and stability in the reconstruction 15 numerically unstable. In this respect our contributien I

process, preventing several failure cases. a more stable formalisation, in terms of distance between
feature points.
I. INTRODUCTION The smoothing parameter is commonly tuned by trial and

Three dimensional (3D) reconstruction from video streamerror, and is kept constant in the whole sequence. In thi& wor
plays an important role in robotics, for example in the cgnte we also show that accuracy can be enhanced by choosing this
of autonomous localisation and navigation [16]. A GPSarameter automatically, customising the problem for each
receiver, the most popular localisation sensor, is aceurgbose. The idea is to estimate theost predictive camera
only if enough satellites are visible from the receiver.sThipose in the sense that it can “explain” the whole image as
is not the case in many urban areas, or indoor. The use well as possible given a restricted set of data points. This
vision is in that really attractive because it provides a-lowis a typical machine learning problem. A Cross-Validation
cost, complementary sensor to the GPS. (CV) technique is used.

We consider video sequences provided by some calibratedThe approach is validated by experimental results on
cameras, e.g. a handheld camera, exploring new envirasynthetic and real data. The tests are performed in differen
ments. These videos are challenging because they usualbyntexts and they show the versatility of the approach,
contain forward motions, approximations around the camegeventing several failure cases.
centre and shaky movements.

The sequential approach to Structure-from-Motion (SfM) Il. RECONSTRUCTION PIPELINE
[8], [10], [15] entails starting from a seed reconstruction We overview the reconstruction pipeline, as summarised
then adding a new view at a time, updating the structuri@ Table |. We track features points in the original video
accordingly. Some approaches for visual SLAM assume stream, extracting a set of keyframes. The 3D map is
model for camera motion [3], [2] and they can work ininitialised using the first three selected views. Then,
real time. These methods showed really promising resultkeyframes are sequentially added, calculating the posgusi
but still in indoor, quite restricted areas. In our case we arthe previously estimated 3D points and upgrading the 3D
interested in outdoor settings, covering wider areas. map with the information conveyed by the new view.

The strategy that is usually adopted to robustly calculate
a new camera pose is to use the already estimated three¥ two images are very similar the computation of the
dimensional (3D) points to solve a resection problem [8]gpipolar geometry is ill conditioned. Therefore in case of
[4], [7] within RANSAC [5], a robust estimator widely used a video sequence a subset of images (keyframes) is usu-
in Computer Vision. ally selected. Many ways to choose these keyframes have

In our experience however, this does not guarantee a gobden proposed in literature [10], [15], [18]. It should be
initialisation for bundle adjustment and does not prevera compromise between the distance among views, so that
the reconstruction process from failing. Resection indeetiangulation is well conditioned, and the number of featur
uses only local information; it is prone to drifting and Ibcain common. For the calibrated case the issue is less delicate
instabilities. though. Degenerate cases for epipolar geometry, such as

It is commonly admitted that using prior knowledge im-pure rotations or planar scenes, can be handled using proper
proves the quality of an estimate. In video sequences, algorithms. In an exploratory setting, both camera motion



1) Track feature points on the sequence. is an exterior orientation problem and we employ Fiore’s

2) Extract keyframes and refine matches. algorithm [4], again within RANSAC in order to assure a
3) Using the first three keyframes: robust estimation. In order to refine this initial estimatia
a) Estimate the relative pose using the 5- common strategy is to minimise a geometric error, i.e. the
point algorithm and RANSAC; reprojection error, and the problem is formalised as a least
b) Bundle adjustment. square minimisation of the mean of squared residuals (MSR):
4) For every new keyframe extracted: Lo
a) Initialise camera pose with Fiore’s algo- E3(P) = — Z | WP, Q) —ail3, Q)
rithm and RANSAC; [t
b) Nonlinear refinement of camera pose whereP is the projective matrix an@); is the 3D position of
with smoothing penalty; the image point;. The functionW (P, Q) is the reprojection
¢) Upgrade of the 3D structure; of Q; throughP, in Cartesian coordinates. In Section III
d) Local bundle adjustment. we show how to improve this refinement to increase stability.
TABLE | Subsequently, the 3D map is updated. The 3D points are
OVERVIEW OF THE RECONSTRUCTION PIPELINE obtained by triangulation considering all image pointshaf t

visible tracks up to the current keyframe. A reconstructed
point is considered an inlier if a) its computation is well

conditioned — we set a threshold on the condition number of

and Scene can change a lot, and we f_ound that the n_uml?ﬁé matrix in the linear system that computes the 3D point
of point correspondences among multiple keyframes is the and b) if it projects sufficiently close, say by a distance

most important factor. of one pixel, to all associated image points. This requires

We used the KLT tracker [17] to detect and track featureg, (ofing the initial estimation of a 3D point based on all
among the sequence. Similarly t_o [16], the first frame 'Bbservations, including the last. Therefore each time a new
chosen as the first keyfram[g._ Iy is chosen so th"f‘t there keyframe is added the tracks visible in it are checked and
are as many fram_es as possible betwégernd ,12 with at the list of inliers updated. When the track is no more visible
least N feature points in common. The framhgis selected it is labelled as definitely accepted or rejected.

as a keyframe if:

1) there are as many frames as possible betwgeand Both structure and motion are finally adjusted using bundle
I—1; adjustment. The aim is to find the parameters for the cameras

2) there are at least N point correspondences betwegRd the 3D points for which the mean squared distances
I, 1 and I,,; between the observed image points and the reprojected image

3) there are at least M point correspondences betwe@aints is minimised. For the first 10 views a full bundle
I, o andr,. adjustment, using all keyframes and all points, is perfarme

This criterion assures that there are matches in commditer that the computation becomes increasingly expensive
at least in three consecutive views. Once a new keyframeéyen if the sparseness inherent in the problem is exploited
selected, putative matches coming from tracking are prun¢i9]. So we perform a local bundle adjustment, i.e. only a
by estimating the fundamental matrix with RANSACSsubset of keyframe poses are adjusted. Similarly to [9], we
followed by outlier rejection with the X84 rejection rule][6 choose the last 5 keyframes, while the frames beyond these
on the Sampson error. Afterwards, matches are connectete locked and not moved. All 3D points visible in the last
into tracks, keeping only those composed by at least thréeyframes are considered, together with all measurements
feature points. In our experiments we usdd= 300 and ever made of these points. That is, the reprojection errors
M = 200. are accumulated for the entire track lengths backwards in

time, regardless of whether the views where the reprojestio

For the first image triplet, the computation of camerdeside are locked.
motion is computed as described in [13]. It involves
computing the essential matrix between the first and the!!l- NONLINEAR CAMERA POSE REFINEMENT
third view using the 5 points algorithm [14], while the After a new camera pose is estimated, bundle adjustment
pose of the remaining camera is calculated with exterias performed in order to refine both structure and motion.
orientation [12] using the 5 3D points triangulated from théThough that has been proved to be the essential step to
two other views. This process is coupled with RANSAC, inachieve a good accuracy and to prevent failures [9], thelnit
order to have a robust estimation, and the final solution isstimate must be sufficiently close to the optimal solution,
further refined with bundle adjustment [11]. otherwise the minimisation converges to a wrong position or

diverges.

Afterwards, each time a new keyframe is selected, its poseFig. 1 shows an example of reconstruction failure, from

is calculated referring to the 3D map already computed. This real sequence taken by a handheld camera. At the 47th



E2P) = - W(P.Q) - VP, Q) B . (@)
=1

This function is actually the finite difference approxima-
tion to the first derivatives of the predicted tracks. We doul
include derivatives of higher order, involving more tharotw
views, and the resulting trajectory would be smoother, up to
a straight line. As is, this is a continuity measure, reabta
for any sequential trajectory.

Our choice shows to be sensible, as depicted in Fig. 2
(right column): varying the smoothing parameter from 0 to 1
the estimated camera gradually moves towRydas desired.

Fig. 1. Reconstruction failure in case of non refinement ohea pose.
On the left a 3D view of the recovered keyframes and on thet tigh top
view of the last keyframes.

keyframe the computation stops because there are not enough
points to estimate the new camera pose (less than 6 points),
meaning that all points seen in the last views have been
rejected as outliers. At the moment of failure the camera
was rotating. Even if the rotation is not around the camera
optical centre, this is a delicate situation, where the fielc
of view varies rapidly and the reconstruction accuracy is
crucial. It is evident from Fig. 1 that the last 5 keyframes
were wrongly estimated, and that bundle adjustment couli
not fix the problem.

As the keyframes come from a video sequence, it is rea
sonable to add a smoothing penalty on the camera trajector
saying that the position of one keyframe should not differto - S e
much from that of the previous one. This increases stability B
in the camera trajectory estimation.

The problem is formalised as the minimisation of a costig- 2. Examples of camera refinement using Eq. (3) (left rolu or
function, which is the sum of the reprojection error as if%, (9 (g cou) as smooting fictons. i biack ¥e e

Eq. 1 (data term) and a smoothing term: pose estimated before refinement and in thin green line adferement,
considering\ varying from 0 to 1.

2 _ 202 202
E°(PA) = (1 = A& (P) + A°EL(P) @) The cost function (2) depends on a smoothing parameter
that must be estimated. It is common to use trial and error
to manually set an acceptable value, but an automatic data-

driven method is obviously desirable.

where) is the smoothing parameter afiglis the smoothing
function.
The following measure is usually employed:
A. Smoothing Parameter Estimation by Cross-Validation

|| P— P, (3) We propose to estimate both the camera pasd the
smoothing parameter. The idea is to find a camera pose as
with P, the projection matrix of the previous keyframe.general as possible, in the sense that it can explain theawhol
However, this function has a merely algebraic meaning, arithage, given a restricted set of correspondences 3D pasitio
its behaviour is not always as expected. In Fig. 2 (left 2D points. This concept derives from the machine learning
column) two examples of pose refinement are shown usingaradigm of supervised learning from examples.
Eqg. (3) as smoothing function and varying the smoothing The approach we follow is to split the data points in a
parameter from O to 1. It is evident that there are numericalaining and a test set, and select the smoothing parameter
instability problems. for which the trained model minimises the test error. A
We propose here a different measure: it is the mean @fell-known method, widely applied in machine learning [1],
squared residuals between reprojected points in the durres Cross-Validation, firstly introduced in [20]. Considegi
and previous keyframes. We are essentially saying thaeif thhat the number of samples is small, this technique recycles
two cameras are close to each other then their reprojectdtt test set, averaging the test error over several differen
points should be close as well: partitions of the whole data set.



There are different kinds of Cross-Validations, like leave IV. EXPERIMENTAL RESULTS

ong—out (CVO").’ h-fold (CVys) and generalised Cross vali- We show the effectiveness of our method on synthetic crit-
dation. C\{,, gives more accurate results, but it is compu:

. . . "“ical sequences. The dataset consisted of 100 points ragdoml
tationally too expensive. We chose Gy as a compromise . . .
- scattered in a sphere of radius 1 meter, centred at the origin
between accuracy and efficiency.

The method works as follows. The dataSas divided into vi(;(/Vves (\:/\(/):r?aldeerrfgrrtree det()j 'ﬁelfg:]scsgr?]r;;'slglghne fgsltigt;[r']n
10 partitions{.S;}=1..10- The test error, or C\; score is 9 yp 9 9

defined as a function of the parameter directio_n, at a distance from the ori_gin @JB up to7 me'Fers
approximately. In the second setting, in order to simulate
L0 more unstable cases, the rectilinear trajectory was petur
2 5 2 along z-direction, applying a Gaussian noise of standard
&N =15 2.2 WPy, Q) — il ) devigtiono.& In the tﬁiegsegtting the trajectory was perturbed
R in the three directions, with the same noise. In the threescas
P(s;)(A) is the camera pose estimated with all but thehe number of views was fixed to 10, and a Gaussian noise

j=114€S;

correspondences in theth partition: with standard deviatio.5 was added to the image points.
. ) For each scenario we compared results in terms of distance
P(s;)(A) = argmin &g (P, A). (6) of the estimated cameras to the ground truth, considerimg fo

. . . cases: a) without using nonlinear refinement of camera pose,
Fixing a value for), each time 9 of the 10 partitions arey ) g P

) . using nonlinear refinement, but without the smoothin
used to estimate the camera pose, and the reprojection e 2>r g 9

is calculated on the unused partition. The {gVscore is the r{erm, €) with the smoothing term andl carefully set by
b ' Gy hand and kept constant for the whole sequence, and finally
mean of these errors.

. AL . . d) with \ estimated by Cross-Validation, as proposed in this
The most predictive camera poBds obtained by solving ; . . .
: R ) paper. For each scenario 50 independent trials were carried
the following nested optimisation problem:

out.
A . . Results are shown in Table Il. The distances between the
P= E2(P E2(N). 7 :
argtgh (P, arg me s(V) () camera centres of the estimated cameras and the ground truth

This means that the optimaﬂ _ the one with the lowest a&re reported. It is interesting to note that on some cases b)

CV1os score — is firstly selected, and afterwards the fina"imd ¢) produce worst_results wrt the non_refined a). This
camera pose is obtained by minimisiegP 5\) shows that our data-driven method, that estimatésr each

As is, this Cross-Validation method is not robust, in thdase independently, is the right way to face the problem.

sense that it does not cope with mismatched correspoW— the third scenario without nonlinear pose refinement the

dences. Therefore, we use the robust RANSAC estimatidipMPutation stopped before estimating all camerasii
as initial solution for determiné(s)()\) in Eq. (6), and the of cases. The proposed method clearly improves stabilily an
’ ageuracy in pose estimation.

data set is restricted to only correspondences classified
inliers after RANSAC. Moreover, the calculus bfis carried
out by sampling, estimating Eq. (5) at steps of 0.01 from
to 1. Here 0.01 was experimentally derived as a sufficie
order of approximation.

Fig. 3 shows the final camera pose obtained by the pr
posed nonlinear refinement for the cases depicted in Fig.
The optimal values oh calculated considering Gy score
are respectively.05 (left) and0.03 (right).

01 0 01 02

Fig. 4. Three consecutive keyframes for tBampuslsequence (top),
Campus2(middle) andLaboratory (bottom).

Fig. 3. Final pose estimation (green, thin line) for the egbas in Fig. 2,

with A obtained automatically by C\¢. In black thick line the ground .
truth for the previous and current pose, in red dashed lieeirthial pose For real sequences, we first show the results from a

estimated by RANSAC. video, Campus] taken by a calibrated handheld camera
(see Fig. 4). The trajectory executed was an initial rotgtio



Setting 1 Setting 2 Setting 3
a b c d a b c d a* b c d
mean | 0.1704| 0.0916 | 0.0793 | 0.0566 || 0.0766| 0.110 | 0.091 | 0.044 || 0.052 | 0.072 | 0.090 | 0.067
min 0.001 | 0.005 | 0.004 | 0.002 || 0.005 | 0.004 | 0.007 | 0.001 | 0.003| 0.003| 0.005 | 0.004
max 1.018 | 1.021 | 0.301 | 0.383 || 0.582 | 0.707 | 0.614 | 0.543 || 0.396 | 0.479 | 0.545 | 0.465

TABLE Il
RESULTS ON SYNTHETIC SCENESMEAN, MINIMUM AND MAXIMUM DISTANCE OF ESTIMATED OPTICAL CENTRES FROM THE GROUND TRUTH(IN
METERS) FOR THE THREE SYNTHETIC SETTINGS AND THE CASES)AWITHOUT USING NONLINEAR REFINEMENT, B) USING NONLINEAR REFINEMENT,
BUT WITHOUT THE SMOOTHING TERM, C) WITH THE SMOOTHING TERM AND A\ CAREFULLY SET BY HAND AND D) WITH A ESTIMATED BY
CROSSVALIDATION . (*) IN THIS SETTING THE COMPUTATION FAILS IN20% OF CASES

then a rectilinear part and finally another small rotationysing Cross-Validation. The experimental results show tha
without caring too much about shaking. From 1608 framethe method is effective in improving accuracy and stability
of resolution784 x 516, without nonlinear refinement the in the reconstruction process. It is also versatile, in #mese
reconstruction process stops at the 47th keyframe, agdglredhat it has been successfully applied in different contexts
displayed in Fig. 1. Using the proposed method, instead, 13&th camera mounted on different kind of vehicles.
keyframes are extracted, with 5000 points reconstructed in  Future work will include the investigation of approxima-
maximum reprojection error of 1.0 pixel, as expected. Theons for the Cross-Validation score, in order to reduce the
3D map produced, with the estimated camera trajectory, caemputational cost, which is in fact the main drawback of
be seen in Fig. 5. the approach. In that way our method could be embedded in
The second videoCampus2 was taken with a camera real time SfM pipelines.
mounted on a car-like robot (see Fig. 4). In this case camera
trajectory was rectilinear with a sharp rotationa¥® at the VI. ACKNOWLEDGMENTS
end. From 306 frames of resoluti@fig x 1024, 74 keyframes ~ This research was founded by the EU-Project FP6 IST
were extracted and successfully estimated with the praposgDrones, FP6-2005-1ST-6-045248.
method (Fig. 5). The final 3D map is composed by 3438
3D points in a maximum reprojection error of 1.0 pixel, as

expected. Even if in this case camera motion is really stabld?! Sh i\'\l"érsei’ti;hgfe’s’\s‘eggs’\‘etworks for Pattern Recognition Oxford
without refinement the reconstruction process stops afier 35 a. J. pavison, . D. Reid, N. D. Molton, and O. Stasse, “Mstam:
keyframes, with the last keyframe really far away from the  Real-time single camera slamEEE Transactions on Pattern Analysis
correct position, as shown in Fig. 6. and Machine Intelligencevol. 29 no. 6, pp. 1052—1067‘,‘Jur’1’e 2007.
. . . [3] E. Eade and T. Drummond, “Scalable monocular vision,”Hro-
The third video,Laboratory, was taken with a camera ceedings of the IEEE Conference on Computer Vision and rRatte
mounted on a Unmanned Autonomous Vehicle (UAV), in an  Recognition 2006, pp. 469-476.

; ; i~ ~[4] P. D. Fiore, “Efficient linear solution of exterior ori@tion,” IEEE
indoor setting. It was made up of 929 frames of resolution Transactions on Pattern Analysis and Machine Intelligenedl. 23,

576 x 784 (see Fig. 4). 79 keyframes were calibrated, and o, 2 pp. 140-148, 2001.
the final 3D map is composed by 4421 points (Fig. 5) in[5] M. A. Fischler and R. C. Bolles, “Random Sample Consensus

; At ; a paradigm model fitting with applications to image analyarsl
a _maX|mur_n reprojection error Of. 1.0 plxel, as expegted. automated cartographyCommunications of the ACMol. 24, no. 6,
Without refinement the reconstruction process stoppedan th 381395, June 1981.
last rotation (Fig, 6), [6] F. Hampel, P. Rousseeuw, E. Ronchetti, and W. StaRehust Statis-
tics: the Approach Based on Influence Functioser. Wiley Series in
probability and mathematical statistics. John Wiley & Sat@36.
A [7] R. Haralick, C. Lee, K. Ottenberg, and M. Nolle, “Reviewdbanalysis
> of solutions of the three point perspective pose estimapiablem,”
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[10] G. Klein and D. Murray, “Parallel tracking and mappirg small AR
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