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Abstract— Building an accurate three dimensional map is an
important task for autonomous localisation and navigation. In
a sequential approach to reconstruction from video streams,
we show how adding prior knowledge about camera motion
improves reconstruction accuracy, obtaining a more precise
trajectory estimation and preventing failures over time. We add
a smoothing penalty on camera trajectory and the smoothing
parameter, usually fixed by trial and error, is automatically
estimated using Cross-Validation. The method is substantiated
by experimental results on synthetic and real data. They show
that it improves accuracy and stability in the reconstruction
process, preventing several failure cases.

I. INTRODUCTION

Three dimensional (3D) reconstruction from video streams
plays an important role in robotics, for example in the context
of autonomous localisation and navigation [16]. A GPS
receiver, the most popular localisation sensor, is accurate
only if enough satellites are visible from the receiver. This
is not the case in many urban areas, or indoor. The use of
vision is in that really attractive because it provides a low-
cost, complementary sensor to the GPS.

We consider video sequences provided by some calibrated
cameras, e.g. a handheld camera, exploring new environ-
ments. These videos are challenging because they usually
contain forward motions, approximations around the camera
centre and shaky movements.

The sequential approach to Structure-from-Motion (SfM)
[8], [10], [15] entails starting from a seed reconstruction,
then adding a new view at a time, updating the structure
accordingly. Some approaches for visual SLAM assume a
model for camera motion [3], [2] and they can work in
real time. These methods showed really promising results,
but still in indoor, quite restricted areas. In our case we are
interested in outdoor settings, covering wider areas.

The strategy that is usually adopted to robustly calculate
a new camera pose is to use the already estimated three-
dimensional (3D) points to solve a resection problem [8],
[4], [7] within RANSAC [5], a robust estimator widely used
in Computer Vision.

In our experience however, this does not guarantee a good
initialisation for bundle adjustment and does not prevent
the reconstruction process from failing. Resection indeed
uses only local information; it is prone to drifting and local
instabilities.

It is commonly admitted that using prior knowledge im-
proves the quality of an estimate. In video sequences, it

is reasonable to add a continuity or smoothing prior on
the camera trajectory, encouraging each camera to lie close
to the previous ones. This prior is not too restrictive, and
reasonable for every trajectory. We minimise a cost function
which is the sum of the reprojection error and the smooth-
ing penalty, whose strength is regulated by a smoothing
parameter. Usually the smoothing term is implemented as
the distance between camera matrices, but this formalisation
is numerically unstable. In this respect our contribution is
a more stable formalisation, in terms of distance between
feature points.

The smoothing parameter is commonly tuned by trial and
error, and is kept constant in the whole sequence. In this work
we also show that accuracy can be enhanced by choosing this
parameter automatically, customising the problem for each
pose. The idea is to estimate themost predictive camera
pose, in the sense that it can “explain” the whole image as
well as possible given a restricted set of data points. This
is a typical machine learning problem. A Cross-Validation
(CV) technique is used.

The approach is validated by experimental results on
synthetic and real data. The tests are performed in different
contexts and they show the versatility of the approach,
preventing several failure cases.

II. RECONSTRUCTION PIPELINE

We overview the reconstruction pipeline, as summarised
in Table I. We track features points in the original video
stream, extracting a set of keyframes. The 3D map is
initialised using the first three selected views. Then,
keyframes are sequentially added, calculating the pose using
the previously estimated 3D points and upgrading the 3D
map with the information conveyed by the new view.

If two images are very similar the computation of the
epipolar geometry is ill conditioned. Therefore in case of
a video sequence a subset of images (keyframes) is usu-
ally selected. Many ways to choose these keyframes have
been proposed in literature [10], [15], [18]. It should be
a compromise between the distance among views, so that
triangulation is well conditioned, and the number of features
in common. For the calibrated case the issue is less delicate,
though. Degenerate cases for epipolar geometry, such as
pure rotations or planar scenes, can be handled using proper
algorithms. In an exploratory setting, both camera motion



1) Track feature points on the sequence.
2) Extract keyframes and refine matches.
3) Using the first three keyframes:

a) Estimate the relative pose using the 5-
point algorithm and RANSAC;

b) Bundle adjustment.

4) For every new keyframe extracted:

a) Initialise camera pose with Fiore’s algo-
rithm and RANSAC;

b) Nonlinear refinement of camera pose
with smoothing penalty;

c) Upgrade of the 3D structure;
d) Local bundle adjustment.

TABLE I

OVERVIEW OF THE RECONSTRUCTION PIPELINE

and scene can change a lot, and we found that the number
of point correspondences among multiple keyframes is the
most important factor.

We used the KLT tracker [17] to detect and track features
among the sequence. Similarly to [16], the first frame is
chosen as the first keyframeI1. I2 is chosen so that there
are as many frames as possible betweenI1 and I2 with at
least N feature points in common. The frameIn is selected
as a keyframe if:

1) there are as many frames as possible betweenIn and
In−1;

2) there are at least N point correspondences between
In−1 andIn;

3) there are at least M point correspondences between
In−2 andIn.

This criterion assures that there are matches in common
at least in three consecutive views. Once a new keyframe is
selected, putative matches coming from tracking are pruned
by estimating the fundamental matrix with RANSAC
followed by outlier rejection with the X84 rejection rule [6]
on the Sampson error. Afterwards, matches are connected
into tracks, keeping only those composed by at least three
feature points. In our experiments we usedN = 300 and
M = 200.

For the first image triplet, the computation of camera
motion is computed as described in [13]. It involves
computing the essential matrix between the first and the
third view using the 5 points algorithm [14], while the
pose of the remaining camera is calculated with exterior
orientation [12] using the 5 3D points triangulated from the
two other views. This process is coupled with RANSAC, in
order to have a robust estimation, and the final solution is
further refined with bundle adjustment [11].

Afterwards, each time a new keyframe is selected, its pose
is calculated referring to the 3D map already computed. This

is an exterior orientation problem and we employ Fiore’s
algorithm [4], again within RANSAC in order to assure a
robust estimation. In order to refine this initial estimation a
common strategy is to minimise a geometric error, i.e. the
reprojection error, and the problem is formalised as a least
square minimisation of the mean of squared residuals (MSR):

E2
d (P) =

1

n

n∑

i=1

‖ Ψ(P,Qi) − qi ‖
2
2 , (1)

whereP is the projective matrix andQi is the 3D position of
the image pointqi. The functionΨ(P,Qi) is the reprojection
of Qi through P, in Cartesian coordinates. In Section III
we show how to improve this refinement to increase stability.

Subsequently, the 3D map is updated. The 3D points are
obtained by triangulation considering all image points of the
visible tracks up to the current keyframe. A reconstructed
point is considered an inlier if a) its computation is well
conditioned – we set a threshold on the condition number of
the matrix in the linear system that computes the 3D point
– and b) if it projects sufficiently close, say by a distance
of one pixel, to all associated image points. This requires
to refine the initial estimation of a 3D point based on all
observations, including the last. Therefore each time a new
keyframe is added the tracks visible in it are checked and
the list of inliers updated. When the track is no more visible
it is labelled as definitely accepted or rejected.

Both structure and motion are finally adjusted using bundle
adjustment. The aim is to find the parameters for the cameras
and the 3D points for which the mean squared distances
between the observed image points and the reprojected image
points is minimised. For the first 10 views a full bundle
adjustment, using all keyframes and all points, is performed.
After that the computation becomes increasingly expensive,
even if the sparseness inherent in the problem is exploited
[19]. So we perform a local bundle adjustment, i.e. only a
subset of keyframe poses are adjusted. Similarly to [9], we
choose the last 5 keyframes, while the frames beyond these
are locked and not moved. All 3D points visible in the last
keyframes are considered, together with all measurements
ever made of these points. That is, the reprojection errors
are accumulated for the entire track lengths backwards in
time, regardless of whether the views where the reprojections
reside are locked.

III. NONLINEAR CAMERA POSE REFINEMENT

After a new camera pose is estimated, bundle adjustment
is performed in order to refine both structure and motion.
Though that has been proved to be the essential step to
achieve a good accuracy and to prevent failures [9], the initial
estimate must be sufficiently close to the optimal solution,
otherwise the minimisation converges to a wrong position or
diverges.

Fig. 1 shows an example of reconstruction failure, from
a real sequence taken by a handheld camera. At the 47th
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Fig. 1. Reconstruction failure in case of non refinement of camera pose.
On the left a 3D view of the recovered keyframes and on the right the top
view of the last keyframes.

keyframe the computation stops because there are not enough
points to estimate the new camera pose (less than 6 points),
meaning that all points seen in the last views have been
rejected as outliers. At the moment of failure the camera
was rotating. Even if the rotation is not around the camera
optical centre, this is a delicate situation, where the field
of view varies rapidly and the reconstruction accuracy is
crucial. It is evident from Fig. 1 that the last 5 keyframes
were wrongly estimated, and that bundle adjustment could
not fix the problem.

As the keyframes come from a video sequence, it is rea-
sonable to add a smoothing penalty on the camera trajectory,
saying that the position of one keyframe should not differ too
much from that of the previous one. This increases stability
in the camera trajectory estimation.

The problem is formalised as the minimisation of a cost
function, which is the sum of the reprojection error as in
Eq. 1 (data term) and a smoothing term:

E2(P, λ) = (1 − λ)2E2
d(P) + λ2E2

s (P) (2)

whereλ is the smoothing parameter andEs is the smoothing
function.

The following measure is usually employed:

|| P − Pp||
2 (3)

with Pp the projection matrix of the previous keyframe.
However, this function has a merely algebraic meaning, and
its behaviour is not always as expected. In Fig. 2 (left
column) two examples of pose refinement are shown using
Eq. (3) as smoothing function and varying the smoothing
parameter from 0 to 1. It is evident that there are numerical
instability problems.

We propose here a different measure: it is the mean of
squared residuals between reprojected points in the current
and previous keyframes. We are essentially saying that if the
two cameras are close to each other then their reprojected
points should be close as well:

E2
s (P) =

1

n

n∑

i=1

‖ Ψ(P,Qi) − Ψ(Pp,Qi) ‖
2
2 . (4)

This function is actually the finite difference approxima-
tion to the first derivatives of the predicted tracks. We could
include derivatives of higher order, involving more than two
views, and the resulting trajectory would be smoother, up to
a straight line. As is, this is a continuity measure, reasonable
for any sequential trajectory.

Our choice shows to be sensible, as depicted in Fig. 2
(right column): varying the smoothing parameter from 0 to 1
the estimated camera gradually moves towardPp, as desired.
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Fig. 2. Examples of camera refinement using Eq. (3) (left column) or
Eq. (4) (right column) as smoothing functions. In black thick line the
ground truth for the previous and current pose, in thick dashed red line the
pose estimated before refinement and in thin green line afterrefinement,
consideringλ varying from 0 to 1.

The cost function (2) depends on a smoothing parameter
that must be estimated. It is common to use trial and error
to manually set an acceptable value, but an automatic data-
driven method is obviously desirable.

A. Smoothing Parameter Estimation by Cross-Validation

We propose to estimate both the camera poseand the
smoothing parameter. The idea is to find a camera pose as
general as possible, in the sense that it can explain the whole
image, given a restricted set of correspondences 3D positions
– 2D points. This concept derives from the machine learning
paradigm of supervised learning from examples.

The approach we follow is to split the data points in a
training and a test set, and select the smoothing parameter
for which the trained model minimises the test error. A
well-known method, widely applied in machine learning [1],
is Cross-Validation, firstly introduced in [20]. Considering
that the number of samples is small, this technique recycles
the test set, averaging the test error over several different
partitions of the whole data set.



There are different kinds of Cross-Validations, like leave-
one-out (CVloo), k-fold (CVkf ) and generalised cross vali-
dation. CVloo gives more accurate results, but it is compu-
tationally too expensive. We chose CV10f as a compromise
between accuracy and efficiency.

The method works as follows. The datasetS is divided into
10 partitions{Sj}j=1..10. The test error, or CV10f score, is
defined as a function of the parameterλ:

E2
g (λ) =

1

10

10∑

j=1

∑

i∈Sj

||Ψ(P̂(Sj)(λ),Qi) − qi||
2
2. (5)

P̂(Sj)(λ) is the camera pose estimated with all but the
correspondences in thej-th partition:

P̂(Sj)(λ) = arg min
P

E2
(Sj)

(P, λ). (6)

Fixing a value forλ, each time 9 of the 10 partitions are
used to estimate the camera pose, and the reprojection error
is calculated on the unused partition. The CV10f score is the
mean of these errors.

The most predictive camera poseP̂ is obtained by solving
the following nested optimisation problem:

P̂ = arg min
P

E2(P, argmin
λ

E2
g (λ)). (7)

This means that the optimal̂λ – the one with the lowest
CV10f score – is firstly selected, and afterwards the final
camera pose is obtained by minimisingE(P, λ̂).

As is, this Cross-Validation method is not robust, in the
sense that it does not cope with mismatched correspon-
dences. Therefore, we use the robust RANSAC estimation
as initial solution for determinêP(Sj)(λ) in Eq. (6), and the
data set is restricted to only correspondences classified as
inliers after RANSAC. Moreover, the calculus ofλ̂ is carried
out by sampling, estimating Eq. (5) at steps of 0.01 from 0
to 1. Here 0.01 was experimentally derived as a sufficient
order of approximation.

Fig. 3 shows the final camera pose obtained by the pro-
posed nonlinear refinement for the cases depicted in Fig. 2.
The optimal values ofλ calculated considering CV10f score
are respectively0.05 (left) and0.03 (right).
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Fig. 3. Final pose estimation (green, thin line) for the examples in Fig. 2,
with λ obtained automatically by CV10f . In black thick line the ground
truth for the previous and current pose, in red dashed line the initial pose
estimated by RANSAC.

IV. EXPERIMENTAL RESULTS

We show the effectiveness of our method on synthetic crit-
ical sequences. The dataset consisted of 100 points randomly
scattered in a sphere of radius 1 meter, centred at the origin.

We considered three different scenarios. In the first setting,
views were generated by placing cameras along a line inz-
direction, at a distance from the origin of5.5 up to7 meters
approximately. In the second setting, in order to simulate
more unstable cases, the rectilinear trajectory was perturbed
along x-direction, applying a Gaussian noise of standard
deviation0.8. In the third setting the trajectory was perturbed
in the three directions, with the same noise. In the three cases
the number of views was fixed to 10, and a Gaussian noise
with standard deviation0.5 was added to the image points.

For each scenario we compared results in terms of distance
of the estimated cameras to the ground truth, considering four
cases: a) without using nonlinear refinement of camera pose,
b) using nonlinear refinement, but without the smoothing
term, c) with the smoothing term andλ carefully set by
hand and kept constant for the whole sequence, and finally
d) with λ estimated by Cross-Validation, as proposed in this
paper. For each scenario 50 independent trials were carried
out.

Results are shown in Table II. The distances between the
camera centres of the estimated cameras and the ground truth
are reported. It is interesting to note that on some cases b)
and c) produce worst results wrt the non refined a). This
shows that our data-driven method, that estimatesλ for each
case independently, is the right way to face the problem.
In the third scenario without nonlinear pose refinement the
computation stopped before estimating all cameras in20%
of cases. The proposed method clearly improves stability and
accuracy in pose estimation.

Fig. 4. Three consecutive keyframes for theCampus1sequence (top),
Campus2(middle) andLaboratory (bottom).

For real sequences, we first show the results from a
video, Campus1, taken by a calibrated handheld camera
(see Fig. 4). The trajectory executed was an initial rotation,



Setting 1 Setting 2 Setting 3
a b c d a b c d a* b c d

mean 0.1704 0.0916 0.0793 0.0566 0.0766 0.110 0.091 0.044 0.052 0.072 0.090 0.067
min 0.001 0.005 0.004 0.002 0.005 0.004 0.007 0.001 0.003 0.003 0.005 0.004
max 1.018 1.021 0.301 0.383 0.582 0.707 0.614 0.543 0.396 0.479 0.545 0.465

TABLE II

RESULTS ON SYNTHETIC SCENES. MEAN, MINIMUM AND MAXIMUM DISTANCE OF ESTIMATED OPTICAL CENTRES FROM THE GROUND TRUTH(IN

METERS) FOR THE THREE SYNTHETIC SETTINGS AND THE CASES A) WITHOUT USING NONLINEAR REFINEMENT, B) USING NONLINEAR REFINEMENT,

BUT WITHOUT THE SMOOTHING TERM, C) WITH THE SMOOTHING TERM ANDλ CAREFULLY SET BY HAND AND D) WITH λ ESTIMATED BY

CROSS-VALIDATION . (*) IN THIS SETTING THE COMPUTATION FAILS IN20%OF CASES.

then a rectilinear part and finally another small rotation,
without caring too much about shaking. From 1608 frames
of resolution784 × 516, without nonlinear refinement the
reconstruction process stops at the 47th keyframe, as already
displayed in Fig. 1. Using the proposed method, instead, 135
keyframes are extracted, with 5000 points reconstructed ina
maximum reprojection error of 1.0 pixel, as expected. The
3D map produced, with the estimated camera trajectory, can
be seen in Fig. 5.

The second video,Campus2, was taken with a camera
mounted on a car-like robot (see Fig. 4). In this case camera
trajectory was rectilinear with a sharp rotation of90◦ at the
end. From 306 frames of resolution768×1024, 74 keyframes
were extracted and successfully estimated with the proposed
method (Fig. 5). The final 3D map is composed by 3438
3D points in a maximum reprojection error of 1.0 pixel, as
expected. Even if in this case camera motion is really stable,
without refinement the reconstruction process stops after 35
keyframes, with the last keyframe really far away from the
correct position, as shown in Fig. 6.

The third video,Laboratory, was taken with a camera
mounted on a Unmanned Autonomous Vehicle (UAV), in an
indoor setting. It was made up of 929 frames of resolution
576 × 784 (see Fig. 4). 79 keyframes were calibrated, and
the final 3D map is composed by 4421 points (Fig. 5) in
a maximum reprojection error of 1.0 pixel, as expected.
Without refinement the reconstruction process stopped in the
last rotation (Fig. 6).

Fig. 6. Failures in camera motion recovery without camera pose refinement
for Campus2(left) andLaboratory (right) sequences.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed to refine camera pose adding a
smoothing penalty on camera trajectory and to automatically
estimate the smoothing parameter, usually manually fixed,

using Cross-Validation. The experimental results show that
the method is effective in improving accuracy and stability
in the reconstruction process. It is also versatile, in the sense
that it has been successfully applied in different contexts,
with camera mounted on different kind of vehicles.

Future work will include the investigation of approxima-
tions for the Cross-Validation score, in order to reduce the
computational cost, which is in fact the main drawback of
the approach. In that way our method could be embedded in
real time SfM pipelines.
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