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Abstract

Three-dimensional reconstruction of objects based on a set of images is a
well-known issue in the area of computer vision. It is dubbed Structure-from-
Motion. In this thesis, we present an application dedicated to dimensional
control in an industrial context. The constraints related to this field are
strong and the requirements in terms of precision are high. Existing meth-
ods in the field of optical metrology do not allow the precise reconstruction
needed, unless using tools such as the projection of structured light or the
application of coded markers on the object. The idea is to reconstruct an
industrial object in 3D and to compare the reconstruction to the CAD model
in order to identify potential anomalies. Whereas the reconstructed surface
elements describe the general aspect of the object, the discontinuities, due to
holes, edges or chamfers, are not correctly depicted. To complete the recon-
struction, we also consider the parametric curves extracted from the CAD
model. The reconstruction will be performed in two stages, based on surface
elements and on parametric curves respectively.

We present two methods dedicated to the precise reconstruction of indus-
trial objects. The first one constitutes a brick in the process of pointwise re-
construction using an affine camera model, intended to initialize more precise
and thus computationally expensive methods. A second method is dedicated
to the reconstruction of parametric curves based on the observed edges in
the images.

The results of the experimental evaluation of the reconstruction algo-
rithms, using synthetic data as well as real images, are encouraging. Tests
in an industrial context show that a reconstruction to the required precision
can be obtained and that anomalies get identified.
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Résumé

La reconstruction 3D d’objets basée sur des séquences d’images est un
sujet important dans le domaine de la vision par ordinateur. Il est aussi
connu sous le nom de Structure-from-Motion, structure à partir de mouve-
ment. Dans cette thèse, nous présentons une application dédiée au contrôle
de conformité dans un contexte industriel. Les contraintes du domaine sont
fortes et la précision demandée est élevée. Dans le domaine de la métrolo-
gie optique, des méthodes existantes atteignent cette précision uniquement
assistées de procédés tels la projection d’une lumière structurée sur l’objet
ou l’utilisation de cibles codées. L’idée est de reconstruire un objet industriel
en 3D et de comparer cette reconstruction au modèle CAO, afin d’identifier
des anomalies éventuelles. Tandis que la reconstruction de points de surface
donne l’aspect général de l’objet, les discontinuités, telles que les trous, les
contours ou les chanfreins, ne sont pas bien gérées. Afin de compléter la re-
construction, nous considérons aussi les courbes paramétriques de l’objet. La
reconstruction se fera ainsi en deux étapes. Elle sera basée sur les éléments
de surface et sur les courbes paramétriques.

Nous présentons deux méthodes destinées à la reconstruction précise d’ob-
jets industriels. Une première méthode s’insère dans une procédure de re-
construction par points à partir d’un modèle affine de la caméra. Cette étape
vise à initialiser des méthodes plus précises, avec une complexité supérieure.
Une deuxième méthode est consacrée à la reconstruction de courbes paramé-
triques. Elle est basée sur des observations de contours dans les images.

L’évaluation expérimentale des algorithmes de reconstruction a été ef-
fectuée sur des données de synthèse ainsi que sur des images réelles dans un
milieu industriel. Les résultats sont encourageants, puisque les tests montrent
que la précision requise peut être obtenue. La méthode nous permet aussi de
détecter des anomalies présentes sur l’objet.
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Introduction

Computer vision is the scientific discipline that deals with the extraction of
information by analyzing one or several images [17, 18, 31]. Whereas the
functioning of the human eye is mimicked by the camera, the emulation of
the entire visual system is the scope of computer vision. The beginning of
computer vision goes back to the late 1970s, even though earlier work exist.
It was not until the development of computers allowed the processing of
large amounts of data, such as images, that the area gained in importance.
Closely related fields are machine vision, robot vision, image analysis and
image processing. The overlap can sometimes be so important that only
the applications allows a differentiation. The applications include qualitative
tasks, such as object recognition, event detection within the framework of
visual surveillance or process control, the automatic navigation of vehicles,
as well as quantitative tasks, such as metrology. From our point of view,
image processing techniques will be used in a preliminary step, as a resource.
Several mathematical tools will also be included in the algorithms needed to
interpret the observed scene.

Photogrammetry is the technique of dimensional measurement from im-
ages. The requested output from a photogrammetric process is typically a
map, a drawing or a 3D reconstruction of a scene or an object. The field
can be classified into two disciplines: aerial photogrammetry, using an air-
borne camera, usually pointed at the ground, and close range photogrammtry,
where the camera is close to the subject. Whereas the first serve to create
topological maps, the second is used to produce 3D models of structures,
vehicles, industrial objects, etc. Although the technology is as old as pho-
tography itself, it can also be considered part of the computer vision field
[37, 2, 22].

Quality Control

In the context of quality control in the manufacturing industry, the systems
used at present are generally based on measures obtained by contact sensors.
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2 INTRODUCTION

Coordinate measuring machines (CMMs) collect detailed dimensional data by
moving a sensing device, a probe, along the surfaces of the object. Using such
a process to control the conformity of a complex object is a time-consuming
task and is therefore not feasible to let all objects on an assembly line undergo
a control of this kind. Only the first article (First Article Inspection, FAI)
or a sample will be tested off-line. Furthermore, these machines are often
very expensive and are therefore not suitable in the case of a small scale
production. In some contexts, the contact with reference points at the object
can also be an issue, due to accessibility problems or to the environment,
being hot or otherwise hostile.

Photogrammetry

Rather than using contact sensors to obtain a precise measure of the work-
piece, quality control can be performed by 3D reconstruction of the object.
This reconstruction can then be compared to the CAD model. The use of op-
tical metrology, namely the projection of structured light, has proved efficient
for the reconstruction of surface elements, see [53]. The use of structured light
consists of projecting a light pattern, such as a grid, at a known angle onto an
object. This technique can be very useful for imaging and acquiring dimen-
sional information. Indeed, when viewed from a different angle, the observed
distortions in the pattern can be translated into height variations. Scanning
the object with the light yields 3D information about the shape of the ob-
ject, in the form of a dense point cloud. However, the precise localization of
discontinuities, such as holes or edges, remains a problem. This is due to the
fact that, although arbitrarily dense, the point cloud constitutes a sampling
of the surface and needs to be interpolated in order to give a continuous
representation of the surface. The interpolation causes the discontinuities to
be smoothed out, which obviously will be a problem. Moreover, the use of
projected light close to the discontinuities of the object is problematic, due
to the brusque changes in orientation of the surface. Another drawback is
the need for expensive optical equipment, such as a laser.

Multi-camera photogrammetry is based upon the idea of synchronizing
two (or more) cameras mounted on a calibrated bench. Coupled with a light
projection tool, the typical accuracy of such a technique is of approximately
1/30000 of the largest dimension of the object. Purely optical methods, such
as a laser tracker, achieve an accuracy close to 20 µm.

Other methods, derived in the context of computer vision, based on the
use of coded markers to localize a known object, are present in industrial
systems as well as in research projects [50]. Nevertheless, in the manufac-
turing industry, adapting the environment or interfering in the manufactur-
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Figure 1: A cylinder head illustrates a typical manufactured object, present-
ing numerous details and specularities.

ing process should obviously be avoided as far as possible. Texture-based
3D reconstruction [64] has been able to reconstruct objects rather precisely.
However, manufactured pieces, often metallic, are not well adapted to this
kind of approach. The texture will indeed depend on the moulding and on
the surroundings, due to the problem of specularities. See figure 1 for an
example of an industrial object presenting specularities. A more well-suited
tool is the curve-based 3D reconstruction of objects, that have been used
in the computer vision community by several authors [5, 10, 55, 9, 71, 34].
A point-wise reconstruction, [55, 9], of a curve based on the triangulation
of 2D estimations allows one to use results from the area of active contours
[36]. Yet, in spite of a satisfactory reconstruction, this method is not opti-
mal as it yields a curve given by an ordered point cloud, as opposed to the
parametric description given by the CAD model. Others, [10, 71], have used
2D parametric curves in order to acquire a 3D curve by reprojection. The
reconstruction thus obtained is clearly parametric. However, the 2D curve
estimation followed by the approximation induced by the assembly of a set
of curves in order to end up with a single 3D curve deteriorates the precision.
A reconstruction method for parametric 3D curves of fixed complexity, using
an image based criterion is presented in [5].

The above-cited works, though carried out for wide-ranging applications,
allow the reconstruction of a 3D object. Nevertheless, none of them is able to
reconstruct a manufactured object with the precision necessary to perform a
dimensional conformity control, comparing the object to its CAD model in
the case of complex 3D objects. It is in this context that our work is posi-
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tioned. It consists in developing an image-based 3D reconstruction method
designed for manufactured objects that is precise, robust and automatic.

Our Method

Although industrial methods for the reconstruction of surfaces are available,
we are interested in finding alternative solutions, eliminating the need for
expensive and bulky machinery. This can be achieved by developing suitable
computer vision algorithms. Existing methods, known as bundle adjust-
ment [65], based on a dense point-wise matching between pairs of images,
proceeding by the minimization of a nonlinear cost function, need a good
initialization to converge. Since the field of methods solving the nonlinear
minimization problem is rather well explored in the case of 3D points, we
reformulate using a bilinear factorization problem that can be solved using
singular value decomposition, in order to initialize standard algorithms that
will bring the adequate accuracy. The first stage of our work has therefore
been to develop a bilinear method, meant to serve as a building block in a hi-
erarchical approach to Structure-from-Motion [21]. We present a linear, thus
fast, factorization based algorithm. So as to gain access to a wider range of
data sets, the idea has been to extend our method to data sets with missing
data points. The alignment process has therefore been embedded in an itera-
tive structure, where estimation of the missing data and minimization based
on the completed data set have been alternated. Our work on this subject
has been published in [4, 41, 42] and is presented in Chapter 3.

This suboptimal reconstruction stage, intended to initialize a more precise
nonlinear method, aiming at a point-wise reconstruction of the surfaces of
the object, has been followed by a 3D curve reconstruction stage. The idea
has been to develop a method that reconstructs the curves of the observed 3D
object, based on the parametric curves extracted from the CAD model. The
evolution of the curves is performed via the modification of its parameters,
namely its control points, induced by the curves observed in the images.
We have for this purpose defined an optimization function based on the
residual 2D image error. After having developed a reconstruction method for
a given number of parameters, a natural next step was to increase the number
of degrees of freedom, in order to enhance the precision. This has been
accomplished by successive control point insertion. The complete algorithm,
including the fixed size estimation step as well as its integration in an iterative
framework, has been published in [45]. So as to improve the robustness
due to a failing contour detection, a different optimization function, based
on an energy formulation has been considered. The reconstruction method
that follows has been published in [43, 44]. We present it, together with a
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comparison and a conclusion of the different curve reconstruction algorithms
introduced, in Chapter 4.

The final step of our work is an experimental evaluation of our method
for the reconstruction of parametric curves. For the testing, we have used
simulated data as well as real images. Simplified images have allowed the
estimation of the theoretical limits of our algorithms, while real images of
manufactured objects have served to evaluate the performance in an indus-
trial context. The evaluation is presented in Chapter 5.
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Introduction

La vision par ordinateur traite de l’extraction d’information par le biais de
l’analyse d’une ou plusieurs images [17, 18, 31]. Tandis que le fonctionnement
de l’œil humain est imité par la caméra, l’émulation du système visuel entier
est le domaine de la vision par ordinateur. Même si des travaux antérieurs
existent, les débuts de la vision par ordinateur datent de la fin des années
1970. En effet, le développement des ordinateurs a alors permis de traiter
des quantités de données très grandes, telles que des images et le domaine
a pris de l’importance. Dans ce vaste domaine on trouve la vision pour la
robotique, le traitement et l’analyse d’images. Les recoupements entre ces
activités sont tels que seulement les applications permettent de faire la dif-
férence. Ces applications peuvent être qualitatives, comme la reconnaissance
d’objets, la détection d’évènements dans le cadre de la vidéosurveillance ou
dans le contrôle de procédés. Les applications peuvent également être quan-
titatives, comme la métrologie ou la navigation automatique d’un véhicule.
Les algorithmes de vision par ordinateur se basent généralement sur des tech-
niques empruntées au traitement d’images et plusieurs outils mathématiques
sont également intégrés dans les algorithmes permettant d’interpréter la scène
observée.

La photogrammétrie est la technique permettant d’effectuer des mesures
dimensionnelles à partir d’images et historiquement à partir de photogra-
phies. Les applications traditionnelles de la photogrammétrie sont la carto-
graphie, le relevé de patrimoine historique ou, plus généralement, la modéli-
sation 3D d’une scène ou d’un objet. Le domaine est généralement partagé
en deux disciplines : la photogrammétrie aérienne et la photogrammétrie ter-
restre (“close range photogrammetry”), qui utilise une caméra proche du su-
jet. Tandis que le premier sert à créer des cartes topographiques, le deuxième
est utilisé pour modéliser en 3D des structures, des véhicules, des objets
industriels, etc. Bien que la technique date des débuts même de la photogra-
phie, elle peut aussi être considérée comme une discipline de la vision par
ordinateur [37, 2, 22].

7
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Contrôle de conformité

Dans le domaine du contrôle de conformité industriel, les systèmes utili-
sés actuellement sont généralement basés sur des mesures par contact. Des
Machines de Mesures Tridimensionnelles (MMT ou “CMMs” en anglais) sont
utilisées afin de recueillir de données dimensionnelles denses via un palpeur
qui est déplacé le long des surfaces de l’objet. Le recours à ce procédé pour le
contrôle de conformité d’un objet complexe nécessite beaucoup de temps et
il n’est donc pas possible de contrôler l’ensemble de la production en chaine
de fabrication. Seul le premier article (“First Article Inspection”, FAI) ou
un échantillonnage de la production est alors mesuré hors-ligne, en plus, les
machines utilisées sont souvent encombrantes et chères. Le contact avec des
points de référence de l’objet peut aussi poser un problème dans certains
contextes, dû à des problèmes d’accessibilité ou à un environnement chaud
ou hostile.

Photogrammétrie

Les systèmes de vision offrent une alternative intéressante aux systèmes
de contrôle avec des machines à mesurer par le biais de palpeurs. En effet, le
contrôle de conformité peut être effectué via une reconstruction 3D de l’objet
à partir de clichés pris depuis différents points de vue. Cette reconstruction,
basée sur des données image, peut alors être comparée au modèle CAO ou à la
gamme de mesure afin de détecter les éventuelles anomalies. L’utilisation de
la métrologie optique, en particulier la projection d’une lumière structurée,
s’est avérée efficace pour la reconstruction d’éléments de surface, voir [53].
Cette méthode consiste à projeter un motif, tel un quadrillage, sur l’objet.
La technique peut être très efficace pour effectuer des mesures sur l’objet. En
effet, les déformations du motif observées depuis des angles différents peuvent
se traduire directement en variations de profondeur. Le balayage de l’objet
par le faisceau génère donc l’information 3D de l’objet sous la forme d’un
nuage de points dense. Cependant, la localisation précise des discontinuités,
notamment les arêtes franches ou les trous et les alésages, n’est pas gérée
correctement puisqu’à ces endroits la projection de lumière n’est pas possible.
Ceci est dû au fait que, le nuage de points forme un échantillonnage de la
surface et qu’une interpolation est nécessaire pour donner une représentation
continue de la surface. L’interpolation va alors lisser les discontinuités, ce
qui est bien évidemment un effet indésirable. De plus, l’utilisation de lumière
projetée au niveau des discontinuités de l’objet pose problème puisqu’à ces
endroits on observe des changements brusques d’orientation de la surface.

La photogrammétrie multi-caméras est basée sur l’idée de synchroniser
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Fig. 2 – Une culasse, présentant de nombreux détails et des spécularités, sert
d’exemple d’un objet manufacturé typique.

deux (ou plusieurs) caméras montées sur un banc calibré. Couplé avec un
outil de projection de lumière, la précision d’une telle technique est d’environ
1/30000 de la plus grande dimension de l’objet. Des méthodes purement
optiques, comme le traqueur laser, sont capables d’atteindre une précision
proche de 20 µm.

D’autres méthodes, comme celles issues de la vision par ordinateur, basées
sur des cibles collées sur la pièce, ont fait l’objet d’études récentes [50]. Néan-
moins, les industriels souhaitent naturellement dans la mesure du possible
éviter ces interventions dans le procédé de fabrication. D’autres méthodes de
reconstruction 3D, basées sur la texture de l’objet [64], ont été capables de
reconstruire assez précisément des objet 3D, mais les pièces manufacturées,
souvent métalliques, ne sont pas adaptées à cette démarche. La texture sur
ces objets métalliques dépendra en effet du procédé d’usinage (traces d’ou-
tils) et de l’environnement, dû aux problèmes de spécularités. Voir figure 2
pour un exemple d’objet industriel présentant des spécularités.

Un outil plus adapté est la reconstruction de courbes 3D, qui a été utilisé
dans la communauté de la vision entre autres par [5, 10, 55, 9, 71, 34]. La
reconstruction des points [55, 9] de la courbe obtenue par triangulation a
également permis de tirer profit des résultats des contours actifs [36]. Or,
malgré le fait que la reconstruction soit satisfaisante, cette méthode n’est pas
optimale à cause d’une description de la courbe donnée par un ensemble de
points, en opposition aux courbes paramétriques du modèle CAO.

D’autres [10, 71], ont utilisé des courbes paramétriques 2D afin d’abou-
tir à une courbe 3D par triangulation. La reconstruction ainsi obtenue est
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paramétrique. Cependant, l’estimation suivie d’une approximation lors de
l’assemblage d’un ensemble de courbes 2D afin de former une seule courbe
3D dégrade la qualité de ces reconstructions. Une méthode de reconstruc-
tion de courbes 3D de paramétrisation donnée est présentée dans [5]. Cette
méthode repose sur un critère basé image.

L’ensemble des études citées, bien qu’effectuées pour des applications va-
riées, peut permettre de reconstruire un objet 3D. Toutefois aucune d’entre
elles n’est capable de reconstruire un objet manufacturé avec la précision
nécessaire pour procéder à un contrôle de sa conformité par rapport à son
modèle CAO. C’est dans ce contexte que se place cette étude. Elle consiste à
développer une méthode de reconstruction 3D d’objets manufacturés à partir
d’images, qui soit précise, robuste et automatique.

Notre méthode

Alors que des méthodes industrielles pour la reconstruction de surfaces
existent, nous cherchons des solutions alternatives qui ne reposent pas sur des
machines à mesurer par contact. Le développement d’algorithmes de vision
par ordinateur adaptés à ces applications nous permettra d’y parvenir. Des
méthodes existantes, connues sous le nom d’ajustement de faisceaux [65], ba-
sées sur un appariement dense des point dans les différentes images, procèdent
par la minimisation d’une fonction de coût non-linéaire. Ces méthodes néces-
sitent une initialisation proche du résultat afin de converger vers le minimum
global de la fonction de cout. La résolution du problème de minimisation
non-linéaire est un domaine qui a été bien exploré dans le cadre de la recons-
truction de points 3D. Nous proposons donc une méthode de résolution d’un
problème linéarisé, dans le but d’initialiser des algorithmes standards qui
amèneront la précision requise. La première partie de nos travaux a ainsi été
consacrée au développement d’une méthode linéaire, destinée à être insérée
dans une approche hiérarchique au problème de Structure from Motion [21].
Nous présentons un algorithme basé sur la factorisation, méthode linéaire et
donc rapide.

Une autre contribution a été d’étendre la méthode aux ensembles pré-
sentant des données manquantes. La méthode de recalage se base sur une
approche itérative, où des étapes d’estimation des données manquantes et de
minimisation, basée sur ces estimations, sont alternées (méthode EM). Nous
avons présenté cette extension dans [4, 41, 42]. La méthode est présentée
dans chapitre 2.

Cette étape de reconstruction initiale destinée à initialiser une méthode
plus précise, mais non-linéaire, afin de calibrer les caméras en-ligne et de
les recaler entre elles, a été suivie d’une étape de reconstruction de courbes
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3D. Notre approche consiste à développer une méthode qui reconstruit les
courbes de l’objet 3D à partir des courbes paramétriques du modèle CAO
en faisant évoluer leurs paramètres, notamment leurs points de contrôle, en
fonction des contours observés dans les images. Nous avons pour cela défini
une fonction d’optimisation basée sur l’erreur résiduelle dans les images.

Après avoir développé une méthode de reconstruction pour un nombre
fixe de paramètres, nous devons augmenter le nombre de degrés de liberté
dans le but d’améliorer la précision de la courbe reconstruite. Ceci a été
fait par insertion successive de points de contrôle. La méthode adaptative de
reconstruction, basée sur la reconstruction à complexité fixée, intégrée dans
un cadre itératif, a été publiée dans [45].

Afin d’être plus robuste face à une mauvaise détection de contours, une
autre fonction d’optimisation, basée sur une formulation par énergie a été
considérée. La méthode de reconstruction qui en découle a fait l’objet de
deux publications [43, 44]. L’algorithme, ainsi qu’une comparaison et une
conclusion portant sur les algorithmes différents introduits, sont présentés
dans chapitre 3.

La dernière étape de nos travaux a été l’évaluation expérimentale de notre
méthode de reconstruction de courbes paramétriques 3D. Pour la validation,
nous avons utilisé des données de synthèse ainsi que des images réelles. Des
images d’un objet simplifié nous ont permis d’estimer les limites théoriques de
l’algorithme, tandis que des images réelles d’objets manufacturés complexes
ont servi à évaluer les performances du système dans un contexte industriel.
L’évaluation est présentée dans chapitre 4.
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Chapter 1

Preliminaries

This chapter is dedicated to the presentation of various methods and algo-
rithms that will be used in this work. Some of the techniques are classical
subjects within computer vision, such as the camera model and the problem
of Structure-from-Motion, whereas others, such as matrix approximation,
NURBS curves and nonlinear optimization, belong to the field of applied
mathematics. We will finally use a few methods from statistics.

13
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Méthodes

Nous présentons des méthodes et algorithmes sur lesquels nos travaux
vont se baser. Certaines des techniques sont classiques dans le domaine de
la vision par ordinateur, tels que les modèles de caméra et le problème de
reconstruction de structure à partir du mouvement, connue sous le terme
de “Structure-from-Motion”, tandis que d’autres, tels que l’approximation de
matrices, les courbes NURBS et l’optimisation non-linéaire, appartiennent
au domaine des mathématiques appliquées. Nous allons également utiliser
des méthodes statistiques et algorithmiques.

• Modèles de caméra
Introduction aux modèles de caméra utilisés dans cette thèse.
• Approximation de matrices

Présentation de l’approximation de faible rang d’une matrice par dé-
composition en valeurs singulières.
• Optimisation nonlinéaire

Présentation de la méthode de Levenberg-Marquardt, méthode cou-
ramment utilisée pour les applications de vision par ordinateur. Cette
méthode se base sur un compromis entre la rapidité de la méthode
de Gauss-Newton et les propriétés de convergence de la méthode de
descente de gradient.
• Structure-from-Motion

Présentation du problématique de “Structure-from-Motion” ainsi que
de quelques approches différentes.
• Courbes NURBS

Introduction aux courbes NURBS, des B-splines non-uniformes et ra-
tionnelles. Outre une présentation des propriétés analytiques et géo-
métriques, nous nous concentrons sur la projection perspective des
courbes et sur l’insertion de points de contrôle.
• Méthodes statistiques

Présentation de deux outils statistiques, la méthodologie d’“expectation-
maximization” et le contrôle de la complexité.
• Visibilité du modèle

Présentation d’une méthode qui permet d’identifier efficacement les
parties visibles d’un objet 3D à partir d’un point de vue donné.
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1.1 Notations

Vectors are typeset using bold fonts, e.g. x, and matrices using capital letters,
sans-serif, calligraphic and greek fonts, for example P,A, Q and Λ. The
identity matrix is denoted I and the zero matrix and vector by 0 and 0. The
Frobenius or L2 norm of a matrix A or a vector x are respectively denoted ‖A‖
and ‖x‖. The Moore-Penrose pseudoinverse of matrix A is denoted A†. Unless
otherwise stated, we do not use homogeneous coordinates, that is, image
point coordinates are 2-vectors: xT = (x y), where T is transposition. A
rotation matrix R is a matrix with the properties R−1 = RT and det(R) = 1.
Note that in 3D space we have R ∈ SO(3), the group of special orthogonal
matrices. The mean vector of a set of vectors, say {Qj}, is denoted Q̄.
Different sets of cameras are indicated with primes, e.g. P1, P′

1 and P′′
1 are

the first cameras of the three first camera sets.
Index i = 1 . . . n is used for the cameras of a camera set and index j =

1 . . .m is used for the 3D points.
Calligraphic fonts are used for the measurement matrices, e.g.

X(2n×m) =
[
Y1 · · · Ym

]
with Yj =



x1j

...
xnj


 ,

where Yj contains all the measured image coordinates for the j-th point.

1.2 Camera Models

The camera model is used in computer vision to describe the mapping of a
3D space element to the image plane. The most intuitive model is the pinhole
camera, which will be presented so as to introduce the models that will be
used in this thesis, the perspective and the affine camera. A more thorough
survey can be found in [18, 31].

1.2.1 Pinhole Camera Model

Consider a 3D orthogonal coordinate system, with its origin in C, which is
also the optical center of the camera. The geometry of a pinhole camera is
shown in figure 1.1. A 3D point P = (X,Y, Z) is projected onto the image
plane Z = f at the intersection of the line joining the point P with the center
of projection, the optical center C, and the image plane. The 3D coordinates
of the image point are given by (fX/Z, fY/Z, f). The orthogonal projection
of the optical center, c, is called the principal point and the line joining the
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Figure 1.1: Pinhole camera geometry.

optical center and the principal point is called the principal axis. Defining
a 2D coordinate system in the image plane, centered in c, the image coordi-
nates of the projected point are (fX/Z, fY/Z). Expressed in homogeneous
coordinates, the projection is given by




X
Y
Z
1


→



fX
fY
Z


 =



f 0 0 0
0 f 0 0
0 0 1 0







X
Y
Z
1


 . (1.1)

1.2.2 Perspective Camera Model

In general, points in space are expressed in a different coordinate system than
that of the camera. The two systems are related by a rigid transformation,
consisting of a rotation and a translation. Let R be a 3× 3 rotation matrix
and t a 3× 1 translation vector. The projection matrix P is then given by

P =



f 0 0 0
0 f 0 0
0 0 1 0



[
R t
0 1

]
. (1.2)

So as to take into account also internal parameters of the camera, such as the
image scale (pixels per unit distance), the skew (non-orthogonal image coor-
dinate axes) and the offset of the principal point, we consider a calibration
matrix

K =



αx τ x0

0 αy y0

0 0 1


 , (1.3)

where αi = fmi is the focal distance in the i direction, given in pixels,
(x0, y0) is the offset in pixels and τ is the skew. In general, τ will be zero and
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Figure 1.2: Perspective and weak perspective cameras. The projection per-
formed by an affine camera is equivalent to an orthographic projection onto
a plane Z = d0, followed by a perspective projection. The difference between
the affine projection and the perspective one depends on the distance from
the plane, d, and on the distance from the principal axis.

αx = αy, which corresponds to the hypothesis of square pixels in the image
sensor. The final projection matrix is then given by

P =



αx τ x0

0 αy y0

0 0 1


 [ R t

]
. (1.4)

1.2.3 Affine Camera Model

The mapping from the 3D point to the image plane given by the perspec-
tive camera model is widely used in computer vision. However, it presents
the inconvenient of being nonlinear. In order to simplify the mathematical
operations, affine cameras have been introduced. To visualize the effect of
using an affine camera, we consider the technique of moving the camera cen-
ter backwards along the principal axis while increasing the focal length. The
result is an image with decreasing perspective effects. The approximation
error due to the use of affine cameras is reasonably small if the depth of the
field of view is small compared to the viewing distance. We will consider
cameras with orthogonal coordinate axes, that is, having a skew equal to
zero, called weak perspective cameras. An illustration of the geometry is
given in figure 1.2. The effect of an affine camera compared to that of a
perspective camera is shown in figure 1.3. The mathematical definition of an
affine camera is that the last row of the rotation matrix is set to zero. In the
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Figure 1.3: Two images of the same object with different perspective effects.
The first image illustrates the effect of the perspective projection, with paral-
lel lines joining at a point at infinity. In the second image, we have increased
the focal length as well as the viewing distance. This diminishes the depth
of the observed object and places the point at infinity far away.

case of a weak perspective camera, the projection matrix can be written as

P =



αx 0 0
0 αy 0
0 0 1






rT

1 t1
rT

2 t2
0T 1


 . (1.5)

Stressing the affine character of the transformation, using non-homogeneous
point coordinates, the projection can be written

[
x
y

]
= M



X
Y
Z


+ t, (1.6)

where the calibration parameters are integrated in the 2 × 3 matrix M and
the 2-vector t.
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1.3 Matrix Approximation using Singular Value

Decomposition

In this section, we present a useful tool from linear algebra called the singular
value decomposition. This is in order to introduce one of its applications, the
low rank approximation of a matrix. For more details, please refer to [25].

1.3.1 Singular Value Decomposition

The singular value decomposition (svd) [25] is a factorization of an arbi-
trary matrix. It can be seen as a generalization of the spectral theorem to
rectangular matrices.

Let A be an m×n matrix. As eigenvalues are not defined for rectangular
matrices, we consider the singular values, that is, the eigenvalues of the square
matrix ATA. There exists a factorization of the matrix A of the form

Am×n = Um×nΣn×nV
T

n×n,

where U and V are orthonormal matrices and Σ is a diagonal matrix contain-
ing the singular values of A. A common convention is to order the singular
values in a non-decreasing way. If this is the case, then Σ is uniquely deter-
mined by A, whereas U and V might not be.

1.3.2 Low Rank Matrix Approximation

The rank r of the matrix A is the number of non-zero singular values, that
is, the diagonal elements of Σ. The r first column vectors of U form an
orthonormal basis for the column space (range) of A and the r first column
vectors of V form an orthonormal basis for the row space of A. Indeed, the
svd can be written as a sum of rank-one matrices

A =
r∑

i=1

σiuiv
T

i .

The best rank ν approximation of A, in the least squares sense, is

Aν =
ν∑

i=1

σiuiv
T

i ,

with the approximation error given by ‖A− Aν‖ =
√
σ2

ν+1 + · · ·+ σ2
r .
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1.4 Nonlinear Least Squares Optimization

A problem that often arises in numerical applications is to minimize an error
expressed as a sum of squared residuals. For a set of m functions fi, we want
to solve

min
x

m∑

i=0

(fi(x))
2 . (1.7)

If the functions are linear, the solution can be obtained for example using
singular value decomposition. However, for general nonlinear functions, iter-
ative methods must be used.

The idea is to start with an initial (guessed) value x(0) and to proceed
with successive updates

x(k+1) = x(k) + δ(k). (1.8)

The step δ(k) can be computed using different methods.

1.4.1 Gradient Descent

An iterative minimization method using the first order derivative of the func-
tions fi is the gradient descent method. The idea is to take steps in the
direction of the negative gradient, since this is the direction in which the
function decreases the most rapidly. Noting f (k) = f(x(k)), the step in the
kth iteration is then given by

δ(k) = −αJT

k f
(k), (1.9)

where α is the step length and can be set in advance. However, in more
sophisticated gradient descent algorithms, the choice of α is more elaborate
than that.

1.4.2 Gauss-Newton

A classical method for finding the optimum of a function is the Gauss-Newton
method, which is an iterative procedure based on a linear approximation of
the functions fi. The method uses a first-order Taylor expansion of the
functions fi in a neighborhood of the current point x(k) to compute the step
δ(k). Using the evaluation of the jacobian, Jk, in the current point, δ(k) is
obtained by solving the linear system, called the normal equations

JT

k Jk δ
(k) = −JT

k f
(k). (1.10)

We note that δ(k) is the least squares solution to the linear problem

Jk δ
(k) = f (k), (1.11)
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which is solved using the pseudo-inverse of the jacobian.

1.4.3 Levenberg-Marquardt

In 1944, Levenberg presented an algorithm [38], rediscovered in 1963 by Mar-
quardt [40], that combines the two methods presented above. When far from
the minimum, the gradient descent approach is favored, as it lowers the
value of the cost function at all times. On the other hand, when close to the
solution, the Gauss-Newton method will be privileged, due to its faster con-
vergence. The Levenberg-Marquardt method interpolates between the two
previously described methods. The linear equation system giving the step in
the Gauss-Newton method is replaced by a damped version

(
JT

k Jk + λkI
)
δ(k) = −JT

k f
(k). (1.12)

The parameter λk, called the damping parameter, is updated in each step.
Several heuristics exist for the choice of λk.

The algorithm suggested by Marquardt consists in choosing an initial
value λ0 and a factor ν > 1. In each iteration, the function is evaluated after
a step using λ and another one using λ

ν
. If none of the two decreases the cost

function value, λ is multiplied with ν until a lower value is found. If λ
ν

lead to
a lower function value, then this is taken a the new λ and the new optimum
is the function value found using this parameter. If, on the contrary, it is the
use of λ that gives the lowest function value, then it is left unchanged and
the optimum is the function value associated.

In short, if the cost function has a close to linear behavior around the cur-
rent point, the algorithm will favor the Gauss-Newton iteration by choosing
a small λ. Otherwise, a gradient descent iteration will be used.

1.5 Structure-from-Motion

Three-dimensional reconstruction from multiple images of a rigid scene, called
Structure-from-Motion, is one of the most studied problems in computer vi-
sion. The difficulties come from the fact that, using only feature correspon-
dences, both the 3D structure of the scene and the cameras have to be com-
puted. Most approaches rely on an initialization phase optionally followed
by self-calibration and bundle adjustment [65]. More details on Structure-
from-Motion can be found in [31].
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1.5.1 Calibration and Geometry

The problem of reconstruction can be applied to several geometrical cam-
era models and to calibrated as well as uncalibrated cameras. A camera is
considered calibrated if its internal parameters, such as the focal length, the
principal point and the distortion, are known.

Early work concerned calibrated cameras and Euclidean structure. The
area has now reached the level of maturity where working systems are in-
tegrated in numerous applications, for example in the navigation of vehicles
[3, 29, 28, 74, 51]. Working with calibrated cameras present the obvious ad-
vantage of being able to give the Euclidean structure of the scene. However,
there are a number of drawbacks that have motivated the development of
methods using uncalibrated cameras. First, camera calibration may not be
available or it may be of poor quality. Camera calibration errors may induce
structure errors that can be difficult to cancel out, since a nonlinear model
must be considered to remove the distortion due to the camera lens. Second,
the use of uncalibrated cameras allows for the camera parameters to be al-
tered over time, for example, the focal length can be changed by zooming or
focusing.

Relaxing the calibration constraint, the reconstruction obtained is projec-
tive, that is, given up to a projective transformation. Projective transforma-
tions do not preserve size and angle but do preserve incidence and cross-ratio.
The nature of the projective transformation diminishes the connections be-
tween the recovered 3D structure and the physical geometry of the scene.
Projective reconstruction has been described in [30, 49, 60].

A good compromise between the difficulty of computation and the infor-
mation content is to use affine geometry. Affine structure is a specialization
to projective structure, that can be specialized further to Euclidean struc-
ture. An affine reconstruction yields affine cameras and is defined up to
an affinity. Affine invariants include planarity, parallelism and length ratios
along parallel directions.

1.5.2 Sequential and Hierarchical Algorithms

Existing initialization algorithms can be divided into two families, namely
sequential and hierarchical processes. Hierarchical processes [21], based on
batch processes, have proven the most successful for large image sequences.
Indeed, batch processes such as the factorization algorithms [59, 62] which
reconstruct all features and cameras in a single computation step, need all
points to be visible at all times, and are therefore more suitable as build-
ing blocks in hierarchical schemes than as independent methods. Sequential
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processes such as [6] which reconstruct each view on turn, may typically suf-
fer from accumulation of the errors. In order to prevent drift over time of
the coordinate frame, the authors use periodic updates based on an existing
arbitrary projective coordinate frame. Hierarchical processes merge partial
3D models obtained from sub-sequences, which allows one to distribute the
error over the sequence, and efficiently handle open and closed sequences. A
key step of hierarchical processes is the fusion or the alignment of partial 3D
models, which is done by computing 3D motion from 3D feature correspon-
dences. This problem has been extensively studied in the projective [12, 21]
and the metric and Euclidean [32, 70] cases.

1.5.3 Projective Reconstruction – Bundle Adjustment

Consider a set of images together with a set of observed point matches. Let
xi

j be the homogeneous coordinates of the jth in the ith view. We want
to retrieve the projective cameras P i and the 3D points Xj such that the
reprojection error is zero. In the presence of noise, the equality will not
be satisfied. Assuming i.i.d. Gaussian noise on the image coordinates, the
Maximum Likelihood solution is obtained by estimating projection matrices
P i and 3D points Xj, verifying x̂i

j = P iXj, such that the euclidean distance
d(xi

j, x̂
i
j) is minimized

min
P i,Xj

∑

i,j

d(xi
j, x̂

i
j) = min

P i,Xj

∑

i,j

d(xi
j, P

iXj). (1.13)

Note that we use homogeneous coordinates to express x̂i
j. This estimation,

using the minimization of the 2D reprojection error is called bundle adjust-
ment [65]. The name suggests that the method adjusts the bundle of rays
passing through each camera center and the set of 3D points or, equivalently,
between each 3D point and the set of camera centers.

The algorithm handles missing data and allows individual covariances for
the measurements. It can further be extended to take into account priors on
camera parameters and point positions. Bundle adjustment is the standard
method optimizing an existing 3D model. The method presents however two
major drawbacks: First, it requires a good initialization so as to avoid getting
stuck in local minima. Second, the computational complexity is high, since
a very large number of parameters must be estimated. The solution to the
first problem is to use a faster method to compute an approximate solution
to use as initialization. Affine factorization, which will be described next
is one such method. Concerning the computational complexity of bundle
adjustment, there are a number of different approaches that aim to reduce
the complexity of the problem [21, 51].
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1.5.4 Affine Reconstruction by Factorization

The factorization algorithm was introduced by Tomasi and Kanade [62]. As-
suming independent identically distributed Gaussian noise on the given image
coordinates, it yields a Maximum Likelihood affine reconstruction. The pre-
requisites are a set of images together with a set of point matches xi

j, visible
in all views. The aim is to estimate affine cameras {M i, ti} and 3D points Xj

that minimize the error in the images, that is, such that the distance between
the observed points and the estimated projected points x̂i

j = M iXj + ti is
minimized

min
M i,ti,Xj

∑

i,j

∥∥xi
j − x̂i

j

∥∥2
= min

M i,ti,Xj

∑

i,j

∥∥xi
j − (M iXj + ti)

∥∥2
. (1.14)

Since the affine transformation maps centroids to centroids, the translational
part can be estimated and eliminated and we can thus take ti = 0. This
can be seen as considering coordinate systems centered in the centroids, in
3D space as well as in the images. We now want to solve the minimization
problem

min
M i,Xj

∑

i,j

∥∥xi
j − x̂i

j

∥∥2
= min

M i,Xj

∑

i,j

∥∥xi
j −M iXj

∥∥2
, (1.15)

that can be formulated using matrices. We define the 2m× n measurement
matrix X regrouping the measured image points expressed in centered coor-
dinates

X =




x1
1 x1

2 · · · x1
n

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xm
1 x1

1 · · · xm
n


 . (1.16)

Ideally, we would want to find matrices M i and points Xj such that

X =




M1

M2

...
Mm



[

X1 X2 · · · Xn
]
. (1.17)

Due to the structure of the right-hand side, a 2m×3 motion matrix multiplied
with a 3×n structure matrix, the rank is (at most) 3. In the presence of noise,
the rank of X will in general be higher than 3 and the system will not be
satisfied exactly. The reconstruction of the scene is given by a decomposition
of the measurement matrix into two matrices of the given sizes, that will
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thus fit the rank 3 criterion. Defining similarly X̂ = (x̂i
j)i,j and using the

Frobenius norm, we have

‖X − X̂‖2 =
∑

i,j

∥∥xi
j − x̂i

j

∥∥2
=
∑

i,j

∥∥xi
j −M iXj

∥∥2
. (1.18)

Minimizing the 2D reprojection error is therefore equivalent to finding the
best rank 3 approximation of X . This is accomplished by using the svd

decomposition, that provides the approximation as well as the decomposition
into a motion matrix M̂ and a structure matrix X̂. The decomposition is
however not unique. If X̂ = U2m×3Σ3×3Vn×3

T, then we can take for example
{
M̂ = U2m×3Σ3×3

X̂ = Vn×3
T

(1.19)

or {
M̂ = U2m×3

X̂ = Σ3×3Vn×3
T
. (1.20)

We also note that the insertion of an arbitrary non-singular 3 × 3 matrix
together with its inverse does not affect the result, since

X̂ = M̂AA−1X̂ = (M̂A)(A−1X̂). (1.21)

The reconstruction is hence given up to multiplication with a common ma-
trix, which makes the reconstruction affine. In its original form, the factoriza-
tion algorithm do not handle occlusions since complete matrices are needed.
However, recent extensions have been proposed that handles the presence of
missing data [61].

1.6 NURBS Curves

In computer vision, curves are generally represented either by (ordered) point
clouds or by parametric functions. So as to be able to work with a limited
number of parameters, we will opt for the latter. In order to satisfy multiple
constraints while keeping the number of degrees of freedom low, a natural
choice is to use piece-wise polynomials or piece-wise rational curves. B-spline
curves are a common choice, due to their many interesting properties and the
existence of numerically stable computational algorithms. B-splines are ex-
pressed as linear combinations of polynomial basis functions. NURBS (Non-
Uniform Rational B-Splines) is a generalization of B-splines that presents the
important property of being closed under affine and perspective transforma-
tions.

For more details on NURBS curves and their properties, refer to [52].
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1.6.1 Definition

Let us start by introducing B-splines. Let U = {u0, · · · , um} be a nonde-
creasing vector, called the knot vector. The B-spline basis functions Ni,k(t)
are given by the recursive relation

Ni,0(t) =

{
1 if ui ≤ t ≤ ui+1

0 otherwise
(1.22)

Ni,k(t) =
t− ui

ui+k − ui

Ni,k−1(t) +
ui+k+1 − t

ui+k+1 − ui+1

Ni+1,k−1(t), (1.23)

where k is the degree. A B-spline curve is now defined as a linear combination
of the basis functions and the control points Pi by

C(t) =
n∑

i=0

PiNi,k(t). (1.24)

A NURBS curve is a vector valued, piecewise rational polynomial, defined
by

C(t) =

∑n

i=0wi PiNi,k(t)∑n

i=0wi, Ni,k(t)
, (1.25)

where wi are weights associated with the control points. A geometrical in-
terpretation of the weights will be given in section 1.6.3. If we define the
rational basis functions

Ri,k(t) =
wiNi,k(t)∑n

j=0wjNj,k(t)
, (1.26)

the curve is written

C(t) =
n∑

i=0

PiRi,k(t). (1.27)

The name NURBS (Non-Uniform Rational B-Splines) indicates that the knot
vector is non-uniform, that is, the knot points are not equidistant, and that
the pieces of the curve are rational polynomials.

1.6.2 Analytic and Geometric Properties

The analytic properties of the rational basis functions determine the geomet-
ric properties of NURBS curves. The most important properties are

• Generalization: If all weights are equal to 1, then Ri,k(t) = Ni,k(t).

• Locality: Ri,k(t) = 0 if t /∈ [ui, ui+k+1).
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• Partition of unity:
∑

iRi,k(t) = 1

• Differentiability: Inside a knot span, the basis function is a rational
polynomial, so it is infinitely continuously differentiable if the denomi-
nator is bounded away from zero. At knots, it is k−p times continuously
differentiable, where p is the multiplicity of the knot.

The following geometric properties of NURBS curves arise from the afore-
mentioned properties of the basis functions

• B-spline curves is a special case of NURBS curves.

• Local approximation: If a control point is moved or a weight is
changed, this will affect the curve only on k + 1 intervals.

• Strong convex hull: If t ∈ [ui, ui+1), then C(t) is in the convex hull
of the control points Pi−k, . . . ,Pi, supposing nonnegative weights.

• Covariance: Covariance under affine and perspective transformations.

• Differentiability: NURBS curves have the same differentiability prop-
erties as the rational basis functions.

• Variation diminishing: No hyperplane intersects the NURBS curve
more times than it intersects the polygon formed by its control points,
supposing nonnegative weights.

• If m+1 is the number of knots, n+1 the number of control points and
k the degree, then the equality m = n+ k + 1 holds.

It is a common choice to take k = 3, which has proved to be a good
compromise between required smoothness and the problem of oscillation,
inherent to high degree polynomials. Note that the degree of a NURBS
curve defines the number of control points that influence any given point on
the curve. Since the region of influence of a control point is delimited by
the knot points, we can talk in terms of intervals. For any given interval,
there are k + 2 control points that have an impact on the associated curve
section. Inversely, for any given control point, there are k+2 intervals where
it impacts the curve.

For the parameterization of closed curves, we consider periodic knot vec-
tors, that is, verifying uj+p = uj for some p. Following the reasoning outlined
above, for a closed curve there must be as many control points as there are in-
tervals of non-zero length. If we take into account the equality m = n+k+1,
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we see that the knot vector contains more knots than that. The reason to
this is the overlapping intervals, needed to close the curve in a smooth way.

Given all these parameters, the set of NURBS defined on U forms, to-
gether with the operations of point-wise addition and multiplication with a
scalar, a vector space.

1.6.3 Geometrical Interpretation of NURBS Curves

In order to provide a geometrical interpretation of the weights associated
with the control points and of the curve itself, we take the example of a B-
spline curve in space and its corresponding NURBS curve in a given plane.
Consider the Euclidean 3D space, with coordinate axes X, Y and W , and
the projective plane, with coordinate axes x and y, as pictured in figure 1.4.
Any point in the X, Y , W coordinate system can be written as

Pw =

{
(xw, yw,w) if w 6= 0

(x, y, 0) if w = 0
(1.28)

and can be mapped onto the plane by the perspective transformation

T (Pw) =

{
(x, y) if w 6= 0

direction (x, y) if w = 0.
(1.29)

For a set of 3D control points Pw
i = (xiwi, yiwi, wi) and a given knot vector,

we can construct the non-rational B-spline curve in 3D space

Cw(t) =
n∑

i=0

PiNi,k(t). (1.30)

Writing out the coordinate functions, we get




X(t) =
n∑

i=0

wixiNi,k(t)

Y (t) =
n∑

i=0

wiyiNi,k(t)

Z(t) =
n∑

i=0

wiNi,k(t)

. (1.31)

The curve can be mapped onto the plane, see figure 1.4, giving the projected
curve, expressed coordinate-wise





x(t) =
X(t)

Z(t)
=

∑n

i=0wixiNi,k(t)∑n

i=0wiNi,k(t)

y(t) =
Y (t)

Z(t)
=

∑n

i=0wiyiNi,k(t)∑n

i=0wiNi,k(t)

(1.32)
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Figure 1.4: Geometric construction of 2D NURBS curves based on a per-
spective projection of a 3D B-spline curve.

Using vector notation, we finally obtain

c(t) = T (Cw(t)) =

∑n

i=0wi T (Pw
i )Ni,k(t)∑n

i=0wi, Ni,k(t)
=

∑n

i=0wi PiNi,k(t)∑n

i=0wi, Ni,k(t)
. (1.33)

We note that the perspective transformation of a 3D B-spline yields a 2D
NURBS curve. Indeed, using homogeneous notation, the 3D B-spline curve is
an alternative way of expressing the 2D NURBS curve, the added coordinate
serving as weight. In the following section, we will see that the perspective
transformation maps NURBS to NURBS.

1.6.4 Perspective Projection of NURBS Curves

According to the perspective camera model, see Sec. 1.2, the projection
T (·) that transforms a world point into an image point is expressed using
homogeneous coordinates by means of the transformation matrix T3×4 as



x̃
ỹ
z̃


 = T3×4




X
Y
Z
1


 =



T1,1X + T1,2Y + T1,3Z + T1,4

T2,1X + T2,2Y + T2,3Z + T2,4

T3,1X + T3,2Y + T3,3Z + T3,4


 . (1.34)

In (non-homogeneous) image coordinates, we have





x =
x̃

z̃
=
T1,1X + T1,2Y + T1,3Z + T1,4

T3,1X + T3,2Y + T3,3Z + T3,4

y =
ỹ

z̃
=
T2,1X + T2,2Y + T2,3Z + T2,4

T3,1X + T3,2Y + T3,3Z + T3,4

. (1.35)
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Mapping the curve to the image plane yields, in the x coordinate

x(t) =
x̃(t)

z̃(t)
=

∑
iwi(T1,1Xi + T1,2Yi + T1,3Zi + T1,4)Ri,k(t)∑
iwi(T3,1Xi + T3,2Yi + T3,3Zi + T3,4)Ri,k(t)

. (1.36)

Defining the new weights

w′
i = (T3,1Xi + T3,2Yi + T3,3Zi + T3,4)wi (1.37)

and recalling the expression for the rational basis functions given in 1.26, we
have

x(t) =

∑
iw

′
i

T1,1Xi+T1,2Yi+T1,3Zi+T1,4

T3,1Xi+T3,2Yi+T3,3Zi+T3,4

Ni,k(t)∑
j wjNj,k(t)

∑
iw

′
i

Ni,k(t)∑
j wjNj,k(t)

=

∑
iw

′
i xiNi,k(t)∑

iw
′
iNi,k(t)

. (1.38)

The expression for y(t) is derived similarly. Using vector notation, the pro-
jected curve is written

c(t) = T (C)(t) =

∑n

i=0w
′
i T (Pi)Ni,k(t)∑n

i=0w
′
iNi,k(t)

=
n∑

i=0

T (Pi)R
′
i,k(t), (1.39)

where the R′
i,k are the basis functions of the projected NURBS.

Deriving the formula for the new weights using a geometrical formulation
yields the expression

w′
i = n · (Pi −CO)wi, (1.40)

where n is a unit vector along the optical axis and CO the optical center of
the camera.

1.6.5 Control Point Insertion

One of the fundamental geometric algorithms available for NURBS curves is
the control point insertion. The key is the knot insertion, which is equivalent
to adding one dimension to the vector space, consequently adapting the basis.
Since the original vector space is included in the new one, there is a set of
control points such that the curve remains unchanged.

Let ū ∈ [uj, uj+1). We insert ū in U , forming the new knot vector

Ū = {ū0 = u0, · · · , ūj = uj, ūj+1 = ū, ūj+2 = uj+1, · · · , ūm+1 = um}.

The new control points P̄i are given by the linear system

n∑

i=0

PiRi,k(t) =
n+1∑

i=0

P̄iR̄i,k(t). (1.41)
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Due to the local influence of the basis functions and to the fact that ū ∈
[uj, uj+1), we have

j∑

i=j−k

PiRi,k(t) =

j+1∑

i=j−k

P̄iR̄i,k(t). (1.42)

for u ∈ [uj, uj+1) and

{
Ri,k(t) = R̄i,k(t) 0 ≤ i ≤ j − k − 1
Ri,k(t) = R̄i+1,k(t) j + 1 ≤ i ≤ n

(1.43)

Equations (1.42) and (1.43) together with the linear independence of the
basis functions imply that

{
Pi = P̄i 0 ≤ i ≤ j − k
Pi = P̄i+1 j ≤ i ≤ n

(1.44)

It can be shown, by induction on k, that for j − k ≤ i ≤ j + 1

Ri,k(t) =
ū− ūi

ūi+p+1 − ūi

R̄i,k(t) +
ūi+p+2 − ū
ūi+p+2 − ūi+1

R̄i+1,k(t). (1.45)

Substituting (1.42) and (1.45), using the knot vector U instead of Ū , yields
after some calculations

P̄i = αi Pi + (1− αi)Pi−1, (1.46)

with

αi =





1 i ≤ j − k
ū− ui

ui+k − ui

if j − k + 1 ≤ i ≤ j

0 i ≥ j + 1

. (1.47)

Note that only k new control points need to be computed, due to the local
influence of splines.

1.7 Statistical Methods

Although our algorithms are completely deterministic, there are a few statis-
tical methods that will be useful. The first one, the Expectation-Maximization
algorithm, is used for parameter estimation in probabilistic models, whereas
the second one is used to determine the appropriate model complexity in a
model estimation framework.
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1.7.1 Expectation-Maximization

The Expectation-Maximization (EM) algorithm was presented and named in
1977 in an article by Dempster et al. [14]. Although the methodology had
already been used in different settings, Dempster et al. generalized it and
developed the underlying theory. Indeed, EM is a description of a class of
related algorithms, rather than a specific algorithm.

An EM algorithm is an iterative statistical method for finding Maximum
Likelihood (ML) estimates of parameters in probabilistic models, where the
model depends on unobserved data, that is, given an incomplete set of mea-
surement data. The main idea is to alternate between predicting the missing
data and estimating the model. When the log likelihood cannot be max-
imized, for example due to missing data, it is replaced by its conditional
expectation given the observed data, using the current estimate of the pa-
rameters. The conditional expectation at iteration k is written

E(k)(Θ) = E [ logL(Θ) | Xobs,Θ
(k) ] , (1.48)

where Θ is the set of parameters, logL(Θ) the log likelihood and Xobs the
observed data. In the maximization step, this conditional expectation is then
maximized with respect to the parameters and the new parameter vector is
given by

Θ(k+1) = arg max
Θ

E(k)(Θ). (1.49)

In the case where the log likelihood is a linear function of the missing data,
this simply consists in replacing the missing data by their conditional expecta-
tions given the observed data at current parameter values. This approximate
log likelihood is then maximized so as to yield a new estimate of the parame-
ters. The log likelihood increases in each iteration and the process converges
to a local minimum of the approximate Maximum Likelihood residual error.
The rate of convergence of the EM algorithm is linear and a function of the
rate of missing data. See e.g. [46] for details and proof of convergence.

An EM algorithm can also be used to find a maximum a priori (MAP)
estimate, by performing MAP estimation in the maximization step instead
of maximum likelihood.

1.7.2 Handling Complexity for Parametric Models

In general, an optimization process is terminated when convergence of some
error function is obtained. When dealing with model estimation, a common
measure of the quality of a particular model is the residual, that is, the dif-
ference between the predicted output of a data point and its actual observed
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output. The lower the residual, the better the model. However, increasing
the complexity of the model, that is, the number of degrees of freedom, will
almost consistently decrease the residual error, since the model is allowed to
describe more precisely not only the data but also the noise. Whereas the
iterations in the optimization problem for a fixed size model can be continued
until convergence, another criterion must be found to terminate the search
for the optimal model complexity. We need a measure of the model relevance.

Cross-Validation

Cross-validation is a statistical practice that consists of splitting the data set
available into different subsets, a training set and a test set. The former is
used to define a fixed complexity model, while the latter serves to test it.
The models are evaluated based on their capacity to describe the data, by
checking how well a given model generalizes to new data. The name ‘training
set’ indicates that the method has its origin in statistical learning theory. As
the model complexity increases, the error on the training set decreases since
it is always easier to describe the data using more parameters. The validation
error will decrease in the beginning, as long as the model is still tuning in,
but will eventually stabilize, or even increase due for example to noise in the
training set. This break point corresponds to the ‘optimal’ complexity level.

In a common form, named K-fold cross-validation, the data is partitioned
into K subsets that are used each in its turn as validation set. The optimiza-
tion and validation are thus repeated K times. The remaining K − 1 sets
form the training data. If we let K be the number of data points, we obtain
‘leave-one-out cross-validation’ (loocv). In order not to ‘waste’ too much
data on the validation set, the loocv should be preferred. However, for
large data sets and computationally expensive optimization processes, this
method can be unfeasible and a smaller value on K must be chosen. In the
case of linear least squares problems, closed-form solutions exist [69].

Cross-validation makes no prior assumption about the model or the dis-
tribution of the noise. This is important in the case of non physical models,
where the residual errors are caused not only by the noise, but also by an
insufficient model.

Minimum Description Length

Another family of methods is motivated by the Principle of Parsimony, or
Occam’s razor, that can be formulated approximately by ‘All other things
being equal, the simplest solution is the best’. The idea is thus to choose
the model that gives the shortest description of data. The method has its
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origins in the algorithmic or descriptive complexity theory of Kolmogorov.
The description length is a measure of the compression ratio that we obtain,
using the model instead of the data. For completely random data, no (loss-
less) compression is possible, and no model smaller than the data set is able
to reproduce it correctly. On the other hand, if a model is appropriate, then
it can be used instead of the data to store the signal. Among the appro-
priate models, the one with the shortest code length representing the model
parameters and the residual error is retained.

A Minimum Description Length (MDL) formulation for model selection
was introduced by Rissanen in [54]. It consists in associating a cost with the
quantity of information necessary to describe the curve. As opposed to cross-
validation that is an iterative method for nonlinear problems, MDL yields a
criterion that is to be minimized. Different criteria follow, depending on the
formulation of the estimation problem.

AIC

In 1974, Akaike presented a criterion, known as the Akaike Information Cri-
terion (AIC) [1], intended to compare two models of different complexity.
Increasing the number of model parameters to be estimated improves the
goodness of fit, regardless of the number of parameters needed to generate
the data. In order to avoid over-fitting, the method combines a term measur-
ing the goodness of fit and a term penalizing the model complexity. Given
two estimated models, differentiated by their number of parameters, the one
with the lowest criterion will be retained. The AIC is written

AIC = −2Lm + 2k, (1.50)

where Lm is the maximized log likelihood of the model and k is the number
of parameters of the model. The formulation is rather simple, in contrast to
more traditional approaches starting from a null hypothesis.

As for MDL, AIC originates from information-theoretic concepts, and is
derived using the Kullback-Leibler divergence. Grounded on the concept of
entropy, it provides a relative measure of the information lost when a given
model is used to describe data. The method approaches the model selection
problem from the point of view of prediction. Asymptotically, as the amount
of data goes to infinity, the model will be chosen that has the best likelihood
for future data.

BIC

A similar criterion, based on a Bayesian formalism, is the Bayesian Infor-
mation Criterion (BIC) presented in 1978 by Schwarz [56]. It stresses the
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number of data points n, so as to ensure an asymptotic consistency and is
written,

BIC = −2Lm + k lnn, (1.51)

where Lm is the maximized log likelihood, k is the number of parameters and
n is the number of data points. BIC penalizes the model complexity more
strongly than does AIC, thus being more conservative. Asymptotically, as
the amount of data goes to infinity, it will choose the model that was used
to generate the data.

Considering the Laplace approximation, that replaces the posterior dis-
tribution with a Gaussian distribution centered at the Maximum A Priori
(MAP) estimate, BIC can be derived by taking the large sample limit as the
number of data points tends to infinity.

Comparison

So, which method should be preferred? The answer depends as expected
on the context, such as the amount of data available and the computational
complexity of the optimization method used to obtain a fixed size model.
Cross-validation is better founded for non-physical models if we dispose of
enough data, but it becomes unfeasible for expensive optimization methods.
The methods based on different criteria, such as AIC or BIC, present the
obvious advantage of using only the training error. Asymptotically, the use
of AIC and loocv should be equivalent. For a judicious choice of K, the
same is true about BIC and K-fold cross-validation.

AIC and BIC both assumes that the data distribution is exponential,
whereas MDL avoids assumptions about the data generating process alto-
gether. If the distribution is known not to be exponential, or the log likeli-
hood is unknown, MDL should thus be preferred over AIC and BIC. Since
the criterion induced by the MDL method depends strongly on the formula-
tion of the estimation problem, it is hard to draw any conclusions about its
performance in a general setting.

1.8 Visibility of the Object

In order to reconstruct an object based on image observations, we must
first determine which parts are visible in the image at the actual position
and orientation of the object. Even though all points of the model can be
projected onto the image plane, not all of them will actually be visible, due
to occlusions. We will handle only the case of self-occlusion, meaning that
all other forms of occlusion will be treated as noise.
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An intuitive way of dealing with visibility is to use a z-buffer, that is a
buffer with the same dimensions as the image where the depth, relative to
the camera, of the point shown is saved. The idea is to retain the depth
information, so as to visualize for each pixel the image of the point of the
model that is the closest to the camera. This algorithm demands quite a lot
of memory and does not take advantage of the fact that the model is the
same for the set of images. Moreover, for each pixel, all points of the model
that are projected there will have to be investigated. A more efficient method
is the Binary Space Partition (BSP) trees algorithm, which was introduced
in 1980 by Fuchs et al. [23].

1.8.1 Binary Space Partition Trees

The idea of the BSP algorithm is to generate a binary tree that classes the
three-dimensional space into convex regions. This classification of space is
then used to limit the search. The generation of the tree is a rather time
consuming operation, but since it need not be done more than once for each
model it can be done off-line and the time is no longer a problem.

1.8.2 Creating the BSP Tree

Although the algorithm will be applied to the polygons of the model in space,
we will here treat the simpler case of line segments in the plane. Note that
with a curved model, we will use a triangulation of the CAD model to define
the polygons and line segments. The method described generalizes without
problem to the setting that interests us. Consider a set of (randomly num-
bered) 2D lines. Our goal is to partition the plane into convex regions such
that each region contains at most one segment. This will be accomplished
by choosing a set of lines splitting the plane. We will use auto-partitioning,
that is the splitting lines will be taken to coincide with the line segments. We
start by picking a segment, drawing the line passing through it and defining
a positive and a negative side. For all other line segments one of the following
will be true

1. The segment is entirely contained within the splitting line.

2. The segment is crossed by the splitting line.

3. The segment is contained in the positive half-space defined by the split-
ting line.

4. The segment is contained in the negative half-space defined by the
splitting line.
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Figure 1.5: Example of a configuration of (ordered) lines in two-dimensional
space and the chosen splitting lines li with positive directions indicated.

A

B C2

C1 D E

Figure 1.6: The resulting BSP tree from the line configuration in figure 1.5,
where nodes in the left subtree belong to the positive half-space.

The segments from the first case together with the one used to define
the splitting line are assembled in a list and forms a node in the tree. In
the second case, the line segment is split into two new segments, one on
the positive side and one on the negative side. Now proceed recursively by
creating two new trees, one using the set of segments on the positive side
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and the other on the negative side. The splitting stops when there is at
most one segment in the actual region. For an example of a configuration of
(ordered) lines and the corresponding BSP tree, see figure 1.5 and figure 1.6
respectively.

Once the tree is constructed, every path from the root to a leaf describes
a convex region of the plane. Note that different orderings of the segments
result in different trees. The most efficient tree is of course a balanced one,
since it allows for important cuts when used. A random ordering performs
quite well and gives an expected number of final segments of O(n log n) and
an expected running time of O(n2 log n), where n is the number of initial
segments.

The algorithm described generalizes to three dimensions by replacing
the line segments with polygonal faces and the splitting lines with splitting
planes.

1.8.3 Using the BSP Tree

Once the tree is created, we fix the position of the camera (given by the
actual projection matrix) and the point for which we want to determine
the visibility. The key observation is that if the view point and the point
examined belong to the same half-space, everything in the other half-space
will be ‘behind’ and need not be checked. In the BSP tree, the half-spaces
correspond to the left and right subtrees. This leads to a cut in the tree
that reduces the area to search through. A segment that belongs to the same
region as the camera will thus be completely visible and no checking needs to
be done. After cutting everything that can be cut, we check the remaining
segments by tracing the ray from the camera to the point in question in order
to see whether it crosses another segment, thus occluding the point, or not,
leaving it visible.



Chapter 2

Reconstruction of 3D Points

This chapter deals with 3D reconstruction of a rigid scene based on observa-
tions in multiple images, a field called Structure-from-Motion. When it comes
to metric reconstruction from point matches, the nonlinear method of bundle
adjustment is predominant. It does however need a rather good initialization
in order to converge to the global optimum. A faster, linear method is thus
needed to compute an approximate solution. Affine reconstruction by factor-
ization is one such method. In its original form, the factorization algorithm
needs all points to be visible and matched in all views, since its matrix formu-
lation does not handle missing data. We propose a method to align several
reconstructions so as to obtain an approximated maximum likelihood solution
to the problem. The method is extended via an Expectation-Maximization
approach to handle missing data points.

The methods developed have been published in the proceedings of SCIA
2005 [4], EMMCVPR 2005 [41] and RFIA 2006 [42] respectively.

39
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Reconstruction de points 3D

Ce chapitre traite de la reconstruction de points 3D basée sur des obser-
vations de ces points dans plusieurs images, un domaine appelé “Structure-
from-Motion”. Pour la reconstruction métrique à partir de points appariés,
la méthode prédominante est l’ajustement de faisceaux. Etant non linéaire,
celle-ci nécessite une initialisation proche du résultat afin de converger sur
le minimum global. Une méthode linéaire, plus rapide, est donc nécessaire
pour fournir une solution initiale. La reconstruction affine par factorisation
en est une. Dans sa forme d’origine, l’algorithme de factorisation nécessite
que tous les points soient visibles et appariés dans toutes les vues, puisque la
formulation matricielle ne permet pas de gérer de données manquantes. Nous
proposons une méthode d’alignement de plusieurs reconstructions afin d’ob-
tenir une estimation proche de la solution au maximum de vraisemblance.
Cette méthode est étendue par une approche “Expectation-Maximization”,
qui gère les données manquantes.

Les méthodes développées ont été publiées dans les actes de SCIA 2005
[4], EMMCVPR 2005 [41] et RFIA 2006 [42] respectivement.
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• Alignement de reconstructions 3D affines
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• Méthodes d’alignement
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puis une méthode basée sur la factorisation directe des points 3D re-
construits et finalement la méthode classique d’ajustement de faisceaux.
• Approximation de l’erreur de reprojection

Justifications de l’approximation introduite dans notre méthode.
• Evaluation expérimentale

Notre méthode est comparée aux autres méthodes présentées.
• Conclusions
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2.1 Introduction

Figure 2.1: The problem tackled in this chapter is an approximation of the
Maximum Likelihood Estimation of 3D affine transformations between two
(or more) affine reconstructions obtained from uncalibrated affine cameras
using an incomplete data set.

We focus on the uncalibrated affine camera model, which is a reasonable
approximation to the perspective camera model when the depth of the ob-
served scene is small compared to the viewing distance, see section 1.2.3 for
details. In this case, the partial 3D models obtained from sub-sequences,
that is, multiple subsets of cameras, are related by 3D affine transforma-
tions. We deal with the computation of such transformations from point
correspondences, as illustrated on figure 2.1. We propose an approximation
to a Maximum Likelihood Estimator based on factorizing modified image
point coordinates. We compute a 3D affine transformation and a set of 3D
point correspondences which perfectly match, such that the reprojection er-
ror in all sets of cameras is minimized. The method is intended to fit in
hierarchical affine Structure-from-Motion processes of which the basic recon-
struction block is, for example affine factorization [62]. We believe Ransac

[20] is the method of choice for reliable robust estimators to deal with data
sets containing outliers. Embedding the proposed method in Ransac is
straightforward, since they work for both minimal and redundant data sets.
The Maximum Likelihood estimate of the complete set of parameters can be
obtained using bundle adjustment [65] over the 3D points, the affine trans-
formation and the projection matrices, using the results from our method as
an initialization. A final step would consist in performing a Euclidean re-
construction with simultaneous self-calibration of the cameras. Our method
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does not make any assumption about the cameras, besides the fact that a
reconstruction of each camera set using an affine camera model has been
performed. The method relies on the important new concept of orthonormal

bases. In the occlusion-free case, our algorithm needs a single Singular Value
Decomposition (svd). However, in the case of incomplete measurement data,
that is, when some of the 3D points used for the alignment are not visible
in all views, the factorization algorithm must be extended. Though some
algorithms have been proposed, see e.g. [33], they are not appropriate for
Structure-from-Motion from large image sequences. As in [7, 26], we propose
an Expectation-Maximization (EM) [14] based scheme. The Expectation
step predicts the missing data while the Maximization step maximizes the
log likelihood, that is, minimizes the reprojection error.

We proposed the approximation to the Maximum Likelihood Estimator
in the complete data case in [4] and in the missing data case in [41].

This chapter is organized as follows. Our alignment method is described
in Sect. 2.2, while other methods are summarized in Sect. 2.3. Experimental
results are reported in Sect. 2.5. Our conclusions are given in Sect. 2.6.

2.2 Alignment of 3D Affine Reconstructions

We formally state the alignment problem in the two camera set case and
present our algorithm. We first present the algorithm in the complete data
case, dubbed ‘FactMLE’, and then in the case with missing data, dubbed
‘FactMLE-EM’. Note that although our algorithms only approximates the
true Maximum Likelihood error function, the approximation is so close that
we use the term ML for naming our algorithms. Finally, we extend the
method to the multiple camera set case.

2.2.1 Problem Statement

Given a set of point matches {xij}, the factorization algorithm can be em-

ployed to recover all cameras {P̂i, t̂i} and 3D points {Q̂j} at once [62]. An
overview of the method, and more generally of Structure-from-Motion, is
given in 1.5.

Consider two sets of cameras {(Pi, ti)}ni=1 and {(P′
i, t

′
i)}n

′

i=1 and the as-
sociated structures {Qj ↔ Q′

j}mj=1 obtained by reconstructing a rigid scene
using for example the above-mentioned factorization algorithm. Without
loss of generality, we assume that the same number of points are present in
the two reconstructions since only the point correspondences are used in the
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alignment task. The reprojection error over the two sets is given by

C2(Q,Q′) = R2(P ,Q, {ti}) +R′2(P ′,Q′, {t′i}). (2.1)

Letting (Â, t̂) represent the aligning (3× 3) affine transformation, the Maxi-
mum Likelihood Estimator is formulated by

min
Q̂,Q̂′

C2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j + t̂. (2.2)

2.2.2 A Factorization-Based Algorithm

Our method to solve problem (2.2) uses a three-step factorization strategy.
We first describe it in the occlusion-free case and then propose an iterative
extension for the missing data case.

Step 1: Orthonormalizing. We propose the important concept of or-

thonormal bases. We define a reconstruction to be in an orthonormal basis
if the joint projection matrix is column-orthogonal. Given a joint projection
matrix P , one can find a 3D affine transformation represented by the (3× 3)
matrix N, which applies as A in equation (1.21), such that PN is column-
orthogonal, that is, such that NTPTPN = I(3×3). We call the transformation
N an orthonormalizing transformation. The set of orthonormalizing trans-
formations is 3-dimensional since for any 3D rotation matrix U, NU still is
an orthonormalizing transformation for P . We use the qr decomposition
P = QR, see e.g. [25], giving an upper triangular orthonormalizing trans-
formation N = R−1. Other choices are possible for computing an N, e.g. if
P = UΣVT is an svd of P , then N = VΣ−1 has the required property. Hence-
forth, we assume that all 3D models are expressed in orthonormal bases

{
P ← PN

P ′ ← P ′N′ and

{
Q ← N−1Q
Q′ ← N′−1Q′ .

An interesting property of orthonormal bases is that P† = PT. Hence, tri-
angulating points in these bases is simply done by Q = PTX .

Note that the matrix P computed by factorization, see Sect. 1.5, may
already satisfy PTP = I. However, if at least one of the cameras is not
used for the alignment, e.g. if none of the 3D point correspondences project
in this camera, or if the cameras come as the result of the alignment of
partial 3D models, then P will not satisfy PTP = I, thus requiring the
orthonormalization step.
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Step 2: Eliminating the Translation. The translation part of the sought-
after transformation can not be computed directly, but can be eliminated
from the equations. First, center the image points to eliminate the transla-
tion part of the cameras: xij ← xij − ti and x′

ij ← x′
ij − t′i. Second, consider

that the partial derivatives of the reprojection error (2.1) with respect to t̂
must vanish ∂C2

∂t̂
= 0. By using the constraint Q̂′

j = ÂQ̂j + t̂ from equation
(2.2) and expanding using equation (2.1), we get

∑n′

i=1

∑m

j=1

(
P′

i
T
P′

it̂− P′
i
Tx′

ij + P′
i
T
P′

iÂQ̂j

)
= 0

∑m

j=1

(
P ′TP ′t̂− P ′TY ′

j + P ′TP ′ÂQ̂j

)
= 0

mP ′TP ′t̂−mP ′TȲ ′ +mP ′TP ′Â
¯̂Q = 0,

which yields t̂ = (P ′TP ′)
−1

(P ′TȲ ′ − P ′TP ′Â
¯̂Q) that further simplifies to

t̂ = P ′†Ȳ ′ − Â
¯̂Q,

and, thanks to the orthonormal basis property P ′† = P ′T, we get

t̂ = P ′TȲ ′ − Â
¯̂Q, (2.3)

Note that if the same entire sets of reconstructed points are used for the

alignment, then we directly obtain t̂ = 0 since Ȳ ′ = 0 and
¯̂Q = 0. This is

rarely the case in practice, especially if the alignment is used to merge partial
3D models.

Third, consider that the m partial derivatives of the reprojection error
(2.1) with respect to each Q̂j must vanish as well: ∂C2

∂Q̂j
= 0, and expand as

above

∑n

i=1

(
PT

i PiQ̂j − PT

i xij

)
+
∑n′

i=1

(
ÂTP′

i
T
P′

iÂQ̂j − ÂTP′
i
Tx′

ij + ÂTP′
i
T
P′

it̂
)

= 0

PTPQ̂j − PTYj + ÂTP ′TP ′ÂQ̂j − ÂTP ′TY ′
j + ÂTP ′TP ′t̂ = 0.

The sum over j of all these derivatives also vanishes

(
∀j, ∂C

2

∂Qj

= 0

)
=⇒

(
m∑

j=1

∂C2

∂Qj

= 0

)
,

giving

PTP ¯̂Q−PTȲ + ÂTP ′TP ′Â
¯̂Q− ÂTP ′TȲ ′ + ÂTP ′TP ′t̂ = 0.
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By replacing t̂ by its expression (2.3), and after some minor algebraic ma-
nipulations, we obtain

PTP ¯̂Q−PTȲ = 0
¯̂Q = P†Ȳ ,

and by substituting in equation (2.3) and using the orthonormal basis prop-
erty P† = PT, we get

t̂ = P ′TȲ ′ − ÂPTȲ . (2.4)

It is common in factorization methods to center the data with respect to
their centroid to cancel the translation part of the transformation. Equation
(2.4) means that, according to the reprojection error criterion, the data must
be centered with respect to the reconstructed centroid of the image points,
not with respect to the actual 3D centroid.

Obviously, if the 3D models have been obtained by the factorization
method of Sect. 1.5, then the centroid of the 3D points corresponds to the
reconstructed centroid, that is, Q̄ = PTȲ and Q̄′ = P ′TȲ ′, provided that
the same sets of views are used for reconstruction and alignment.

To summarize, we cancel the translation part out of the sought-after
transformation by translating the reconstructions and the image points as
shown below

{
Qj ← Qj − PTȲ
Q′

j ← Q′
j − P ′TȲ ′ and

{
xij ← xij − PiPTȲ
x′

ij ← x′
ij − P′

iP ′TȲ ′.

The reprojection error (2.1) is rewritten

C2(Q,Q′) =
1

2nm

(
‖X − PQ‖2 + ‖X ′ − P ′Q′‖2

)
(2.5)

and problem (2.2) is reformulated as

min
Q̂,Q̂′

C2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j. (2.6)

Step 3: Factorizing. Thanks to the orthonormal basis property PTP = I,
we can approximate the reprojection error on a single set of cameras as

R2(P ,Q) ∝ ‖X − PQ‖2 ≈ ‖PTX −Q‖2.

We note that multiplication by PT corresponds to a projection onto the
three-dimensional subspace spanned by the columns of P . Since X already
has rank 3, up to the measurement noise, the approximation is justified. For
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a discussion about the approximation of the reprojection error, we refer to
appendix 2.4.

This allows us to rewrite the reprojection error (2.5) as

C̃2(Q̂, Q̂′) ∝ ‖PTX − Q̂‖2 + ‖P ′TX ′ − Q̂′‖2 =

∥∥∥∥∥

[
PTX
P ′TX ′

]

︸ ︷︷ ︸
Λ

−
[
Q̂
Q̂′

]

︸ ︷︷ ︸
∆

∥∥∥∥∥

2

. (2.7)

By introducing the constraint Q̂′ = ÂQ̂ from (2.6) and, as in Sect. 1.5, an
unknown global affine transformation B

∆ =

[
I

Â

]
BB−1Q̂ =

[
B

ÂB

]

︸ ︷︷ ︸
M̃

B−1Q︸ ︷︷ ︸
Q̃

.

The problem is reformulated as

min
M̃,Q̃
‖Λ− M̃Q̃‖2.

A solution is given by svd of matrix Λ

Λ(6×m) = U(6×6)Σ(6×6)V
T

(6×m).

Let Σ = ΣuΣv be any decomposition of matrix Σ. We obtain M̃ = ψ(UΣu)

and Q̃ = ψT(VΣT

v ). Using the partitioning M̃ =

[
M̃

M̃′

]
, we get





B = M̃

Â = M̃′B−1

Q̂ = BQ̃.

Obviously, one needs to undo the effect of the orthonormalizing transforma-
tions, as follows {

Â ← N′ÂN−1

Q̂ ← NQ̂.
This algorithm runs with m ≥ 4 point correspondences1. Table 2.1 gives a
summary.

1This is consistent with the fact that 4 point correspondences define a 3D affine trans-
formation.
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2.2.3 An Alternative Solution Method

Note that it is possible to solve the problem without using the orthonormal-
izing transformations, thus without the approximation introduced in (2.7).
This solution requires however to compute the svd of a (2(n+ n′)×m) ma-
trix, made by stacking the measurement matrices X and X ′, and is therefore
much more computationally expensive than the algorithm above, and may be
intractable for large sets of cameras and points. We rewrite the cost function
as

C2(Q̂, Q̂′) =

∥∥∥∥
[
X
X ′

]
−
[
P
P ′

] [
Q̂
Q̂′

]∥∥∥∥
2

=

∥∥∥∥∥

[
X
X ′

]

︸ ︷︷ ︸
Λ

−
[
P
P ′

]

︸ ︷︷ ︸
E

[
B

B−1Â

]
Q̂

︸ ︷︷ ︸
Z︸ ︷︷ ︸

∆

∥∥∥∥∥

2

.

A rank 3 approximation of matrix Λ by svd gives the solution for ∆. Matrix
Z is then recovered using least squares as

Z = E†∆.

In order to extract the structure matrix Q̂ and the affine transformation Â,
we proceed as described above. We dub this alternative method FullSVD.

However, this method yields just another approximation of the Maximum
Likelihood estimate, due to its two stage minimization of the reprojection
error (2.5). Directly solving (2.6) requires a nonlinear approach, a method
that we dub TrueMLE. So as to obtain the Maximum Likelihood estimate
of the complete set of parameters, we also need to re-estimate the projection
matrices, P and P ′. Such an estimation is performed at a later stage using
bundle adjustment, see Sect. 2.3.4.

2.2.4 Dealing with Missing Data

The missing data case arises when some of the 3D points used for the align-
ment are not visible in all views. We propose an EM (Expectation Maxi-
mization) based extension of our algorithm to handle this case.

The EM framework has already been used in the context of Structure-
from-Motion. In [7], a closed-form Maximum Likelihood Estimation replaces
the factorization algorithm to perform an affine triangulation of N views.
The algorithm then uses EM to perform the affine reconstruction based on
all observed data. An EM-based approach to multibody factorization with
missing data that allows one to incorporate prior knowledge and an arbitrary
noise covariance by using temporal coherence between the views is presented
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Algorithm

1. Compute the orthonormalizing transformations:

[
· · ·Pi

T · · ·
]T qr

= PN−1 and
[
· · ·P′

i
T · · ·

]T qr
= P ′N′−1

2. Compute the reconstructed centroids:

C =
PT

m

m∑

j=1




...
xij − ti

...


 and C′ =

P ′T

m

m∑

j=1




...
x′

ij − t′i
...




3. Form the measurement matrices:

xij ← xij − PiC and x′
ij ← x′

ij − P′
iC

′

4. Factorize:
[
PTX
P ′TX ′

]
svd
= UΣVT and set

[
M̃

M̃′

]
= ψ(U

√
Σ) and Q̃ = ψT(V

√
Σ).

5. Recover the transformation: Set Â = N′M̃′M̃−1N−1 and t = C′ −
ÂC.

6. Recover the corrected points: Set Q̂ = NM̃Q̃ and Q̂′ = N′M̃′Q̃.

7. Transfer the points to the original coordinate frames: Extract
the corrected points Q̂j from Q̂ and Q̂′

j from Q̂′. Translate them as

Q̂j ← Q̂j + C and Q̂′
j ← Q̂′

j + C′.

8. Compute the reprojection error:

C2(Q,Q′) =
1

m

m∑

j=1

(
1

n

n∑

i=1

d2(xij,PiQ̂j) +
1

n′

n′∑

i=1

d2(x′
ij,P

′
iQ̂

′
j)

)
.

Table 2.1: FactMLE, the proposed approximated Maximum Likelihood
alignment algorithm in the case of complete data.
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in [26]. Another application to Structure-from-Motion of the EM algorithm
is presented in [13], where it is used to learn simultaneously the 3D model
and the data association. The missing information in this case is thus not the
point coordinates themselves but the point correspondences between images.

The EM algorithm is an iterative method which estimates the model pa-
rameters, given an incomplete set of measurement data. The main idea is
to alternate between predicting the missing data and estimating the model.
Since the log likelihood cannot be maximized using factorization, due to the
missing data, it is replaced by its conditional expectation given the observed
data, using the current estimate of the parameters. The conditional expec-
tation at iteration k is written

E(k)(Θ) = E [ logL(Θ) | Xobs,Θ
(k) ] , (2.8)

where Θ is the set of parameters, logL(Θ) the log likelihood and Xobs the
observed data. In the maximization step, this conditional expectation is then
maximized with respect to the parameters and the new parameter vector is
given by

Θ(k+1) = arg max
Θ

E(k)(Θ). (2.9)

In the case where the log likelihood is a linear function of the missing data,
this simply consists in replacing the missing data by their conditional ex-
pectations given the observed data at current parameter values. This ap-
proximated log likelihood is then maximized so as to yield a new estimate of
the parameters. The log likelihood increases in each iteration and the pro-
cess converges to a local minimum of the approximated Maximum Likelihood
residual error (2.1). The rate of convergence of the EM algorithm is linear
and a function of the rate of missing data. See e.g. [46] for details and proof
of convergence.

Since the reconstruction of the two camera sets using factorization needs
a complete data set, we are limited to the points visible in all views for the
initial reconstruction. This allows us to reconstruct all cameras, but only
part of the 3D points. We then triangulate the missing points in order to
complete the 3D point cloud. This preliminary expectation step yields a
completed set of 3D data, that can be used in the alignment algorithm.

However, the reprojection error, that is, the negative log likelihood, still
cannot be minimized because of the incomplete measurement matrix X . The
expectation step predicts the missing image points by reprojecting them from
the completed 3D points according to

{
X (k) = E [X |Xobs, Q̂(k) ]

X ′(k) = E [X ′ | X ′
obs, Q̂′(k) ].

(2.10)
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Namely for the missing point xij, we set

x
(k+1)
ij ← P

(k)
i Q̂

(k)
j + t

(k)
i .

The maximization step consists in applying the algorithm described in
the complete data case using the formulation

min
Q̂,Q̂′

1

2nm

(
‖X (k) − PQ̂‖2 + ‖X ′(k) − P ′Q̂′‖2

)
, (2.11)

with Q̂ and Q̂′ such that Q̂′ = ÂQ̂. This yields an estimate of the sought-after
transformation (Â, t̂) as well as corrected point positions {Q̂j ↔ Q̂′

j}.
These two steps are alternated, thus forming an iterative procedure where

the corrected points are used in the expectation at the next iteration. In order
to decide whether convergence is reached, the change in reprojection error
between two iterations is measured. When the reprojection error stabilizes,
the final result is returned.

Table 2.2 gives a summary of the algorithm with its EM extension.

2.2.5 Using Multiple Camera Sets

Suppose that one is given l sets of reconstructed point correspondences
{Qj ↔ Q′

j ↔ Q′′
j ↔ . . .} and cameras {(Pi, ti)}, {(P′

i, t
′
i)}, {(P′′

i , t
′′
i )}, . . . .

We show that our algorithm can be extended to compute all the align-
ing transformations {(Â, t̂), (Â′, t̂′), . . .} and corrected point position {Q̂j ↔
Q̂′

j ↔ Q̂′′
j ↔ . . .} in one single computation step. The derivation of this

algorithm is very similar to the two camera set case, so we shall not present
it in great details.

The problem is formulated as

min
Q̂,Q̂′,Q̂′′,...

C2(Q̂, Q̂′, Q̂′′, . . . ) s.t.





Q̂′
j = ÂQ̂j + t̂

Q̂′′
j = Â′Q̂j + t̂′

...

(2.12)

where C2(Q̂, Q̂′, Q̂′′, . . . ) is the total reprojection error given by

C2(Q̂, Q̂′, Q̂′′, . . . ) =
1

lnm

(
R2(P , Q̂, {ti})+

+R2(P ′, Q̂′, {t′i}) +R2(P ′′, Q̂′′, {t′′i }) + . . .
)
. (2.13)
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Algorithm

1. Compute the orthonormalizing transformations:

[
· · ·Pi

T · · ·
]T qr

= PN
−1 and

[
· · ·P′

i
T · · ·

]T qr
= P ′

N
′−1

2. Form the measurement matrices: xij ← xij − ti and x′
ij ← x′

ij − t′i

3. Expectation-Maximization:

(a) Expectation. Predict the missing point xij by setting xij ← PiQ̂j .
Compute the reconstructed centroids:

C =
PT

m

m∑

j=1




...
xij

...


 and C′ =

P ′T

m

m∑

j=1




...
x′

ij
...




Recenter the measurement matrices:

xij ← xij − PiC and x′
ij ← x′

ij − P
′
iC

′.

(b) Maximization. Factorize:

[ PTX
P ′TX ′

]
svd
= UΣV

T and set

[
M̃

M̃
′

]
= ψ(U

√
Σ) and Q̃ = ψT(V

√
Σ).

(c) Recover the corrected points. Set Q̂ = NM̃Q̃ and Q̂′ = N
′
M̃

′Q̃.
(d) Transfer the points to the original coordinate frames. Extract

the corrected points Q̂j from Q̂. Translate them as Q̂j ← Q̂j + C.

(e) Compute the reprojection error.

C2(Q,Q′) =
1

m

m∑

j=1

(
1

n

n∑

i=1

d2(xij ,PiQ̂j) +
1

n′

n′∑

i=1

d2(x′
ij ,P

′
iQ̂

′
j)

)
.

(f) Loop on (a). Iterate until convergence is reached (see Sect. 2.2.4).

4. Recover the transformation: Set Â = N
′
M̃

′
M̃

−1
N
−1 and t = C′ − ÂC.

Table 2.2: FactMLE-EM, the proposed approximated Maximum Likeli-
hood alignment algorithm with its EM extension handling the missing data
case.
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Step 1: Orthonormalizing. Following Sect. 2.2.2, we introduce the or-
thonormalizing transformations N,N′,N′′, . . . and apply them to all recon-
structions





P ← PN

P ′ ← P ′N′

P ′′ ← P ′′N′′

...

and





Q ← N−1Q
Q′ ← N′−1Q′

Q′′ ← N′′−1Q′′

...

.

Step 2: Eliminating the Translations. We eliminate the translation
parts {t̂, t̂′, . . .} of the 3D transformations. Briefly, we compute the partial
derivatives of the reprojection error (2.13) with respect to each translation.
By substituting the constraints in (2.12) and nullifying the resulting equa-
tions, expressions similar to (2.3) are obtained. Likewise, nullifying the par-
tial derivatives with respect to the corrected points {Q̂j}, and substituting

the expressions for the translations, we obtain equation (2.2.2),
¯̂Q = P†Ȳ ,

leading, using the orthonormal bases property P† = PT, to

t̂ = P ′TȲ ′ − ÂPTȲ
t̂′ = P ′′TȲ ′′ − Â′PTȲ

...

This means, as equation (2.4), that the centered coordinates canceling the
translation parts out of the transformations are obtained by translating each
set of 3D points so that the centroids reconstructed from the images lie at
the origin. By translating the image points as in Sect. 2.2.2 to get rid of the
translation part of the cameras, problem (2.12) can be expressed as

min
Q̂,Q̂′,Q̂′′,...

C2(Q̂, Q̂′, Q̂′′, . . . ) s.t.





Q̂′
j = ÂQ̂j

Q̂′′
j = Â′Q̂j

...

(2.14)

where

C2(Q̂, Q̂′, Q̂′′, . . . ) ∝ R2(P , Q̂) +R2(P ′, Q̂′) +R2(P ′′, Q̂′′) + . . .

= ‖X − PQ̂‖2 + ‖X ′ − P ′Q̂′‖2 + ‖X ′′ − P ′′Q̂′′‖2 + . . .
(2.15)



2.3 Other Algorithms 53

Step 3: Factorizing. Thanks to the orthonormal bases, we approximate
the reprojection error (2.15) by

C̃2(Q̂, Q̂′, Q̂′′, . . . ) =

∥∥∥∥∥




PTX
P ′TX ′

P ′′TX ′′

...




︸ ︷︷ ︸
Λ

−




Q̂
Q̂′

Q̂′′

...




︸ ︷︷ ︸
∆

∥∥∥∥∥

2

.

By introducing the constraints from equation (2.14) and an unknown global
affine transformation B

∆ =




I

Â

Â′

...


BB−1Q̂ =




B

ÂB

Â′B
...




︸ ︷︷ ︸
M̃

B−1Q̂︸ ︷︷ ︸
Q̃

.

Let l ≥ 2 be the number of camera sets. The svd of matrix Λ is

Λ(3l×m) = U(3l×m)Σ(m×m)V
T

(m×m).

Let Σ = ΣuΣv be any decomposition of matrix Σ, we obtain M̃ = ψ(UΣu)
and Q̃ = ψT(VΣT

v ). By using the partitioning M̃T = (M̃T M̃′T M̃′′T · · · )
while undoing the orthonormalizing transformations, one gets





B = NM̃

Â = N′M̃′B−1

Â′ = N′′M̃′′B−1

...

and





Q̂ = BQ̃
Q̂′ = ÂBQ̃
Q̂′′ = Â′BQ̃

...

2.3 Other Algorithms

We briefly describe three other alignment algorithms. The first two of them
do not yield Maximum Likelihood estimates under the previously-mentioned
hypotheses on the noise distribution. They rely on 3D measurements and
therefore naturally handle missing image data. The third method is the clas-
sic nonlinear method of bundle adjustment, giving the Maximum Likelihood
estimate with respect to the parameters of the whole model, namely the
projection and the structure matrices.
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2.3.1 Minimizing the Non-Symmetric Transfer Error

This algorithm, dubbed ‘TrError’, is specific to the two camera set case.
It is based on minimizing a non-symmetric 3D transfer error E(Â) as follows

min
Â,t̂

E2(Â, t̂) with E2(Â) =
1

m

m∑

j=1

‖Q′
j − ÂQj − t̂‖2.

Differentiating E2 with respect to t̂ and nullifying the result yields

t̂ = Q̂′ − ÂQ̂.

Henceforth, we assume that the translation has been eliminated by trans-
lating each 3D point set on its centroid. By rewriting the error function
as

E2(Â) ∝ ‖Q′ − ÂQ‖2,
and applying standard linear least-squares, one obtains the solution

Â = Q′Q†.

2.3.2 Direct 3D Factorization

This algorithm, dubbed ‘Fact3D’, is based on directly factorizing the 3D
reconstructed points. It is not restricted to the two camera set case, but for
simplicity, we only describe this case. Generalization to multiple camera sets
is trivial. The algorithm computes the aligning transformation (Â, t̂) and
perfectly corresponding points {Q̂j ↔ Q̂′

j}. The reconstructed cameras are
not taken into account by this algorithm, which entirely relies on 3D mea-
surements on the reconstructed points. Under certain conditions, examined
subsequently, this algorithm is equivalent to the proposed FactMLE-EM.

The problem is stated as

min
Q̂,Q̂′

D2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j + t̂,

where the 3D error function employed is defined by

D2(Q̂, Q̂′) =
1

2m

(
‖Q − Q̂‖2 + ‖Q′ − Q̂′‖2

)
. (2.16)

Minimizing this error function means that if the noise on the 3D point co-

ordinates were Gaussian, centered and i.i.d., which is not the case with our
actual hypotheses, then this algorithm would yield the Maximum Likelihood
estimate.
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Step 1: Computing the Translation. By nullifying the partial deriva-
tives of the error function D2 with respect to t̂ and with respect to the Q̂j,
and substituting the latter expressions into the former one, we obtain

t̂ = Q̄′ − ÂQ̄.

This equation means that, as in most factorization methods, canceling the
translation part out according to the error function D is done by centering
each set of 3D points on its actual centroid: Q̂j ← Q̂j−Q̄ and Q̂′

j ← Q̂′
j−Q̄′.

Henceforth, we assume to work in centered coordinates. The problem is
rewritten as

min
Q̂,Q̂′

D2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j.

Step 2: Factorizing. Following the approach in Sect. 2.2.2, we rewrite D
as

D2(Q̂, Q̂′) ∝
∥∥∥∥
[
Q
Q′

]
−
[
Q̂
Q̂′

]∥∥∥∥
2

=

∥∥∥∥∥

[
Q
Q′

]

︸ ︷︷ ︸
Λ

−
[

B

AB

]

︸ ︷︷ ︸
M̃

B−1Q̂︸ ︷︷ ︸
Q̃

∥∥∥∥∥

2

.

Using svd of matrix Λ = UΣVT, we obtain M̃ = ψ(UΣu) and Q̃ = ψT(VΣT

v ).

By using the partitioning M̃ =

[
M̃

M̃′

]
, we get





B = M̃

Â = M̃′B−1

Q̂ = BQ̃
.

Equivalence between Fact3D and FactMLE. They are two conditions
under which Fact3D minimizes a 2D error. It is then, in the complete
data case, equivalent to the FactMLE algorithm. Not surprisingly, the first
one is that the 3D models must be expressed in orthonormal bases, that is,
PTP = P ′TP ′ = I. The second one is that each 3D model must have been
computed using Maximum Likelihood point triangulation, which imply in
particular that all the views used for the reconstruction must be used for
the alignment phase, that is, Q = PTX and Q′ = P ′TX ′. While the first
condition is easy to satisfy by using an orthonormalizing transformation as
described in Sect. 2.2.2, the second one is difficult to meet in practice. Indeed,
when one reconstruct from image sequences, the alignment phase consists in
registering partial 3D models using small subsets of points. Verifying that,
under these two conditions, the approximated Maximum Likelihood residual
error (2.1) can be rewritten as D is straightforward.
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2.3.3 Computing the Reprojection Error

Each point correspondence contributes to the reprojection error. While for
method FactMLE-EM, the corrected points computed by the algorithm di-
rectly provide the reprojection error, for methods TrError and Fact3D,
corrected points have to be estimated by minimizing the reprojection error.
This minimization is conducted independently for each point. The reprojec-
tion error that we want to measure with respect to an estimated transforma-
tion (Â, t̂) is defined by equation (2.1)

C2(Q̂, Q̂′) =
1

m

m∑

j=1

(
1

n

n∑

i=1

d2(xij,PiQ̂j + ti) +
1

n′

n′∑

i=1

d2(xij,P
′
iQ̂

′
j + t′i)

)
.

Introduce the constraint Q̂′ = ÂQ̂+ t̂

C2(Q̂, ÂQ̂+ t̂) =
1

m

m∑

j=1

e2(Q̂j, (Â, t̂)),

where

e2(Q̂j, (Â, t̂)) =
1

n

n∑

i=1

d2(xij,PiQ̂j + ti) +
1

n′

n′∑

i=1

d2(xij,P
′
i(ÂQ̂j + t̂) + t′i).

The term e2(Q̂j, (Â, t̂)) is the contribution of the j-th point correspondence
to the reprojection error. It is given by

e2

(
arg min

Q̂j

e2(Q̂j, (Â, t̂)), (Â, t̂)

)
.

The inner minimization is a linear least-squares problem

e2(Q̂j, (Â, t̂)) =

∥∥∥∥∥∥∥∥∥∥∥∥




...
Pi

...

P′
iÂ
...




Q̂j −




...
xij − ti

...

x′
ij − t′i − P′

it̂
...




∥∥∥∥∥∥∥∥∥∥∥∥

2

,

where the matrices are of size (2(n+n′)×3) and (2(n+n′)×1) respectively.
We now solve the problem using a standard matrix pseudoinverse technique.
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2.3.4 Bundle Adjustment

In order to obtain the Maximum Likelihood estimate of the complete set of
parameters, we minimize the reprojection error from (2.1). The minimization
is now carried out by re-estimating the structure as well as the projection
matrices. The problem is stated as

min
P,P ′,Q̂,Q̂′

C2(Q̂, Q̂′) s.t. Q̂′
j = ÂQ̂j + t̂. (2.17)

Although the expression still is concise, the problem is not bilinear anymore
and can thus not be solved using a matrix factorization technique. The
nonlinear minimization, called bundle adjustment (Bundle), is commonly
performed by using the Levenberg-Marquardt method, a method that finds
the minimum of a sum of squares of nonlinear functions. Writing the repro-
jection error as

R2(P ,P ′,Q,Q′) =
1

m

m∑

j=1

(
1

n

n∑

i=1

d2(xij,PiQj) +
1

n′

n′∑

i=1

d2(x′
ij,P

′
iQ

′
j)

)
,

(2.18)
we can use the technique presented in 1.5 to solve the minimization problem.
In order to converge to the global minimum of the reprojection error, the
method needs an initial value not too far from the solution to converge,
which is provided by one of the linear methods presented above.

Note that since (2.18) does not use the matrix formulation that was nec-
essary for the linear approach, the reprojection error is computed at all mea-
sured image points, thus avoiding the missing data problem.

2.4 An Approximation to the Reprojection

Error

As the reprojection error will be used in an optimization process, we do not
need to care about scale factors. We will therefore formulate the reprojection
error using equality up to a constant (∝). Whereas the minimization of the
reprojection error (2.5),

C2(Q̂, Q̂′) ∝ ‖X − PQ̂‖2 + ‖X ′ − P ′Q̂′‖2,
together with the re-estimation of the structure as well as the projection
matrices, ensures a Maximum Likelihood estimate, this is not the case when
using the approximation introduced in (2.7)

C̃2(Q̂, Q̂′) ∝ ‖PTX − Q̂‖2 + ‖P ′TX ′ − Q̂′‖2.
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By projecting the reprojection error onto the subspace spanned by the columns
of P , we obtain an error expressed in 3D space, due to the fact thatQ = PTX
and Q′ = P ′TX ′. This error is thus similar to (2.16)

D2(Q̂, Q̂′) ∝ ‖Q− Q̂‖2 + ‖Q′ − Q̂′‖2.

We note however that even though the expressions are identical, the impor-
tant property that the reconstruction is expressed in an orthonormal basis
differentiates the two error functions. As the reconstruction is given up to
an arbitrary affine transformation (that is, matrix A in equation (1.21)), the
direct 3D error (2.16) depends on the basis in which the structure matrices Q
and Q′ are given. In our case, as the orthogonality of P and P ′ is guaranteed
by the orthonormalization process, we can (without approximation) multiply
the error by P and P ′ respectively, thus obtaining

C̃2(Q̂, Q̂′) ∝ ‖PPTX − PQ̂‖2 + ‖P ′P ′TX ′ − P ′Q̂′‖2
= ‖X̌ − PQ̂‖2 + ‖X̌ ′ − P ′Q̂′‖2,

where X̌ and X̌ ′ are the measurement matrices reprojected using the esti-
mated structure and projection matrices from the reconstruction step, that
is, rank 3 approximations of X and X ′. The approximated reprojection er-
ror has thereby an interpretation with a physical meaning (2D image error
expressed in pixels) and differs from the exact expression only in that X has
been replaced by X̌ .

2.5 Experimental Evaluation

We evaluate our algorithm using simulated and real data. The implementa-
tion of all three compared algorithms, that is, FactMLE-EM, TrError

and Fact3D, as well as the generation of simulated data, have been done
in C++. We also use our approximation to initialize the two nonlinear algo-
rithms TrueMLE and Bundle.

Note that we have chosen not to measure the error with respect to the
ground truth 3D affine transformation for several reasons. First, how to
measure this error is not obvious, since on the one hand, algebraic measures
such as the two-norm of the difference between two affine transformation
matrices are not considered meaningful, and on the other hand, measuring
distances in the affine 3D space is not possible. Second, we believe that the
reprojection error is the right criterion to minimize so as to obtain reliable
results. This criterion has indeed been successfully used in many different
contexts, and we do not try to investigate its well-foundness.
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2.5.1 Simulated Data

We generated m 3D points and two sets of n weak perspective cameras each.
The pose of a camera is defined by its three dimensional location, view-
ing direction and roll angle (rotation angle around the optical axis). The
corresponding affine projection matrix is given by a (2× 3), truncated, rota-
tion matrix R̄i together with a two-dimensional translation vector ti, both of
which premultiplied by an internal calibration matrix. More precisly, we use
weak perspective cameras Pi = AiR̄i and ti = AiT̄i, where Ai is the internal
calibration matrix

Ai = ki

[
τi 0
0 1

]
.

The scale factor ki models the average depth of the object and the focal
length of the camera, and τ models the aspect ratio that we choose very
close to 1. The 3D points are chosen from a uniform distribution inside a
thin rectangular parallelepiped with dimensions 1 × 1 × (1 − d), and the
internal camera scale factors ki are chosen so that the points are uniformly
spread in 400× 400 pixel images.

We partition the points into three subsets. The points in the first subset
are visible in the first set of cameras only while the points in the second
subset are visible in the second set of cameras only. Note that there is
no geometrical constraint defining different sectors of the point cloud. The
points in the third subset are visible in both camera sets. The third subset
contains mc points, while the two first subsets both contains m−mc points.
Hence, m points are used to perform Structure-from-Motion on each camera
set, while mc points are used for the alignment. The points are projected
onto the images where they are visible and gaussian noise with zero mean
and standard deviation σ is added.

In order to assess the behavior of the algorithms in the presence of non-
perfectly affine cameras, we introduce the factor 0 ≤ a ≤ 1. Let Zij be the
depth of the j-th 3D point with respect to camera i, we scale the projected
points xij by xij ← 1

ν
xij with ν = a + (1 − a)Zij, meaning that for a = 1,

the points does not change and the projection is perfectly affine, and when a
tends toward 0, the points undergo stronger and stronger perspective effects.
The points are further scaled such that their standard deviation remains
invariant, in order to keep them well-spread in the images.

So as to simulate the problem of incomplete data, e.g. due to occlusions,
we generate a list of missing image points. We introduce the probability p
that any given 3D point is occluded in some images and, for simplicity, the
same probability that it is occluded in one particular image. This gives a
rate of missing data of τ = p2. We note that since we need at least two views
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of a 3D point in order to retrieve information about its 3D location, keeping
constant the number of points used in the reconstruction, this method of
generating the missing points leads to a somewhat lower rate in practice,
especially in the case of few cameras.

A 3D model is reconstructed from each of the two camera sets using the
factorization algorithm described in Sect. 1.5. Once the camera matrices and
3D points are estimated up to a 3D affine transformation, only the mc points
common to the two camera sets are considered for the alignment of the two
reconstructions. We define the overlap ratio of the two camera sets to be
θ = mc/m, that is, for θ = 1 all points are seen in all views, while for θ = 0,
the two sets of cameras do not share corresponding points.

Each of the three alignment algorithms yields estimates for the 3D affine
transformation and corrected point clouds, except TrError which only
gives the transformation. The comparison of the algorithms being based
on the reprojection error, the point clouds used to compute it need to be
re-estimated so that this error is minimized, given an estimated transfor-
mation. This must be done for TrError and Fact3D, but is useless for
FactMLE-EM. Our procedure to compute the reprojection error given a
3D transformation is given in appendix 2.3.3.

We setup the following default setting for the simulations: n = 5 views,
m = 250 points, θ = 0.2 (that is, a 20% overlap and mc = 50 points common
to the two 3D models), σ = 3.0 pixels, d = 0.95 (flat 3D scene), a = 1
(perfectly affine projections) and τ = 0.09. We vary each parameter at a
time. Figures 2.5.1, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 show the reprojection
error averaged over 500 simulations for the algorithms for different parameter
values.

In figure 2.5.1, the rate of missing data varies from 0 to 0.5. In order
to emphasize the contribution of the EM scheme, we also display the repro-
jection error of FactMLE-EM after the first iteration. When the rate of
missing data grows, the three methods show different tendencies. Whereas
FactMLE-EM handles missing data well, the other methods prove to be
unstable. However, considering only one iteration of FactMLE-EM, the
reprojection error increases just as for the other methods. The difference in
performance is thus provided by the EM iterations. In figure 2.3, the overlap
ratio varies (coupled with the number of common points mc, so as to keep
the total number of points m constant) from 0.1 to 1.0. The quasi linear
behavior should probably be attributed to the increasing size of the model
rather than to the increasing overlap.

In figure 2.4 the deviation from the affine model a varies from 0 to 1,
away from a perfectly affine projection. Despite the fact that the alignment
is affine, even completely projective cameras seem to be well modeled by
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Figure 2.2: Reprojection error against the rate of missing data.

the three methods. In fact, the error induced by the affine approximation is
small compared to the added noise in this setting. In figure 2.5 the flatness
of the simulated data d varies from 0 to 1, that is, from a cube to a plane.
The flatness of the scene does not change the result of the alignment, except
for very flat scenes making the algorithms unstable, Fact3D and TrError

somewhat more than FactMLE-EM. This result was expected since planar
scenes are singular for the computation of a 3D affine transformation.

In figure 2.6, we vary the number of cameras n from 2 to 15. Whereas
Fact3D and TrError show almost identical behavior, FactMLE-EM is
distinguished by its lower reprojection error. The difference between our
method and the other two seems to be more important in the cases where
we have few cameras. In figure 2.7, simulations with varying σ reveal a quasi
linear relationship between the the noise level and the reprojection error.
The slope is somewhat less steep in the case of FactMLE-EM than for the
other two methods, indicating that our method is less sensitive to noise.

In figure 2.8, the number of common points mc varies (coupled with the
total number of points m, so as to keep the overlap constant) from 6 to 60.
Apart from the results of the methods compared earlier, we also show the
result of the minimization using the full svd decomposition, FullSVD, the
true Maximum Likelihood Estimator, TrueMLE, as given by the nonlinear
solution of the minimization problem (2.6) and the bundle adjustment over
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Figure 2.3: Reprojection error against the extent of overlap θ between the
two sets of cameras. For θ = 1, all points are seen in all views.the number of
points mc.

the complete set of parameters (see Sect. 2.3.4), Bundle. For the two non-
linear methods, we use the results from our algorithm for the initialization.
We see that using the orthonormalizing transformations does not impact the
results much, since the alternative solution FullSVD needs to perform the
minimization in two steps. Moreover, we see that our method yields a good
approximation to TrueMLE and a reasonable approximation to Bundle.

Although the three algorithms have similar behavior throughout the se-
quence of tests, except when varying the rate of missing data, FactMLE-

EM consistently outperforms the other ones.

2.5.2 Real Data

We applied the algorithms to real image sequences as follows. A number
of images of a scene were taken from different angles and grouped into two
sets. Each image plays the role of a camera. A certain number of point
correspondences are defined within each one of the image sets, as well as for
all the images, thus forming the measurement matrices X and X ′. Hence,
not all point correspondences are common to the two camera sets.

The camera is a digital Nikon D100 with a lens of focal length 80−200 mm,
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Figure 2.4: Reprojection error against the deviation 1 − a from the affine
projection model.

giving an image size of 2240×1488 pixels. The camera is not calibrated, that
is, the internal parameters are unknown and are furthermore not constant
throughout the series of photos, in particular due to the autofocus.

The ‘books’ sequence. We used a series of images of a rather flat scene,
shown on figure 2.9, together with a large set of point correspondences, given
by a tracking algorithm, shown on figure 2.9(a). So as to keep the experimen-
tal conditions close to the hypothesis of affine cameras, the photos are taken
far away from the object using a large zoom (focal length close to 200 mm).
This group of images consists of two sets of respectively n = 2 and n′ = 3
images, together with the mc = 196 common point correspondences, and
respectively m = 628 and m′ = 634 correspondences for the two sets, giving
an approximate overlap of 80%. In addition to the three linear methods, we
have also solved the problem using a nonlinear method, in order to present
the true Maximum Likelihood estimate. Using the results of our algorithm to
initialize the bundle adjustment yields new estimations of the structure and
projection matrices and a slightly lower reprojection error. The reprojection
errors we obtained are:
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Figure 2.5: Reprojection error against the scene flatness d. For d = 1, all 3D
points lie on a plane.

TrError 2.17 pixels
Fact3D 1.97 pixels
FactMLE-EM 1.90 pixels
TrueMLE 1.90 pixels
Bundle 1.85 pixels

A detail of an image with the reprojected points due to all three meth-
ods is shown in figure 2.9(b). As predicted by the tests on simulated data,
FactMLE-EM performs better than Fact3D and TrError. Moreover,
we see that FactMLE-EM yields the same reprojection error as the true
Maximum Likelihood Estimator and that the result of the bundle adjustment
is only slightly better.

The ‘cylinder head’ sequence. We also tested the algorithms on a series
of images of a cylinder head. This sequence was acquired under different
conditions than the previous sequence. The photos were taken with the
same camera, using a lens with a focal length of 12 mm, at a distance of
approximately 60 cm of the object, which is 40 cm long. The points, shown on
figure 2.10(b), were manually entered. Using these settings, the affine camera
model does not apply and the reconstruction performed prior to the alignment
is therefore less reliable. Nevertheless, the result of the alignment is rather



2.5 Experimental Evaluation 65

2 4 6 8 10 12 14
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

Number of cameras

R
ep

ro
je

ct
io

n 
er

ro
r 

(p
ix

el
s)

TrError
Fact3D
FactMLE−EM

Figure 2.6: Reprojection error against the number of cameras.

good. This group of images consists of two sets of respectively n = n′ = 2
images, together with the mc = 18 common point correspondences, and
respectively m = 22 and m′ = 23 correspondences for the two sets, giving
an approximate overlap of 31%. As before, we present the results of the
bundle adjustment as well as the true Maximum Likelihood estimate. The
reprojection errors were:

TrError 3.78 pixels
Fact3D 3.77 pixels
FactMLE-EM 3.76 pixels
TrueMLE 3.76 pixels
Bundle 3.72 pixels

The two sets of images are displayed in figure 2.10(a) and the given point
matches together with the FactMLE-EM reprojections are displayed in
figure 2.10(b).

The ‘building’ sequence. We finally tested the algorithms on a series
of images of a building. The point correspondences are again given by a
tracking algorithm, but this time the data set is incomplete. We need at
least two views of a 3D point in order to use it for the reconstruction, so
we keep only those points that are present in two or more images. We then
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Figure 2.7: Reprojection error against the noise.

define a point correspondence to be common to the two sets and thus used
for the alignment of the two reconstructions, as soon as it is present in (at
least two images in each one of) the two sets. This group of images consists of
two sets of respectively n = 5 and n′ = 5 images, together with the mc = 40
common point correspondences, and respectively m = 94 and m′ = 133
correspondences for the two sets, giving an approximate overlap of 43% and
30% respectively. The rates of missing data are approximately for the first
camera set 31% (13% for the common points) and for the second camera
set 22% (11% for the common points). We note that the missing points are
essentially not due to occlusions but to failure in the tracking algorithm or to
the points being out of range in the images. As before, we present the results
of the bundle adjustment as well as the true Maximum Likelihood estimate.
The reprojection errors we obtained are:

TrError 0.85 pixels
Fact3D 0.84 pixels
FactMLE-EM 0.78 pixels
TrueMLE 0.77 pixels
Bundle 0.69 pixels

As predicted by the simulations with varying rate of missing data, the dif-
ference between the methods is more important when processing incomplete
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data. Whereas Fact3D and TrError yield similar errors, FactMLE-EM

distinguishes itself with a significantly lower error. We note that once more,
the approximation of the Maximum Likelihood Estimator is good and that
our method is also a reasonable approximation to the bundle adjustment.
The results of this sequence are displayed in figure 2.11.

2.6 Conclusions

We presented a method to compute an approximated Maximum Likelihood
estimate of 3D affine transformations, under standard hypotheses on the noise
distribution, aligning sets of 3D points obtained from uncalibrated affine
cameras. The method computes all aligning transformations in a single com-
putation step in the occlusion-free case, by minimizing the reprojection error
over all points and all images. An iterative extension is presented for the
missing data case. Experimental results on simulated and real data show
that the proposed method consistently performs better than other methods
based on 3D measurements. Comparison to nonlinear methods shows that
the approximation is good. Our algorithm is easy to implement, fast and
needs no initialization. It is an essential element for reconstruction meth-
ods based on the alignment of partial reconstructions, that is, sequential and
hierarchical methods, and can be used to initialize more complex methods.
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Figure 2.8: Reprojection error against (a) the number of points. (b) shows a
detail.
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(a) One image from the ‘books’ sequence overlaid with the mc = 196 point correspon-
dences in white and reprojected points in black.

(b) A detail from the image in (a) showing the original points in black and repro-
jected points in white, from FactMLE-EM (points), Fact3D (stars) and TrError

(crosses).

Figure 2.9: Results from the ‘books’ sequence.
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(a) The two sets of images of the ‘cylinder head’ sequence.

(b) The original points in black together with their reprojections due to
FactMLE-EM in white. The image is a closeup from the first image in
the first set.

Figure 2.10: Results from the ‘cylinder head’ sequence.
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(a)

(b)

Figure 2.11: The original common points in white together with their re-
projections due to FactMLE-EM in black. The two images are the first
ones in the respective camera sets. Note that part of the points used in the
alignment are out of range in (a), thus defined as missing.
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Chapter 3

Reconstruction of 3D
Parametric Curves

In this chapter, we deal with the problem of reconstruction of 3D curves,
given the CAD model, for the purpose of controlling conformity with respect
to this model. We dispose of a set of images with given perspective projection
matrices. The reconstruction will be accomplished by means of the observed
contours and their matching, both across the images and to the model.

The parameterization of the curves as well as the optimization algorithms
we use must yield an estimate that meets the requirements of accuracy and
robustness necessary to perform a control of conformity. We have chosen
to use NURBS curves [52], a powerful mathematical tool that is also widely
used in industrial applications as well as in the conception chain.

In order to ensure stability, any method used ought to be robust to erro-
neous data, namely the primitives extracted from the images, since images
of metallic objects incorporate numerous false edges due to reflections.

The methods developed have been published in the proceedings of SCIA
2007 [45], EMMCVPR 2007 [43] and WISP 2007 [44] respectively.

73
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Reconstruction de courbes paramétriques 3D

Dans ce chapitre, nous présentons nos travaux sur la reconstruction de
courbes paramétriques 3D. Nous présentons un algorithme pour la recons-
truction, basée sur le modèle CAO, dans le but de procéder à un contrôle
de conformité de l’objet observé par rapport à ce modèle. Nous disposons
d’un ensemble d’images calibrées, c’est-à-dire avec les paramètres internes et
externes (position et orientation) des caméras connus. La reconstruction sera
réalisée par le biais des contours observés dans les images et par rapport au
modèle.

La paramétrisation des courbes, ainsi que les algorithmes d’optimisation
utilisés, doivent fournir une estimation conforme aux exigences de précision et
de robustesse nécessaires pour pouvoir procéder au contrôle de conformité.
Nous avons choisi d’utiliser des courbes NURBS [52], outil mathématique
puissant qui est également présent dans les applications industrielles ainsi
que dans la châıne de conception des produits manufacturés.

Afin de garantir la stabilité, la méthode doit être robuste aux données
erronnées, notamment aux primitives extraites des images, puisque les images
des objets métalliques comportent de nombreux contours parasites dus aux
réflexions.

Les méthodes développées ont été publiées dans les actes de SCIA 2007
[45], EMMCVPR 2007 [43] et WISP 2007 [44] respectivement.

• Etat de l’art
• Formulation du problème
• Optimisation sur les points de contrôle

Présentation de notre méthode de reconstruction de courbes 3D pour
un nombre de paramètres donné. La reconstruction est faite par le biais
d’une minimisation de l’erreur résiduelle dans les images.
• Insertion de points de contrôle

La méthode de reconstruction pour une paramétrisation fixée est com-
plétée par une procédure d’augmentation de degrés de libertés, par
insertion de points de contrôle.
• Optimisation par minimisation d’énergie du gradient

Présentation d’un autre critère à minimiser et de l’algorithme qui en
découle.
• Conclusions



3.1 State of the Art 75

3.1 State of the Art

3.1.1 Active Contours for Stereo Reconstruction

Algorithms based on active contours [36] allow for a local adjustment of the
model and a precise reconstruction of primitives. Although initially defined
for ordered point clouds, active contours have been adapted to parametric
curves in the stereo setting [48]. More precisely, the method allows for an
evolution of reprojected model curves toward the image edges, in order to
minimize the distance in the images between the predicted curves and the
observed edges.

In the area of 3D reconstruction of non-parametric curves, Ghaffari pro-
poses a method based on surface forces and a gradient vector field (GVF [72])
[24]. In an initialization phase of 2D optimization, two independent contours
are estimated. This step is followed by epipolar matching and triangulation,
thus reconstructing the 3D curve. A comparison between the reprojection of
the curve into the images and the original 2D curves yields a displacement
vector that will be used to compensate for calibration errors. The 3D active
contour finally evolves by means of surface forces, correspondence forces and
gradient forces.

In the field of medical imaging, energy minimization methods have been
developed to reconstruct 3D curves using a stereo setting. Sbert and Solé
reconstruct in [55] a 3D curve using an energy-based evolution method. The
associated partial differential equation of the energy functional, derived by
the Euler-Lagrange formulation, is solved using a level-set approach. In [9],
Canero et al. define a force field by reprojecting external image forces, given
by the distance to the edges. A 3D curve is then reconstructed via the
evolution of an active contour, guided by the force field.

Cham and Cipolla propose a tracking method based on affine epipolar
geometry [10] that reconstructs a parametric curve in a canonical frame us-
ing two affine cameras. The result is two coupled snakes. Two models are
used, depending on the tracking situation. The first one is a submanifold
model, representing all parameters related to the two 2D B-spline curves as
a high-dimensional state vector. The evolution of the coupled B-splines, sub-
ject to some geometrical criterion, then consist in projecting the state vector
onto a submanifold. The second model uses a canonical frame to represent
a ‘master’ curve, which is then projected onto the two image frames, form-
ing the observed ‘slave’ curves. The evolution of the active contour is now
performed in two steps, the deformation of the master active contour, induc-
ing a deformation of the slave active contours, and the modification of the
affine transformation that relates the canonical frames to the image frames.
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Whereas the latter model is restricted to planar curves, the former allows a
more general setting.

In [71], Xiao and Li deal with the problem of the reconstruction of 3D
NURBS curves from stereo images. The formulation of the problem features
the minimization of the error between the projections of the reconstructed
3D curve and the observed image curves. The optimization is performed on
the 3D parameters of the curve. Using the perspective projection of NURBS
curves, together with the constraints imposed by the stereo setting, that is,
an epipolar constraint and a weight constraint, the problem is reformulated
in the image planes. Assuming parallel cameras, stereo rectification tech-
niques can be used to simplify the equations. Furthermore, the assumption
of constant weights of the control points of the projected NURBS curves al-
lows one to decompose the problem into three linear least squares problems
in the coupled image curve coordinates. The 3D curve is then retrieved via
triangulation. Although NURBS curves are used in the problem formulation,
the curves are approximated by B-splines for the optimization process. This
makes the problem linear, at the expense of loosing projective invariance and
thus precision.

Bascle and Deriche presented in 1993 a method for 3D parametric curve
reconstruction in a stereo setting [5]. In a first step, a 3D B-spline approxi-
mation of a set of given 3D points and line segments is computed by means
of a weighted least squares estimation. The complexity of the curve, that
is, the number of control points, is chosen so that the least squares error is
below some threshold. In order to refine the 3D model, a minimization prob-
lem is formulated, using a gradient-based energy defined in the two images.
The energy is minimized using Lagrangian dynamics, considering the curve
as a massless material, placed in a viscous medium. During the iterative
optimization procedure, the 3D positions of the control points are updated
by solving a system of partial differential equations, using damping factors
modeling the viscosity. These factors are chosen in each step so that the
3D displacement induced correspond to significant 2D displacements of the
image curves. The aim is to model only what can be observed from the two
available images. This is necessary to avoid instabilities, since the energy
minimization is done in the image planes.

In a multi-view setting, Kahl and August suggest in [34] that matching
and reconstruction could be coupled. Instead of considering the matching
process as a preliminary step, it is interlaced with the reconstruction. So as
to take advantage of the coupling, a new curve model is presented, based on
an a priori known distribution of the curves and on an image formation model.
Given a set of 2D image curves, estimated independently, an inverse problem
is formulated aiming at the reconstruction of the 3D curve that gave rise
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to the image curves. Inspired by the active contours model, the problem is
expressed as an energy minimization. The curves are expressed as B-splines,
but since the problem is stated independently of the parameterization, other
choices are possible. The optimization is done using gradient descent. The
algorithm presented allows a completely automatic reconstruction of a set
of curves observed simultaneously in multiple images. However, there is no
model or structure governing the initial estimation of the images curves and
the 3D curves reconstructed are thus just random curves, without correlation.

3.1.2 Reconstruction of Parametric Surfaces

Although we aim to reconstruct 3D curves, other problems related to the
reconstruction of parametric structures have come up in the area of surfaces.

In [57], Siddiqui and Sclaroff present a method to reconstruct rational
B-spline surfaces. Point correspondences are supposed given. In a first
step, B-spline surface patches are estimated in each view, then the surface
in 3D, together with the projection matrices, are computed using factor-
ization. Finally, the surface and the projection matrices are refined itera-
tively by minimizing the 2D residual error. So as to avoid problems due to
over-parameterization, the number of control points is limited initially, to be
increased later on in a hierarchical process by control point insertion.

3.1.3 Estimation of 2D Parametric Curves

In the case of 2D curve estimation, other aspects of the problem are ad-
dressed. Cham and Cipolla adjust a spline curve to fit an image contour [11].
Control points are inserted iteratively using a new method called PERM (po-
tential for energy-reduction maximization). An MDL (minimal description
length [27]) strategy is used to define a stopping criterion. In order to update
the curve, the actual curve is sampled and a line-search is performed in the
image to localize the target shape. The optimization is performed by gradi-
ent descent. Brigger et al. present in [8] a B-spline snake method without
internal energy, due to the intrinsic regularity of B-spline curves. The opti-
mization is done on the knot points rather than on the control points, which
allows the formulation of a system of equations that can be solved by digital
filtering. So as to increase numerical stability, the method is embedded in a
multi-resolution framework.

In [19], Figueiredo et al. address the problem from a statistical point
of view, proposing a completely automatic contour estimator, in the sense
that no parameter need to be adjusted by the user. Supposing a uniform
distribution of the knot points, the B-spline curve that approximates a given
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set of contour points at best, in the least squares sense, is given by a linear
system depending only on the number of control points. This number is fixed
in a last step, where an exhaustive search is carried out over all relevant value
and the optimum is chosen using an MDL criterion.

Meegama and Rajapakse introduce in [47] an adaptive procedure for con-
trol point insertion and deletion, based on the euclidean distance between
consecutive control points and on the curvature of the NURBS curve. Local
control is ensured by adjustment of the weights. The control points evolve
in each iteration in a small neighborhood (3× 3 pixels).

Yang et al. use a distance field computed a priori with the fast marching
method in order to adjust a B-spline snake [73]. Control points are added in
the segment presenting a large estimation error, due to a degree of freedom
insufficient for a good fit of the curve. The procedure is repeated until the
error is lower than a fixed threshold. Redundant control points are then
removed, as long as the error remains lower than the threshold.

3.1.4 Localization and Tracking

Drummond and Cipolla present, in the framework of a pose estimation algo-
rithm [16], a mono-dimensional edge-tracking method using line-search along
the curve normals, initiated at sample points. After a weighting based on
the confidence of the edge points, candidate points are used in a linear ro-
bust pose estimation. In [66], Vacchetti et al. introduce the use of multiple
hypotheses in the image line-search. A new robust estimator is defined for
use in an iterative optimization, where the line-search needs to be carried
out only once. Stewart deals with the bias problem caused by multiple struc-
tures in robust estimation [58]. When outliers have too much coherence to
be discarded in an efficient way by classic robust estimators, new estimators
must be defined.

3.1.5 Conclusions

Although the problem of 3D reconstruction of curves is addressed in numer-
ous contexts, the application that we aim at still is not fully covered. Based
on the existing work, we have therefore developed an algorithm allowing
the reconstruction of curves in the industrial context that we target, to the
required precision.
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Figure 3.1: The aim of this part of our work is to reconstruct the 3D curves
of an industrial object. The target curve is extracted from the CAD model
and projected onto the images. The 3D curve is then adjusted so as to fit
the observed image contours. It is the 2D information from the images that
is used to estimate a 3D curve that is finally compared to the model curve.

3.2 Problem Formulation

Given a set of images of an object, together with its CAD model, our goal
is to reconstruct in 3D the curves observed in the images. We suppose that
we dispose of the complete camera matrices, giving the rigid transformation,
the pose, as well as the intrinsic camera parameters, for each one of the im-
ages. The idea is to extract a curve from the CAD model and project it onto
the images. Using techniques from image processing, the 3D model curve
is then fitted to the observed image curves. The process is depicted in fig-
ure 3.1. The aim is to find the 3D curve giving the observed 2D curves. As
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the NURBS curves provided by the CAD model are suitable for a perspec-
tive projection framework, the parametrization is maintained in our method.
Another advantage of using parametric curves is the inherent regularity, due
to the formulation as piece-wise rational polynomials.

The reconstruction is performed by minimizing a functional, defined based
on image data. Regularity aspects can be incorporated as part of the func-
tional, but we will consider that the NURBS curve in itself meets our re-
quirements. The optimization will operate on the control points of the 3D
curve, using a goal function that merges the 2D information provided by the
set of images.

The reconstructed 3D curve C is given by the solution to the minimization
problem, formulated for a set of M images by

C(P) = arg min
P

M−1∑

i=0

F (Ti(C(P))), (3.1)

where F is the image functional to be defined, Ti is the projective operator
for image i and P is the set of control points.

3.3 Optimization of the Control Points

The first step of the optimization process consists in projecting the curve into
the images. Since the surface model and the camera matrices are known, we
can identify the visible parts of the curve in each image and retain only
the sample points corresponding to visible parts. During the iterations, to
keep the same cost function, the residual error must be evaluated at the same
points at each iteration. Supposing small displacements, we can consider that
visible pieces will remain visible throughout the optimization. See figure 3.2
for an example of occlusions due to the 3D structure of the objects.

The optimization of (3.1) is done on the 3D control point coordinates,
leaving the remaining parameters of the NURBS curve constant. The weights
associated with the control points are modified by the projection giving 2D
weights varying with the depth of each control point, according to the formula
(1.37), but they are not included in the optimization.

We now need to define the image functional introduced in (3.1). As we
work in a calibrated setting, we can measure Euclidean distances and there-
fore formulate the cost function as a 2D distance from the projected curve
to the image contours. An obvious benefit of this is the direct physical inter-
pretation thus given to the value of the cost function. Since curve to curve
distance is a somewhat vague concept, we will rather consider a sampling of
the projected curve and point-wise distances to image contours.
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Figure 3.2: Due to the thickness of the object, auto-occlusions cause parts of
the curve to be invisible from some viewpoints.

The formulation of the curve estimation as a distance minimization in-
duces a need for a method to identify a set of contour points associated to
the projected curve.

3.3.1 Distance Minimization

Using a distance formulation and the properties of NURBS curves, the min-
imization problem (3.1) is written

min
{P̂l}

M−1∑

i=0

N−1∑

j=0

∥∥∥∥∥qij −
n∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

∥∥∥∥∥

2

, (3.2)

where qij is a contour point associated with the curve point of parameter tj
in image i, R

(i)
l,k are the basis functions for the projected NURBS curve in

image i and Ti is the projection operator for image i.
Although the context is not the same, we recognize the minimization

formulation from the problem of Structure from Motion, see 1.5. Indeed, the
metric bundle adjustment consists of minimizing a sum of image distances,
where the sum is taken over all images and all data points. If the image
error is zero-mean and Gaussian then bundle adjustment is the Maximum
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Likelihood Estimator. In our case, for the image error to satisfy this, the
method used to identify the image contour points must yield a non-biased
estimation. In the presence of other contours in the neighborhood of the one
corresponding to the current curve, this is difficult to achieve.

Each contour point qij is associated with a curve point and thus depends
on the current value of the control points. The minimization problem given is
therefore nonlinear and cannot be solved by the linear least squares method.
An iterative method, such as the Levenberg-Marquardt method, must be
used. Note that a new set of matching contour points must be computed at
each iteration. A common feature among implementations of the Levenberg-
Marquardt method is to allow the user to provide the value of the jacobian
matrix in the current point, in addition to the function value. This is meant
to prevent the approximation error and the additional computations that
a finite difference approximation implies, if a closed-form expression exist.
In the case of NURBS curves, the nature of the basis functions as being
rational polynomials ensures that the first-order derivatives of the curve can
be computed exactly.

3.3.2 The Search for Image Contours

There are several image processing methods available to retrieve the contours
of an image, most of them being based on the gradient image. As we will need
to carry out the search repeatedly, we want to find a quick way to do it, but
without compromising the precision. Due to the nature of our applications,
we can suppose that the possible deformations that we are looking for are
small. This, together with the fact that we have an approximate location
of the curve, allows us to settle for performing a local search around the
projected curve.

The search for candidate contour points is carried out independently in
the images using a method inspired by the one used by Drummond and
Cipolla in [16]. We sample the NURBS curve projected in the image, to
use as starting points in the search for matching contour points. A line-
search is performed in order to find the new position of the curve, ideally
corresponding to an edge. Our approach is based solely on the contours.
Due to the aperture problem, the component of motion of an edge, tangent
to itself, is not detectable locally and we therefore restrict the search for the
new edge position to the edge normal at each sample point. The pointwise
search is illustrated in figure 3.3. As we expect the motion to be small, we
define a search range (typically in the order of 5 – 10 pixels) so as to limit
computational cost. In order to find the new position of a sample point,
for each point belonging to the normal within the range, we evaluate the
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Figure 3.3: The search for candidate points is carried out pointwise using
line-search in the direction of the curve normal.

gradient and compute a weight based on the intensity and the orientation of
the gradient and the distance from the sample point. The weight function vj

for a sample point pj and the candidate point pξ will be of the form

vj(pξ) = ϕ1(‖∇Iξ‖) · ϕ2

(
n̂j · ∇Iξ

‖∇Iξ‖

)
· ϕ3(‖pj − pξ‖),

where n̂j is the normal of the projected curve at sample point j, ∇Iξ is the
gradient at the candidate point and the ϕk are functions to define. The
weight function will be evaluated for each candidate pξ and the point p′

j

with the highest weight, identified by its distance from the original point
dj = ‖pj − p′

j‖, will be retained as the candidate for the new position of the
point.

The bounded search range and the weighting of the point based on their
distance from the curve yield a robust behavior, close to that of an M-
estimator.
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The search along the normal to the curve will necessarily be performed
in discreet steps. However, if the true optimal position is located between
two points, in addition to the obvious loss in precision, we may also face an
oscillation problem. For these reasons, we need to consider the neighborhood
of the retained point. We will use a quadratic interpolation of the curve
based on the measured values, that is, we fit a second degree curve around
the maximum and retain the position of the maximum of this curve, see
figure 3.4. The aim is to reach a sub-pixel precision in the images.

Figure 3.4: A second degree curve is fitted around the point with the high-
est value, using the values of the neighboring points along the line. The
maximum of this curve is chosen as the optimal displacement.

3.3.3 Conclusions

The curve reconstruction method we presented yields a 3D NURBS curve
whose projections coincides, at least approximately, with the observations in
the images. The approximation comes from the fact that the parameteriza-
tion induced by the curve extracted from the model, namely the number of
degrees of freedom, may be insufficient to describe the observed real world
curve. Indeed, an imperfection in an industrial object would most certainly
be rendered as a rough portion of an elsewhere smooth curve. In order to
overcome this problem, we want to increase the number of degrees of free-
dom. This must however be done with caution, since too many parameters
would yield an over-fitting of the model.
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3.4 Control Point Insertion

The problem has two parts. First, the optimization of the 3D NURBS curve
by solving a minimization problem on a fixed number of control points, then
the control point insertion procedure. For the fixed size optimization prob-
lem, we proceed as before. This step allows the control points to move in 3D,
but does not change their number. In order to obtain an optimal reconstruc-
tion of the observed curve, we iteratively perform control point insertion. So
as to avoid over-parameterization for stability reasons, the first optimization
is carried out on a limited number of control points. Their number is then
increased by iterative insertion, so that the estimated 3D curve fits correctly
also in high curvature regions. Due to the characteristics of NURBS curves,
the insertion of a control point is done without influence on the curve and
each insertion must therefore be followed by an optimization in order for the
curve to take advantage from the increased number of degrees of freedom.

Due to the use of NURBS curves, we have a method to insert control
points, see section 1.6.5 for details. What remains is to decide where to place
them. We also need a criterion to decide when to stop the control point
insertion procedure.

3.4.1 Position of the New Control Point

The parametrization of NURBS curves is based on a knot vector, splitting
the range of the free parameter into intervals. The influence of each control
point being closely linked to these intervals, we will refer to them in the
insertion process. When deciding where to place the new control point, we
will thus relate to the intervals of the curve.

In the literature, a common approach is to consider the dual problem of
knot point insertion. As the knot point itself has no representation in the
image, the location on the curve corresponding to the knot point, called the
hinge point, will be used. Lu and Milios propose in [39] to insert the control
point in such a way that a new hinge is formed at the point on the curve that
presents the largest displacement from the data. This will certainly allow for a
decreasing residual error around the inserted control point, but the behavior
can be unstable for several reasons. Namely, if the chosen point on the
curve is already a hinge (or close to one), the insertion of another hinge will
change the regularity aspects of the curve. Indeed, at a multiple knot point
of multiplicity m, the curve is only k −m times continuously differentiable,
where k is the degree. Moreover, the maximum of the curve-data distances,
computed pointwise, gives a poor indication of where the model complexity
is insufficient. Dierckx suggests in [15] to place the new point at the interval
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that presents the highest mean error. This is consistent with an interpretation
of the error as the result of a lack of degrees of freedom that inhibits a good
description of the curve. If, however, the error derives from other sources, this
solution is not always optimal. For instance, a significant mean error could
also indicate the presence of parasite edges or that of a parallel structure
close to the target curve. In [11], Cham and Cipolla define an error energy
reduction potential and propose to place the knot point so as to maximize
this potential. As the computational cost of this potential is small compared
to the cost of the active contour optimization used to find the location of the
control points, an exhaustive search is performed over all sample points. The
sample point that presents the largest energy reduction potential is retained
for the insertion of a hinge.

In our algorithm, since every insertion is followed by an optimization that
adjusts the control points, we settle for choosing the interval where to place
the point. Since the exact location within the interval is not critical, the
point is placed at its midpoint. We will choose the interval with the highest
median error, over all images. The error is defined as the distance from a
sample point to its corresponding contour point in the image. The search
for candidate contour points is carried out using the method described in
section 3.3.1.

3.4.2 Controlling the Complexity

One of the motives for introducing parametric curves was to avoid treating all
curve points, as only the control points are modified during the optimization.
If the number of control points is close to the number of samples, the benefit
is limited. Too many control points could also cause numerical instabilities,
due to an over-parameterization of the curve on the one hand and the size of
the nonlinear minimization problem on the other hand. It is thus necessary
to define a criterion that decides when to stop the control point insertion. A
short review of the different techniques used in the area of model complexity
selection using a statistical approach is given in section 1.7.2.

In the iterative control point insertion procedure of Cham and Cipolla
[11], the stopping criterion is defined by means of MDL. In a Bayesian frame-
work, using a MAP estimation assuming normally distributed errors, an ex-
pression for the ideal code-length to describe the data and the model is
obtained. The criterion depends, on the one hand on the number of control
points and on the residual errors, on the other hand on the number of sam-
ples and on the covariance. If unavailable, the covariance matrix is replaced
by an unbiased approximation of the uniform variance, multiplied with an
identity matrix. Iteration is continued until the code-length increases. In
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order to avoid local minima, the minimum is supposed found once the value
remains higher than the last three iterations.

Another way of implementing the MDL method is given by Figueiredo
et al. in [19]. The curve fitting is addressed using a multi-layer hierarchical
scheme of nested algorithms, where the inner schemes solves different opti-
mization problems for a fixed number of control points. The solution with
respect to the number of control points is found through an exhaustive search
over all values in a predefined range. A comparison of the estimated curves
is carried out using an MDL criterion derived from a Bayesian viewpoint. It
is defined by the residual error, the number of samples and the image size,
where the image size is considered to be a scale measure.

In the area of parameter estimation for 3D reconstruction, Viéville et al.
have used the AIC criterion for the complexity control [67, 68].

Kanatani derives in [35] a criterion called the geometric AIC, meant to
serve in the process of degeneracy detection. By evaluating the predictive
capability of an estimated model, in terms of the expected residual and the
geometric AIC, singularities causing the model to be unsuitable can be de-
tected. In the context of Structure-from-Motion, the singularities can typi-
cally be coplanar or colinear points.

Within the framework of epipolar geometry, Torr presents a method for
approximating the posterior probability of a model [63]. The model selection
paradigm developed, similar to the penalized likelihoods used in the afore-
mentioned methods, is particularly well adapted to situations involving large
numbers of latent variables.

As our curve estimation algorithm is computationally expensive and fur-
thermore embedded in an iterative control point insertion process, a stopping
criterion based on cross-validation is unfeasible. Our choice of method is
therefore restricted to the criterion-based ones. We have chosen to evaluate
several possibilities, namely BIC, AIC and the 2D image error. The different
criteria will be computed using the contour points found with the method
presented in section 3.3.1. The choice of BIC is justified by the asymptotic
characteristics, that assures convergence to the model that generated the
data as the amount of data tends to infinity. The expression for BIC in the
case of normally distributed errors

BIC = k lnn+ n ln
RSS

n
, (3.3)

where k is the number of control points, n is the number of data points and
RSS is the sum of the squared residual errors. The use of AIC is supported
by a different asymptotical behavior, that is, the ability to choose the model
that has the best likelihood for future data. In our setting, the AIC can be
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written

AIC = 2k + n ln
RSS

n
. (3.4)

Using the 2D image error consist in considering only the evolution of the
measurable error throughout the iterations, not explicitly taking into account
the numbers of parameters of the model. We consider the rms error, which
is given by

rms =

√
RSS

n
. (3.5)

The three criteria retained will be tested and compared in Sec. 4.

3.4.3 Sampling of the Curve

Each new control point adds an interval to the curve. In order to increase
the resolution in regions where the curve undergoes changes rather than
globally, the sampling follows the intervals. The insertion of a control point
also increases the number of sample points. Furthermore, the sampling is
adapted to the visibility of the interval in the images. First, the visibility
of each sample point is verified, so that any point occluded by the object
itself is removed, see section 1.8. Moreover, the number of samples is based
on the projected length of the interval and not on the length of the interval
on the 3D curve. Each 2D curve is sampled separately per interval, with a
lower limit on the mean distance between sample points of one pixel. This is
to avoid giving too much weight to barely visible intervals. Adding a higher
limit on the mean distance between sample points reduces the effect of the
adaptation following the insertion of control points, but adding more sample
points at an earlier stage of the procedure ensures a faster convergence. A
tight interval for the mean distance per interval yields a close to uniform
image-based sampling.

3.4.4 Algorithm

The algorithm we implemented has two layers. The optimization of a curve
using a fixed complexity model is embedded in an iterative structure that
aims to increase the number of control points. The nonlinear optimization of
the 3D curve is performed by the Levenberg-Marquardt algorithm, using a
cost function based on a distance formulation as in section 3.3. The control
point insertion procedure uses a search for contour points in the images in
order to compute the median as well as the RSS error of the projected curve.
The mechanism of our method is outlined in Tab. 3.1.
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3.4.5 Conclusions

We have now presented a complete curve reconstruction algorithm, that is
able to choose an appropriate model complexity to represent the observed
curve. The method is formulated using a distance-based cost function, giving
the residual error a physical meaning. However, the distance-based approach
is not the only existing solution to the problem of curve estimation. Another
method is to define an energy potential in the image and search the curve that
minimizes the energy. In order to compare the two strategies and, hopefully,
find an even closer match to the observed curve, we will now extend our
method to include an alternate cost function based on an energy formulation.

3.5 Maximizing the Image Gradient Magni-

tude

In the literature, there are two classical methods for the estimation of curves
from image data, the distance formulation and the energy formulation. The
energy formulation is the base of the classic active contours algorithm, in-
troduced by Kass et al. in 1987 in the seminal article [36]. It is widely used
in the medical imaging sector, due to the inherent blurry aspect of the im-
ages, making precise edge detection hard. Indeed, the contours that are to
be detected are often noisy and present low contrast compared to the more
marked edges in images from an industrial context. In this section, we will
define an energy potential that will be the cornerstone of an alternate cost
function, used in the fixed complexity reconstruction algorithm. The aim is
to compare the two methods, in order to choose the one that is the most
appropriate for the task.

3.5.1 Definition of an Energy Functional

The classical energy formulation consists in constructing an energy potential
defined in each pixel of the image. The energy of a curve is given by the
integral of the potential along the curve. The ideal location is the one that
minimizes the integral, which is replaced by a sum over all sample points.
We obtain a formulation similar to the previous one. Using the properties of
NURBS curves, the minimization problem (3.1) is written

min
{P̂l}

M−1∑

i=0

N−1∑

j=0

E

(
n∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

)
, (3.6)
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• Visibility Check Identification of the visible parts

χij =





1 if
n−1∑

l=0

Ti(Pl)R
(i)
l,k(tj) visible

0 else

• Line-search for contour points qij matching pij =
n−1∑

l=0

Ti(Pl)R
(i)
l,k(tj)

qij = argpm
ij

max
−d≤m≤d

vj(p
m
ij , ) where pm

ij = pij +m · n̂ij

• Optimization of the control points

min
{P̂l}

M−1∑

i=0

N−1∑

j=0

χij

∥∥∥∥∥qij −
n−1∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

∥∥∥∥∥

2

• Computation of BIC

BIC0 = k ln(N ·M)+N ·M ·ln




M−1∑

i=0

N−1∑

j=0

χij

∥∥∥∥∥qij −
n−1∑

l=0

Ti(P
′
l)R

(i)
l,k(tj)

∥∥∥∥∥

2

/(N ·M)




• do (control point insertion)

◦ Line-search for contour points qij

◦ Computation of the median error for each interval IK .

mK = med
EK

|qij −
n−1∑

l=0

Ti(P
′
l)R

(i)
l,k(tj)|

where EK = {(i, j) | 0 ≤ i < M, tj ∈ IK , χij 6= 0}.
◦ Knot point insertion at the midpoint of interval I = arg min

K

mK .

◦ Visibility Check Identification of the visible parts

◦ Optimization on the control points

◦ Computation of BICJ

• while (BICJ < BICJ−1)

Table 3.1: The reconstruction algorithm presented.
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where R
(i)
l,k are the basis functions for the projected NURBS curve in the ith

image.

In the active contours context, the energy is often split into two parts,
an internal and an external one. The internal energy restricts the curve
in terms of continuity and smoothness, whereas the external part models
the attraction toward the image contours. When using NURBS curves, the
energy functionalE can be restricted to its external part, due to the regularity
aspects incorporated in the parametrization. Excluding special cases, namely
the presence of multiple knot points, the continuity is assured and keeping
the curvature at reasonable levels is an issue of the relative location of the
control points rather than of the energy functional. Concerning the external
energy, a common choice is to use the gradient intensity. We will however
include local information on the curve as well, namely its normal direction,
using the intensity of the gradient projected onto the curve normal. This
choice is motivated by the aperture problem, according more importance
to the normal component than to the tangential component of the image
gradient.

3.5.2 Distance versus Gradient Energy

For comparison, we have implemented the two methods in the iterative set-
ting. Both methods yielded similar results and converged after a number of
iterations to an asymptotic lower limit. The 3D error with respect to the true
curve is however somewhat lower for the gradient-based method. The results
are given in figure 3.6. The difference is partly explained by the noise and the
parallel structures perturbing the edge tracking algorithm. An example of
candidate points located on a parallel image contour, due to specularities, is
given in figure 3.5. More details on the tests comparing the two cost functions
are given in chapter 4. Although the gradient intensity method outperforms
the distance method, the distance-based cost function will prove to be useful
in the iterative framework that will embed the curve optimization.

3.5.3 Hybrid Optimization

Whereas the energy approach allows us to obtain a more precise reconstruc-
tion of the curve, the distance method allows a faster convergence from a
bad initialization. In order for the energy-based cost function to attract the
model curve to a far-off target, the gradient must be smoothened out, which
impairs the precision as well as the convergence rate. In order to take ad-
vantage of the strength of each one of the methods, we have chosen to use a
hybrid algorithm, combining the two. In a first step, an initial minimization
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Figure 3.5: Problems related to specularities and to the search for candi-
date points. Starting at the projection of the initial curve (in blue), some
candidate points (in magenta) belong to a parasite edge.
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Figure 3.6: The evolution of the error, with respect to the true 3D curve,
for an optimization using cost functions based on the distance to the image
contours and on the gradient intensity respectively. Whereas the distance
method seems to yield good results in the start, its asymptotic limit is some-
what higher than that of the gradient intensity method.

is performed using the distance-based cost function. Then, during the control
point insertion, the energy-based cost function is used.

So as to settle the hybrid approach and in order to tune the parameters,
different strategies will be tested and compared in Chap. 4. An overview of
the hybrid algorithm with its final formulation will be given in the end of the
evaluation.

3.6 Conclusions

We have presented an adaptive 3D reconstruction method using parametric
curves, limiting the degrees of freedom of the problem. An algorithm for
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3D reconstruction of curves using a fixed complexity model is embedded
in an iterative framework, allowing an enhanced approximation by control
point insertion. The optimization of the curve with respect to the control
points is performed by means of a minimization of an gradient-based energy
functional, whereas the insertion procedure is based on the distance from the
curve to the observed image contours.
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Chapter 4

Experiments on 3D Curve
Reconstruction

We present in this chapter the results of the evaluation of our method for
the reconstruction of parametric curves. In order to test our algorithms and
quantify the performances, we use virtual as well as real images. Whereas
simplified virtual objects serve to estimate the theoretical limits of our al-
gorithms, images of complex manufactured objects presenting the difficulties
targeted by our approach allow us to evaluate the performance in an indus-
trial context. We finally illustrate the behavior of our system in the presence
of anomalies, using simulated deformations of the target object. Using a se-
ries of virtual images of an object presenting a minor anomaly, we evaluate
the capacity of our system to detect nonconformities.

95
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Evaluation expérimentale

Nous présentons dans ce chapitre les résultats de l’évaluation de notre
méthode sur la reconstruction de courbes paramétriques pour des objets mé-
talliques complexes. Afin de valider notre approche et de quantifier les per-
formances, nous utilisons des données simulées et des images réelles. Tandis
que des objets virtuels simplifiés servent à estimer les limites théoriques de
nos algorithmes, des images d’objets manufacturés complexes présentant les
difficultés visés par notre approche nous permettent d’évaluer la performance
de la méthode dans le contexte industriel. Enfin, nous avons simulé des ano-
malies sur des objets afin de valider la capacité de notre système à détecter
des non conformités.

• Préliminaires
Présentation du procédé de génération des images virtuelles, des erreurs
mesurées et des paramètres.
• Images Virtuelles

Essais sur des données de synthèse afin de valider notre méthode et de
choisir la stratégie et les paramètres de l’algorithme.
• Images réelles

Essais sur des images d’objets manufacturés complexes afin d’évaluer
la performance de notre algorithme dans un contexte industriel.
• Nonconformités

Essais sur des images d’un objet virtuel présentant des anomalies.
• Algorithme

Récapitulatif des choix effectués et présentation de l’algorithme final.
• Conclusions
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4.1 Preliminaries

4.1.1 Generation of Virtual Images

In order to validate the algorithms used for image data extraction and for
curve reconstruction, we perform a number of tests on virtual images. The
virtual setting will also be useful to simulate deformations of the target ob-
ject. The use of images of deformed virtual objects enlarges the possibilities
for testing. To this end we have implemented a procedure that allows us to
visualize a CAD model, generating a series of virtual images, together with
the camera parameters for each view.

4.1.2 Curve to Curve Error Measures

So as to perform a quantitative evaluation of our method, we need to be able
to compute some kind of error. In the case of the 3D reconstruction of a single
curve, this error should be a measure of the difference between the real curve
and the estimated one. For testing purposes, we will use a setting where the
ground truth is known. At the end of our reconstruction procedure, we thus
have two 3D curves that we wish to compare. Since curve to curve distances
is a mathematically vague concept, we consider a sampling of the estimated
curve and point-wise distances to the target parametric curve.

Our conception of the curve to curve distance yield a high-dimensional
vector of errors after completion of the optimization process. For the eval-
uation, aiming at a good description of the error, we present it on several
forms. For an error vector e = [e0 · · · en]t, where n is the number of sample
points of the 3D curve, we have

• the rms (root mean square) error

rms =

√∑
i e

2
i

n

• the mean error

ē =

∑
i ei

n

• the (sample) standard deviation

s =

√∑
i(ei − ē)2

n− 1
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The distance between the model curve and the reconstructed one is some-
thing that we wish to evaluate after the reconstruction is completed. How-
ever, during the computations, some other measure is necessary in order to
decide whether to process has converged or not. This measure will be based
on the 2D image distances from the projections of the estimated curves to
the observed image curve points. The curve points are given by the line
search algorithm described in Sec. 3.3.2. In the results section, we give the
2D rms error, expressed in pixels, considering the projections in all images.
The error vector thus contains all visible sample points in all images, without
weighting. The expression for the rms error is the same as in the 3D case.

4.1.3 Parameters

There are a certain number of parameters of the algorithm that need to be
set. Some of them are related to the image and the size of the object in
pixels, such as the value of the smoothing factor in the Deriche gradient
filter or the size of the search range in the contour detection. Others are
related to the shape of the curve, such as the maximum number of control
points to be inserted or the insertion strategy. These parameters will be set
independently, depending on the experimental settings. It is expected that
these parameters remain stable for the same kind of applications.

4.2 Virtual Images

Setting

We construct a simplified model of an object, based on a single target curve
inserted in a plane. Using a virtual camera with known parameters, internal
as well as external, the object is visualized from different viewpoints. The
set of virtual images thus created is shown in figure 4.1. The image size
is 1284 × 1002 pixels. For the computations, we use the complete series of
21 images, but also subsets of varying sizes in order to confirm the results
obtained.

The reconstruction algorithm is initialized using a modified model curve,
parameterized by 10 control points, shown in figure 4.2 together with the
model curve. The geometry of the model curve indicates that 10 control
points is not enough to correctly describe it. The initial sampling used for
the computations is of 200 points. To fix the scale, note that at the mean
distance from the object curve, one pixel corresponds roughly to 0.22 mm
on the object in a fronto-parallel view and that the largest dimension of the
curve is of 118 mm.



4.2 Virtual Images 99

Figure 4.1: A set of images of a virtual object used to test the capacity of
the algorithm to reconstruct 3D curves. The target curve is the central curve
of the object.

Due to the absence of noise in the calibration and in the images, this
setting should allow us to obtain a theoretical limit of our algorithm. Note
that the performance is related to the complexity of the images, parallel
edges close to the target curve and occlusions of parts of the curve, none of
which is present in the current setting. The virtual setting will also be useful
for tuning parameters related to the optimization and for testing different
alternatives for the complexity control. The evaluation of the algorithm
is done by measuring the distance from a set of sampled points from the
estimated curve to the target model curve.
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Figure 4.2: A close-up of the target curve (in green), together with the
initialization used for the reconstruction algorithm (in red).

Influence of the Optimization Method

In order to compare the two optimization methods implemented, we have
performed tests using the same set of images and parameters. We obtain the
following results:

Energy Distance
Rms error 0.0323 mm 0.0796 mm
Mean error 0.0514 mm 0.113 mm
Standard deviation 0.0401 mm 0.0798 mm
Image rms error 0.175 pixels 0.309 pixels

As expected, the energy method outperforms the distance method in preci-
sion. This confirms our choice to use the energy-based optimization method
in our algorithm. The distance-based method is however useful, since it
converges even from a poor initialization. Using the distance function for
a preliminary optimization decreases the final 3D error with approximately
10% in this setting.
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We note that the error corresponds to less than a pixel in the images,
which indicates that the image processing techniques used allow for a sub-
pixel image precision. However, the image error being an estimation based
on the edge points given by the algorithm itself, it should not be considered
as an independent quality measure. Combined with the approximate scale,
given by the size of a pixel at the mean distance from the object, measuring
0.22 mm, this gives at hand an image error of the same order of magnitude
as the 3D error.

Influence of the Number of Views

Our set of images show the object from different viewpoints, theoretically
giving enough information to reconstruct the target curve. Since there is
no noise added, all images supply correct additional information concerning
the 3D location of the observed curve. Nevertheless, the discrete nature of
the images and the process of extraction of information from the images
together with the optimization method used engender a 3D error. Therefore,
increasing the number of views used in the reconstruction algorithm should
increase the precision. We perform a series of tests to evaluate the influence
of the number of views. We obtain the following results:

20 images 15 images 10 images
Rms error 0.0323 mm 0.0572 mm 0.0747 mm
Mean error 0.0514 mm 0.0764 mm 0.0909 mm
Standard deviation 0.0401 mm 0.0508 mm 0.0519 mm
Image rms error 0.175 pixels 0.209 pixels 0.209 pixels

Results are given for the whole set of images, as well as for random subsets
(no selection is performed) of varying sizes. For the subsets, the results given
correspond to one test, but similar results have been obtained using other
subsets of the same sizes.

We conclude that the effect of increasing the number of randomly chosen
views is indeed a better reconstruction. However, a judicious choice of the
viewpoints can reduce the impact of their number. This is even more im-
portant when occlusion occurs; The number of images must allow us to view
correctly the whole curve.

Evolution of the Control Points

In order to visualize the evolution of the control points, we consider the hinge
points. A hinge point is the point on the curve corresponding to a knot point.
For a closed curve, there exist a one-to-one correspondence between the knot



102 Chap. 4: Experiments on 3D Curve Reconstruction

points and the control points, except for an overlap assuring the desired
continuity.

The initial parametrization of the curve, based on 10 control points, is
not sufficient for a description of the curve with the desired precision. Fol-
lowing our algorithm, new control points will therefore be inserted, until the
precision is deemed good enough. In order to maximize the benefit of each
inserted point, it will be placed in the interval presenting the largest image
error, as described in Sec. 3.4. The development of the hinge points is shown
in figure 4.3 and 4.4. For simplicity, we present only one view of the curve,
as it is enough to present the insertion process. The first image shows the
initial curve with its 10 hinge points. The second shows the curve after an
optimization of the 3D positions of the existing control points. Since we know
that the shape of the curve requires more parameters, we opt for a block in-
sertion, adding several points at a time. For simplicity, we choose to insert
one point per interval, that is, we double the number of control points. The
following images show the evolution, inserting one control point at a time.
We note that the hinge points tend to gather in regions of higher curvature,
such as corners and bends. As the image error, the mean error as well as the
rms error, is less than a pixel after just one iteration, the difference between
two iterations is hardly visible.

Complexity Control

In our evaluation setting, the description of the curve that we observe in the
images is known. We can therefore, in each step of the algorithm, compare
the current estimate to the ground truth. The evolution of this 3D error,
together with the 2D image error, are presented in figure 4.5, whereas AIC
and BIC are displayed in figure 4.6. We note that the 3D error and the 2D
image error evolve in a similar way, as do AIC and BIC. Since the AIC and the
BIC curves do not present a minimum, but decrease toward an asymptotical
lower limit, they are hard to use in the decision process for the complexity
control. Analogous results are found using different subsets of the images.

As the two dedicated criteria do not seem to be able to indicate the
optimal complexity, we instead opt for a simpler way to decide when to stop
the iterative procedure. We fix in advance an upper limit for the number
of control points, based on the shape of the curve as given by the CAD
model, that is, the size and the complexity. We then iterate until the image
error stabilizes. A stable image error is assumed attained when the difference
between iterations is below some threshold for a given number of iterations
(we take 0.1 times the maximum number of iterations allowed).

We recall that once the optimal complexity is fixed, a final minimization
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Figure 4.3: Evolution of the curve throughout the control point insertion pro-
cess. The reprojection of the curve into one of the images is shown together
with its hinge points, that is, the locations on the curve corresponding to a
knot point. We show approximately one iteration out of two.
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Figure 4.4: Evolution of the curve (continued).
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Figure 4.5: Evolution of the 3D rms error and the image rms error throughout
the control point insertion process.

over all control points and the external camera matrices for each one of the
views is performed. In the case of virtual images with perfectly known camera
parameters, the latter is evidently redundant.
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Figure 4.6: Evolution of BIC and AIC throughout the control point insertion
process..

4.3 Real Images

4.3.1 Standard Reference Object

Setting

A second series of tests has been performed on a set of real images of a
standard reference object, see figure 4.7, known to a very high precision
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(incertainty of 10 µm). The image size is 1300×1030 pixels and the object is
seen from a large distance, compared to its size. We again use a single, closed
target curve, shown in figure 4.8. The initialization is a simplified version
of the model curve, but rather close to the original. The starting curve has
5 control points, which theoretically should be enough to describe a circle.
The diameter of the circle is 30 mm, which corresponds roughly to 30 pixels
at the mean view distance. For the testing, we use subsets of 8 images.

Figure 4.7: A set of images of a standard test object used for the 3D recon-
struction of the object curves.
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Figure 4.8: A standard reference object and the target curve used for our
computations. The curve is a circle and can thus be described exactly by a
non-rational curve.

Results

The reprojections of the reconstructed 3D curve are shown in figure 4.9. We
obtain the following errors:

Subset 1 Subset 2 Subset 3
Rms error 0.127 mm 0.137 mm 0.121 mm
Mean error 0.143 mm 0.146 mm 0.133 mm
Standard deviation 0.0642 mm 0.0518 mm 0.0570 mm
Image rms error 0.0745 pixels 0.0827 pixels 0.0833 pixels

Due to the viewing distance, the image quality and the noise in the camera
parameters, the errors are somewhat higher than in the case of virtual images.
The errors given correspond to the results after a final optimization over all
control points and the external camera parameters for the entire set of images.
In order to show the effect of the final optimization, we present, for the same
subsets, the rms errors before and after this last step in the algorithm:

Subset 1 Subset 2 Subset 3
Rms error (before) 0.166 mm 0.149 mm 0.148 mm
Rms error (after) 0.127 mm 0.137 mm 0.121 mm

4.3.2 Aeronautic Part

Setting

We consider a set of images of an aeronautic part, see figure 4.10. The image
size is 1392×1040 pixels and the object is shown in close-up. A single, closed
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Figure 4.9: Evolution of the curve throughout the control point insertion pro-
cess. Reprojections of the reconstructed 3D curve into the images, together
with its hinge points.

target curve is used at a time. One closed and one open curve are chosen
for the testing. They are shown, together with modified ‘model curves’ used
as initialization in figure 4.11 and figure 4.12. The starting curves have 10
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and 8 control points respectively, which is not enough to correctly describe
the curves correctly. The initial sampling used for the computations is of 200
and 160 points respectively. At the mean distance from the object curve, one
pixel corresponds roughly to 0.28 mm. The largest dimension of the closed
curve corresponds approximately to 400 pixels. The computations are based
on the complete series of 36 images.

We need to face the problem of noisy image data, multiple parallel struc-
tures and imprecision in the localization and the calibration of the views.

Results

The evolution of the hinge points for the closed curve is shown in figure 4.13
and for the open curve in figure 4.14 and figure 4.15. We obtain the following
reconstruction errors:

Closed curve Open curve
Rms error 0.115 mm 0.105 mm
Mean error 0.099 mm 0.125 mm
Standard deviation 0.076 mm 0.0669 mm
Image rms error 0.366 pixels 0.304 pixels

The errors are similar for the two target curves that are of approximately the
same length. The use of open or closed curves is indifferent for our algorithm.
We note that the higher error of the edge detection, partly due to a complex
environment in the images, induce a higher reconstruction error. As before,
recalling the size of a pixel at the mean distance from the object, 0.28 mm,
gives us an approximate image error close to the 3D error.

In order to confirm the results obtained using the simplified model, we
have tested the two different optimization methods implemented. Also in the
case of real images, the energy-based method yields a slightly better result.
We obtain the following errors:

Energy Distance
Rms error 0.115 mm 0.12 mm
Mean error 0.099 mm 0.149 mm
Standard deviation 0.076 mm 0.0889 mm
Image rms error 0.366 pixels 0.361 pixels
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Figure 4.10: A set of images of an aeronautic part used for the reconstruction
of the object curves.
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Figure 4.11: A closed target curve used in our evaluation. The initialization
is shown in red, whereas the model curve is shown in green.

Figure 4.12: An open target curve used in our evaluation. The initialization
is shown in red, whereas the model curve is shown in green.
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Figure 4.13: Evolution of the curve throughout the control point insertion
process. The reprojection of the curve into one of the images is shown to-
gether with its hinge points, that is, the locations on the curve corresponding
to a knot point.
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Figure 4.14: Evolution of the curve throughout the control point insertion
process. The reprojection of the curve into one of the images is shown to-
gether with its hinge points, that is, the locations on the curve corresponding
to a knot point.
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Figure 4.15: Evolution of the curve and its hinge points throughout the
iterations (continued).
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4.4 Nonconformities

Setting

We have created a set of 27 virtual images created using the CAD model of
the aeronautic part used in Sec. 4.3.2. In order to simulate a deformation of
the target object, we have modified the model, adding a bump to an otherwise
straight edge, prior to creating the virtual images. The initialization is the
same as in the case of the simplified virtual images and the closed curve of
the aeronautic part. The image size is 1494× 1078 pixels.

Results

Based on different subsets of 5 images each and starting at the undeformed
model curve, our algorithm manages to reconstruct the curve and its anomaly.
The results are displayed in figure 4.17 and figure 4.18. We obtain the fol-
lowing errors:

Set 1 Set 2 Set 3 Set 4 Set 5
Rms error (mm) 0.0675 0.0809 0.0591 0.0694 0.0639
Mean error (mm) 0.0798 0.0944 0.0779 0.0826 0.0757
Standard deviation (mm) 0.0427 0.0487 0.0508 0.045 0.0406
Image rms error (pixels) 0.186 0.195 0.24 0.192 0.202

We note that the errors are only slightly higher than in our first test setting
using a simplified virtual object. Although the reconstruction is good, the
error is concentrated around the anomaly, which is somewhat smoothed out.
Note that the errors are measured with respect to the known, deformed curve.
Since the set of views of the object is chosen based on the actual curve, any
view will be useful for the reconstruction. Nevertheless, the images where
the anomaly is less visible will not add much information on this critical part
of the curve and the effect of using all images will thus be a loss in precision.
Subsets of this size cannot be random, but must be picked either manually
or using an automatic strategy [37].

4.5 Algorithm

The different tests performed during the evaluation of our method have
guided the development. The choices made have been validated by the re-
sults, using virtual as well as real images. An outline of the hybrid algorithm,
taking advantage of the distance minimization as well as the energy minimiza-
tion, is given in Tab. 4.1. The principal choices retained concern the hybrid
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Algorithm

• Visibility Check Identification of the visible parts

• Line-search for contour points qij matching pij =
n−1∑

l=0

Ti(Pl)R
(i)
l,k(tj)

• Optimization on all control points: minimization of the residual 2D error

• Optimization on all control points: minimization of an energy functional

• Computation of the rms2D

• do (control point insertion)

◦ Line-search for contour points qij

◦ Computation of the median error mK for each interval IK .

◦ Knot point insertion at the midpoint of interval I = arg min
K

mK .

◦ Visibility Check Identification of the visible parts

◦ Optimization on the control points linked to the identified interval:
minimization of an energy functional

◦ Computation of the rms2D

• while (rms2D not stabilized)

• Optimization on all control points and the pose parameters: minimization
of an energy functional

Table 4.1: Hybrid reconstruction algorithm, using residual 2D error mini-
mization as well as energy functional minimization.

algorithm, the refinement of the control point positions and the external cam-
era parameters, the adaptive sampling, the control point insertion and the
stopping criterion.

4.6 Conclusions

Through several series of tests, we have evaluated the performance of our
curve reconstruction algorithm. Tests on a simplified virtual object have
allowed us to validate strategic choices in our procedure, such as the opti-
mization method and the stopping criterion for he complexity control. They



118 Chap. 4: Experiments on 3D Curve Reconstruction

have also allowed to measure the influence of the number of views used. Tests
on industrial objects, using different target curves, have confirmed the ability
of the algorithm to reconstruct curves observed in real images. Although a
somewhat higher precision is required for industrial applications, the results
are encouraging. Finally, tests on virtual objects presenting nonconformities
have shown that even a minor defect is detected by the algorithm. As we have
included no automatic interpretation of the reconstructed curve, ‘detected’
should be understood in the sense ‘correctly reconstructed’.
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Figure 4.16: A subset of the series of virtual images of an object presenting
a nonconformity.
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Figure 4.17: Reconstruction of a nonconformity.
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Figure 4.18: Reconstruction of a nonconformity (continued).
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Conclusions and Perspectives

In this thesis, we have developed methods for the 3D reconstruction of ob-
jects in the context of quality control in the manufacturing industry. The
constraints related to this field are strong: the objects are in general metal-
lic, which causes a specular reflections in the images; the complexity of the
objects leads to images with a high information density; the structure of the
objects is strongly 3D, yielding important self-occlusions. Moreover, the ap-
plications that we target require a high precision in order to challenge existing
methods.

We have presented two building blocks in the process of 3D reconstruction
of industrial objects. Our first contribution is in the field of affine point
reconstruction. We have developed a method that allows the alignment of
two or more affine reconstructions in the presence of missing data. The
reconstruction thus obtained is an approximation that is intended to be used
as an initialization for a more precise, nonlinear method, such as bundle
adjustment [65]. The procedure that is given covers the reconstruction of a
point cloud, thereby being appropriate for the surface elements. In order to
describe the discontinuities of the objects, such as edges and holes, we have
considered the reconstruction of curves. In a second part of our work, we deal
with the reconstruction of parametric curves taken from a CAD model of the
object. We have proposed an algorithm that extracts a curve, reprojects it
in the images and reconstructs the curve observed via the minimization of a
cost function based on 2D image data. The parameterization is adapted, so
as to fit the observed curve with its possible anomalies.

The algorithms developed have been evaluated experimentally, using syn-
thetic as well as real image data. The results of the evaluation are encour-
aging and show that techniques from computer vision are well suited for
applications in the field of quality control.

Further work need to be done in order to develop a complete system
that is able to handle the entire object. The simultaneous reconstruction
of several curves and surface elements would yield a more robust behavior
and a consistent description of the objects and its anomalies. Furthermore,
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an automatic, application-specific interpretation process that is able to label
detected irregularities is needed to complete the pure reconstruction of the
observed object. Moreover, the knowledge of possible anomalies, that are
more or less likely to appear during the assembly, could also be incorporated
into the reconstruction procedure and serve to guide it.



Conclusions et perspectives

Dans le cadre de cette thèse, nous avons développé des méthodes pour la
reconstruction 3D d’objets dans le contexte du contrôle dimensionnel de pro-
duction. Les contraintes liées à ce domaine sont fortes : Les objets sont sou-
vent métalliques, ce qui cause des problèmes de spécularités dans les images ;
la complexité des objets donne des images denses en information, donc dif-
ficiles à traiter ; la structure des objets est fortement 3D, ce qui donne lieu
à de nombreuses auto-occultations. En outre, les systèmes de contrôle sans
contact à partir de vision doivent atteindre une très grande précision pour
respecter les contraintes requises par l’industrie pour le contrôle dimensionnel
de production.

Nous avons présenté deux briques pour le procédé de la reconstruction
3D d’objets industriels. Notre première contribution se situe dans le domaine
de la reconstruction affine de points à partir d’images. Nous avons développé
une méthode qui permet d’aligner deux ou plusieurs reconstructions affines
en présence de données manquantes. La reconstruction ainsi obtenue reste
une approximation de la reconstruction 3D, destinée à servir à initialiser une
méthode non-linéaire, plus précise, telle que l’ajustement de faisceaux [65].
La procédure donnée reconstruit un nuage de points et est en conséquence
adaptée aux surfaces.

Afin de décrire les discontinuités de l’objet, telles que les contours et
les trous, nous avons considéré la reconstruction 3D de courbes. Dans une
deuxième partie de nos travaux, nous traitons la reconstruction de courbes
paramétriques à partir du modèle CAO de l’objet. Nous avons proposé un
algorithme qui extrait une courbe et la reconstruit par la minimisation d’une
fonction de coût basée sur les données image. La paramétrisation est adaptée
afin d’être en adéquation avec la courbe observée et ses éventuelles anomalies.

Les algorithmes développés ont été évalués expérimentalement, par le biais
de données de synthèse ainsi que d’images réelles. Les résultats de l’évalua-
tion montrent que les techniques tirées de la vision par ordinateur sont bien
adaptées pour les applications dans le domaine du contrôle de conformité
industriel.
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Des futurs travaux permettront de développer un système capable de trai-
ter l’objet entier. La reconstruction simultanée des courbes et des éléments
de surface permettrait d’accroitre la robustesse de la méthode et de donner
une description cohérente de l’objet avec ses anomalies. En outre, l’intégra-
tion d’un procédé automatique d’interprétation, spécifique à l’application,
capable de labelliser les anomalies détectées en complément de la reconstruc-
tion pure est indispensable pour un système industriel. Enfin, la connaissance
des anomalies prévisibles, plus ou moins probables de survenir au cours de
l’usinage, pourrait aussi être intégrée dans le procédé.
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