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Abstract This paper describes an approach to implicit Non-
Rigid Structure-from-Motion based on the low-rank shape
model. The main contributions are the use of an implicit
model, of matching tensors, a rank estimation procedure,
and the theory and implementation of two smoothness pri-
ors. Contrarily to most previous methods, the proposed
method is fully automatic: it handles a substantial amount
of missing data as well as outlier contaminated data, and it
automatically estimates the degree of deformation. A ma-
jor problem in many previous methods is that they gen-
eralize badly. Although the estimated model fits the vis-
ible training data well, it often predicts the missing data
badly. To improve generalization a temporal smoothness
prior and a surface shape prior are developed. The tempo-
ral smoothness prior constrains the camera trajectory and
the configuration weights to behave smoothly. The surface
shape prior constrains consistently close image point tracks
to have similar implicit structure. We propose an algorithm
for achieving a Maximum A Posteriori (MAP) solution and
show experimentally that the MAP-solution generalizes far
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better than the prior-free Maximum Likelihood (ML) solu-
tion.
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1 Introduction

Non-rigid Structure-from-Motion concerns the simultane-
ous recovery of the deforming world structure and cam-
era motion from image features. This extends the classi-
cal rigid Structure-from-Motion [13] to situations with de-
forming scenes such as expressive faces, deforming bodies
etc. A major step forward was made by Bregler et al. [5],
Brand [3] and Aanæs et al. [1]. They represent non-rigidity
as a linear combination of a small number of 3D basis
shapes. The low-rank shape model is generic: it does not
prescribe any particular type of 3D shape or deformation.
Using only limited assumptions it allows a simultaneous re-
covery of 3D deformable shape and camera motion from
monocular videos. Xiao et al. [23] studied the deforma-
tions that may defeat the reconstruction algorithms. Apart
from [1, 2], most methods assume that the amount of non-
rigidity—the number l of basis shapes—is known. If l is un-
derestimated the deformation cannot be well modeled, and
if overestimated the model will contain too many parame-
ters. In the latter case the model will fit the noise in the data,
and will not generalize well.

The data used in this and most previous methods con-
sist of point coordinates obtained by tracking image interest
points through a sequence. Because of occlusions and im-
perfect tracking the registered data often is partial: some or
all points are visible only in a subset of the frames. Many
early methods could not handle situations with missing data
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[1, 3, 5, 16, 21, 22]. Recently a number of methods [6, 10]
have been proposed to handle the missing data problem for
the rigid Structure-from-Motion problem.

Estimating a model from partial data allows one to pre-
dict the projection of all world points on all images. The
model generalizes well if the predicted points, on frames
where the point is not registered, are accurate. If the de-
gree of deformation is overestimated the model is unlikely
to generalize well. Priors have been shown to improve gen-
eralization. In [7] a prior for rigidity was presented. In [18] a
probabilistic PCA model using hierarchical priors is applied
to avoid overfitting.

The present paper draws on and extends our previous
work [2, 11]. It gives an in-depth description of the im-
plicit Maximum-Likelihood (ML) approach to non-rigid
Structure-from-Motion [2], and its extension with tempo-
ral and shape smoothness priors [11], by which a Maximum
A Posteriori (MAP) solution is formulated. The proposed
MAP-estimator is based on four main steps: an initial solu-
tion is computed by using an ML-estimator minimizing the
reprojection error. Second, the implicit coordinate frame is
changed to maximize a temporal smoothness prior. Third,
the implicit structure is re-estimated by minimizing a com-
bination of the reprojection error and a surface shape prior.
Finally, the motion and structure estimates are jointly re-
fined by nonlinear optimization. The paper reports results
on simulated and real data. It shows that the generaliza-
tion ability of the MAP solution is greatly improved com-
pared to the standard ML-estimation. Experiments show that
tracks split by imperfect tracking can be glued correctly to-
gether.

Contributions Among the various methods using the low-
rank shape model for non-rigid Structure-from-Motion, our
framework is the first one to bring all of the following fea-
tures:

• Missing image points. Most of the other methods are
based on SVD to factorize a measurement matrix, e.g. [1,
3–5, 7, 17], and thus do not deal with missing image
points. Our framework handles cases for which only a
few percents of the image points are observed (for in-
stance, we successfully handle a sequence with only about
13% of the image points being observed), meaning that
extreme occlusions and highly dynamical scenes can be
handled. This is achieved thanks to the low-rank match-
ing tensors and closure constraints we propose.

• Robustness. Most of the other methods assume that the
noise on the image point positions follows a centered
Gaussian i.i.d. distribution, e.g. [1, 4, 5, 7, 18]. While this
might be a sensible assumption if the points are manually
clicked or at least checked by the user, this certainly is not
true if the output of an automatic KLT-like point tracker is
directly used as input. The points may drift from the ideal

track, and may also be totally mismatched. Our algorithm
outputs, for each image point, a binary variable indicating
if it is an inlier or an outlier with respect to the low-rank
shape model.

• Rank selection. Most of the other methods assume that the
rank, i.e. the degree of deformation, is known, e.g. [4, 5, 7,
18]. This is definitely not a realistic assumption, since the
rank is highly dependent on the scene content. Inspired
by the GRIC model selection criterion, a robustified BIC,
our algorithm computes the rank from the available data
automatically.

• Generic prior knowledge. Most other methods assume the
low-rank shape model as the only generic prior, i.e. the
scene shape deforms according to a finite set of ‘few’ de-
formation modes, e.g. [1, 5, 7]. This clearly is not enough
to obtain a model that will generalize well to the entire
sequence when only a small fraction of the data is avail-
able. Natural generic priors such as smooth camera mo-
tion, shape deformation and continuous surface shapes,
are easily included in our framework. We show that the
high generalization ability of the recovered model allows
us to glue point tracks split during tracking, due to e.g. an
occlusion or a tracking failure.

Our framework is entirely automatic, as it takes as input the
point tracks produced by some point tracker, computes the
rank, classify each image point as valid or erroneous, and
outputs the sought after implicit reconstruction. A further
step is to upgrade the implicit reconstruction to an explicit,
i.e. metric one, which has been described in details in several
recent papers [4, 22].

Organization of the Paper Section 2 reviews the implicit
low-rank imaging model, its matching tensors and closure
constraints. In Sect. 3 we derive a method for estimating the
degree of deformation. In Sect. 4 model estimation on par-
tial data is described. Sections 5 and 6 describe the proposed
priors and their implementation. Section 7 reports the exper-
imental results. Finally, Sect. 8 concludes the paper.

Notation Vectors are denoted using bold fonts, e.g. x and
matrices using sans-serif or calligraphic characters, e.g. M or
A. Index i = 1, . . . ,N is used for the images, j = 1, . . . ,M

for the points. The Hadamard (element-wise) product is
written �. Bars indicate ‘centered’ data, as in X̄. We use
the Singular Value Decomposition, denoted SVD, e.g. X =
U�VT where U and V are orthonormal matrices, and � is
diagonal, containing the singular values of X in decreasing
order. Operator vect(X) performs column-wise matrix vec-
torization.
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2 The Implicit Low-Rank Non-Rigid Model

The standard rigid model describes the affine projection xij

of a set of M 3D world points Wj , represented by a 3 × M

shape matrix W onto N images represented by a 2N × 3
motion matrix P of stacked 2 × 3 affine camera projection
matrices Pi :

xij = PiWj + ti + ηij , (1)

where ti is the position of the i-th camera and ηij is a noise
term. The 2N × M matrix X of time varying coordinates xij

is called the measurement matrix and has rank r = 3 [13]. In
the non-rigid case, r > 3. The low-rank assumption is r �
min{2N,M}. In explicit non-rigid models it is assumed that
the shape points Wij can be written as linear combinations
over l basis shapes Bkj with the configuration weights αik :
Wij = ∑l

k=1 αikBkj . The explicit imaging model is:

xij = Pi

(
l∑

k=1

αikBkj

)

+ ti + ηij . (2)

Defining KT
j = (BT

1j · · · BT
lj ), and Mi = (αi1Pi · · · αilPi )

the model writes xij = MiKij + ti + ηij and thus X = MK +
t1T + η where M and K are 2N × 3l and 3l × M matrices
and 1 is a vector of ones.

Replacing the model rank assumption 3l with the more
general assumption r = 3l being a positive integer, introduc-
ing a (r × r) full-rank matrix A and relaxing the replicated
structure of the explicit motion matrix Mi gives the implicit
model:

xij = MiKj + ti + ηij

= (MiA) (A−1Kj ) + ti + ηij = JiSj + ti + ηij (3)

and thus:

X = JS + t1T + η,

where the 2N × r matrix J = MA is called the implicit mo-
tion matrix, and where the r ×M matrix S = A−1K is named
the implicit shape matrix. The matrix A in (3) often is called
the mixing matrix and represents a corrective transformation
by which an implicit model can be upgraded to an explicit
one. A defines the implicit coordinate frame in which the
motion and the shapes are represented.

The model (3) is called implicit because no assumption
is made on the replicated block structure of the motion ma-
trices that often is used in explicit approaches e.g. [4, 5, 17].
Thus the implicit model is simpler than the explicit one but
gives weaker constraints on point tracks. Note that the im-
plicit (basis) shape vectors Sj are more difficult to interpret
in terms of world coordinates. Similarly, the implicit mo-
tion matrices Ji (comprising camera pose and configuration

weights) do no longer directly relate to the camera orienta-
tion. Here we assume that r is known. In Sect. 3 we describe
how r is estimated.

Because the factorization of X is ambiguous, due to the
freedom of choosing A, an upgrading from implicit to ex-
plicit representation is important. Xiao et al. [22] show
that constraints on both the explicit motion and shape ma-
trices must be considered to achieve a unique solution,
namely the ‘rotation’ and the ‘basis’ constraints. They give
a closed-form solution based on these constraints. In [4]
Brand presents an alternative less noise sensitive method
without the ‘basis’ constraints. We consider the upgrading
as a postprocessing step that is not further dealt with in this
paper.

Our goal is thus, given X with missing and erroneous
elements, to recover J, S, and t while detecting the erro-
neous elements, and predicting the missing ones. If X is
complete (no missing data), one approximate factorization
can be found using SVD as X̄ = U�VT, where X̄ is the cen-
tered measurement matrix, i.e. with the translational part be-
ing canceled. The implicit motion and shape matrices J and
S, are recovered as the r leading columns of e.g. U and the
rows of �VT respectively. The assumption is that the infor-
mation in the d = 2N − r dimensional discarded subspace
corresponds to the noise η. This method however has lim-
ited interest in practice since real data almost always contain
errors and missing points. We propose a method that deals
with this kind of measurements. It is based on extending the
rigid matching tensors [20] to the low-rank shape model—
we call them low-rank matching tensors. Matching tensors
relate corresponding points over multiple images. Examples
are the fundamental matrix and the trifocal tensor. In the
non-rigid affine case the matching tensor is a 2N × d matrix
N whose columns span the d dimensional left nullspace of
the centered measurement matrix X̄:

N TX̄ = 0. (4)

As before N can be estimated using SVD. The closure con-
straints relate matching tensors to projection matrices. From
(1) and (4) and for all implicit shape points Sj ∈ R

r we have
N TJSj = 0, which gives our N -closure constraint:

N TJ = 0. (5)

The implicit motion matrix J consequently lies in the right
nullspace of N T and may be estimated using an SVD. From
J, Sj can be retrieved point-wise by triangulation. From
xj = JSj we get Sj = J†xj , where J† is the pseudoinverse
of J. In case of outlier contaminated data the computation of
N as well as the triangulation must be done robustly so that
blunders do not corrupt the computation. We use a RANSAC-
based approach called MSAC [15].



J Math Imaging Vis

3 Estimating the Rank

Estimating the rank r of the measurement matrix is of ut-
most importance. If r is chosen too small the model will not
be able to express the deformations; if chosen too large the
model will fit the noise. For many real sequences the tran-
sition between the singular value subspaces containing de-
formation information and those containing noise is blurred.
This makes a guessing of r difficult. For explicit models (us-
ing l = � r

3�) an upgrade to a metric model may be difficult if
l is selected too large [4]. In [18] it is argued that if appropri-
ate priors are used an overestimation of r is not severe. We
have made similar observations using the priors described in
Sect. 5. However still a good guess of r is needed.

Most previous work assumes that the rank of X is given.
A simple rank estimation by thresholding the singular value
spectrum is used in [24]. If outliers corrupt the data or if the
energy of the weakest non-rigid components is comparable
in magnitude to the noise then such methods are unlikely
to work. In [12] a deformation index is based on the cor-
relation matrix of the in-frame position information. In [1]
the Bayes Information Criteria (BIC) is used for rank selec-
tion. We propose to use the GRIC model selection criterion
proposed in [14]. GRIC is a robustified version of BIC. Let
k be the number of parameters of the model and L the log-
likelihood of the error distribution, both functions of r . Then
we aim at selecting the r minimizing −2L + k log(M). In
GRIC the error distribution is obtained from a mixture be-
tween a Gaussian inlier part and a uniform outlier part:

P = γ Pin + (1 − γ )Pout (6)

= γ

c

(
1√

2πσ 2

)2N−r

exp

(

− e2

2σ 2

)

+ 1 − γ

v
, (7)

where the error of the fit for the inliers can be modeled by
an isotropic zero mean Gaussian. Here e is the 2N − r di-
mensional error perpendicular to the fitting manifold and 1

c

is a prior of the point track, assuming a uniform distribution
on the volume (with size c) on which an observation may
occur. v similarly is the volume of space in which an outlier

can occur. When, for a point track, e2

σ 2 exceeds a value T ,
the track can be classified as being more probable to belong
to the outlier distribution than to the inlier distribution. It is
easy to show that:

T = 2 log

(
γ

1 − γ

)

+ (2N − r)λ, (8)

where

λ = 2 log(U) − log(2πσ 2), (9)

U =
(v

c

) 1
2N−r

. (10)

Replacing the mixture model with a maximization approach,
and using:

ρ

(
e2

σ 2

)

=
{

e2
σ 2 if e2

σ 2 ≤ T ,

T if e2
σ 2 > T

(11)

the log-likelihood term −2L = −2 log(P ) can be shown to
equate:

M∑

i

ρ

(
e2

σ 2

)

− 2M log
(γ

c

)
− M(2N − r)λ, (12)

where we have assumed independence of the M observa-
tions. Because the matching tensor has d = 2N − r equa-
tions in 2N coordinates, and because the equations are ho-
mogeneous and orthogonal we have:

k = 2Nd − d − d(d − 1)

2
= (2N2 − N) − 1

2
r(r − 1). (13)

Ignoring the constant terms 2M log(
γ
c
), (2N2 −N) log(M),

and 2MNλ the GRIC measure becomes:

GRIC =
M∑

j=1

ρ

(
e2
j

σ 2

)

+ Mrλ − 1

2
r(r − 1) log(M). (14)

It is clear that the r minimizing this equation depends on
the value of U defined in (10). To avoid estimating U we no-
tice that an often used alternative approach to the estimation
of T is by the value of the inverse cumulative χ2 distribution
with 2N − r degrees of freedom [8]. For relevant values of
2N − r this is approximately linear with a slope of λ. Thus
we estimate λ directly.

Because the data may contain outliers we use the robust
estimator MSAC [15] in conjunction with the GRIC. Thus to
find the rank value minimizing GRIC we must sample this
repeatedly for all relevant values of r . To limit the computa-
tional cost the sequence of trials is divided into groups using
gradually narrower intervals of possible rank values.

As described in the next section a limitation to partial
data forces the rank-value analysis to be made in (overlap-
ping) frame intervals. From such block-rank values a global
one may then be estimated, e.g. by the maximum. In general
the block-rank values will be smaller than the global rank
value, because no block may contain the complexity of de-
formation present in the full sequence. If the frame span for
each block is very small the underestimate may be severe.
In the next section a heuristic for selecting the block size
is discussed. Here the deformation within each block is as-
sumed sufficiently representative for the deformation within
the compound sequence. In this case the maximum may be
a good rank estimate, because it is the largest underestimate
that there is evidence for. One alternative would be to apply
a robust maximum operator.
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Fig. 1 1654 tracks in 250
frames. The degree of visibility
is 13.26%

4 Handling Partial Data

Because of occlusions and imperfect tracking the measure-
ment matrix X often will be defined only in a diagonal band.
Figure 1 shows an example of the visibility matrix V for a
sequence with 250 frames. V is a N × M binary matrix as-
sociated to X specifying if xij is defined or is missing. For
practical use, handling of partial data is of great importance.
A direct application of SVD, as described in the previous
sections and used in a large number of previous methods [1,
3, 5, 16, 22], is not possible. One method to proceed is to
extract blocks of complete data from the diagonal band of X
[9, 10]. A survey of this and other methods for partial data
handling can be found in [6]. As discussed in a following
section we need an initial factorization of X which we then
can improve by an iterative non-linear refinement step. For
this purpose an application of the matching tensor approach
on a block partitioning is ideal.

Given r , a d dimensional matching tensor Nb can be
computed robustly for each block b. For each matching ten-
sor, (5) gives a closure constraint on the joint motion ma-
trix J:
(

0(d×2(ib−1)) Nb
T 0(d×2(N−i′b))

)
J = 0, (15)

where ib and i′b are indexes of the first and last frame in
block b. Stacking the constraints for all blocks yields an
homogeneous linear least squares problem ‖AJ‖2 which
must be solved such that J has full column rank. With-
out loss of generality the full column rank constraint can
be replaced by constraining J to be column orthonormal.
A solution is given by the r last columns of V in the SVD

A = U�VT.
For each block the translation vector tb is computed prior

to Nb . The joint translation vector t can be found by mini-
mizing the reprojection error

∑
b ‖tb − JbTb − tb‖2, where

T is the reconstructed centroid, and where the subscript b

in Jb , Tb , and tb denotes the restriction of the joint matri-
ces and vectors to the frames within block b. The repro-
jection error is rewritten ‖Bw − b‖2, where the unknown
vector w contains T and t. The solution is given by using
the pseudo-inverse since there is an r dimensional ambigu-
ity, making B rank deficient with a left nullspace of dimen-
sion r . This correspond to the translational ambiguity be-
tween the basis shapes and the joint translation t: ∀γ ∈ R

r ,
xj = JSj + t = J(Sj − γ ) + Jγ + t = JS′

j + t′.
Given the estimates of J and t, the shape vectors Sj now

can be computed by a robust minimization of the reprojec-
tion error. An advantage is that this makes possible a detec-
tion of outliers. Alternatively, as described in Sect. 6.2, com-
putation of Sj may be postponed until the prior information
is included.

As discussed in the previous section it is an advantage
for the rank estimation if the data partitioning is made to
maximize the block frame span. However, increasing this
span will decrease the number of tracks visible in all of
the frames within the block. As a minimum Mb must be
larger than 2Nb , where Nb and Mb are the block frame
span and the number of tracks within the block. Because a
RANSAC- based estimation is used Mb � 2Nb is preferred.
One heuristic is to choose Nb by the maximal value such that
Mb > 4Nb . In practice this may not be possible if N � M , if
only very few data is visible, or if some tracks are very short.
Often is an advantage to eliminate tracks shorter than 10–20
frames. To guide the block partitioning one heuristic is to
start with the previously mentioned choice of Mb = 4Nb ,
and then decrease or increase Nb , still requiring Mb > 2Nb ,
towards a situation where the block shape becomes similar
to the shape of the measurement matrix itself.
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5 The Priors

Prior knowledge on both motion and shape can be very
useful in Non-Rigid Structure-from-Motion. In [7, 19] the
analysis is bootstrapped from an assumption of a rigid scene.
More basis shapes are incrementally added if necessary. In
[24] a prior matrix is built from observed trajectories. Us-
ing a spectral clustering method a RANSAC-based motion
segmentation is then derived. In [18] a probabilistic princi-
pal component analysis is used as an hierarchical Bayesian
prior. The method makes possible a simultaneous estimation
of 3D shape and motion, and of the deformation model. A
Gaussian prior is put on the configuration weights αik in (2).
Thus, the shapes are sought as similar as possible to each
other. To a large degree the purpose of this approach and our
surface shape prior (see below) are similar.

It is generally recognized [4, 23] that upgrading an initial
factorization to a metric one, i.e. estimating the mixing ma-
trix, is a hard problem. The methods in [4, 23] both rely on a
non-trivial optimization step. The global optimum is rarely
found unless the optimization is initialized at a point close
to it. Thus an initial choice of coordinate frame according to
a prior may show crucial for successful upgrading.

For nonlinear models with many parameters often many
completely different parameter settings may result in fits
which are approximately equally good when measured on
the training data. However, when measured on data held
back for test usage some solutions may predict these much
better that others. Such solutions are said to generalize bet-
ter. Often it is an advantage to select a solution that gener-
alizes well but have a slightly worse reprojection error than
the other way around. Below we motivate and formulate a
temporal smoothness prior and a surface shape prior, both
intended to improve generalization.

5.1 Temporal Smoothness Prior

For most image sequences, the camera motion is smooth.
For points on a smoothly deforming surface the configura-
tion weights smoothly vary as well which means that the
surface does not ‘jump’ between poses but rather smoothly
interpolates them. Since both the configuration weights and
the camera parameters are encapsulated in the Ji matrices,
these should vary smoothly from frame to frame giving the
smoothness measure:

EJ(J) =
N−1∑

i=1

‖Ji − Ji+1‖2 = ‖L‖2, (16)

where L is the 2(N − 1) × r matrix of stacked projection
difference matrices. The previously described factorization
is ambiguous up to an r × r full rank mixing matrix A. From
(16) we see that EJ(J) = EJ(JA). This suggests to select the

A minimizing (16). Note that since EJ(JR) is invariant to
any orthonormal matrix R we will not totally fix the mixing
matrix but leave freedom for any orthogonal transform.

5.2 Surface Shape Prior

Points which are close in space also project closely on the
images. In case of points on a deforming continuous sur-
face the opposite is true as well. Solutions obtained by the
previously described method does not encourage such be-
havior. As a consequence the projected trajectories for such
close tracks may deviate significantly outside the estimation
area. Often the ability to generalize acceptably disappears
just 2–5 frames away from the images in which the points
are visible. To improve generalization a surface shape prior
is imposed.

First notice that without fixing the coordinate frame in
which the shapes in S are represented the usual norm dis-
tance between two shapes is meaningless. However having
fixed the mixing matrix (up to an orthogonal matrix) it be-
comes meaningful.

The shape similarity α(j1, j2) of two point tracks j1 = j2

is measured by a decreasing function of a distance measure
d(j1, j2) between the point tracks. The surface shape prior
then is:

ES(S) =
∑

(j1,j2)∈�

α(j1, j2) · ‖Sj1 − Sj2‖2, (17)

where � is the set of track tuples simultaneously visible for a
minimum number of, say 10, frames. As for the shape simi-

larity a Gaussian α(j1, j2) = exp(− d(j1,j2)
2

2σ 2 ) is appropriate.
In the experiments we computed σ as 0.03 times the im-
age width. One measure of track distance is the maximum:
d(j1, j2) = maxi{‖xij1 − xij2‖2}. Alternative measures in-
clude robust estimates of the average or maximum point
track distance. As for the temporal smoothness prior, ES is
invariant to any orthonormal matrix R.

6 Non-Rigid Structure-from-Motion with Priors

The model simultaneously minimizing the reprojection er-
ror, the smoothness prior and the surface shape prior, i.e. the
cost:

ERE(J,S) + γ EJ(J) + βES(S) (18)

must be minimized by nonlinear optimization. To ensure a
good starting point, and because the coordinate frame in
which the shapes are represented influences the solution
through the priors, we choose (initially) this frame by min-
imizing the temporal smoothness prior. This fixes the mix-
ing matrix up to an orthogonal matrix, to which the surface
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Table 1 Summary of our non-rigid low-rank implicit structure-from-motion algorithm

OBJECTIVE

Given M point tracks over N images as a possibly incomplete (2N × M) measurement matrix X, compute the implicit non-rigid motion Ji , the
implicit non-rigid shape points Sj , and an estimate of the rank r . Classify each image point as an inlier or an outlier.

ALGORITHM

1. Partition the sequence into overlapping blocks with complete data (Sect. 4). For each block, robustly estimate the block rank and the associated
matching tensor (Sects. 2 and 3).

2. Estimate the global rank r: apply the closure constraints to solve for the joint implicit motion matrix J and the joint translation vector t
(Sect. 4).

3. Detect the outliers by robustly fitting the model to each point track using RANSAC.
4. Use the temporal smoothness prior to select the coordinate transformation A and apply this to J (Sects. 5.1 and 6.1).
5. Estimate the shape vectors Sj minimizing a weighted sum of the reprojection error and the shape smoothness prior measure (Sects. 5.2

and 6.2).
6. Nonlinearly refine the implicit motion and shape points by minimizing a combination of the reprojection error, the temporal smoothness

measure and the shape smoothness measure.
7. Estimate the missing data and glue tracks if they comply with the estimation.

shape prior is invariant. Next, by using the surface shape
prior an initial guess for S is obtained. Finally J and S are
jointly refined by nonlinear least-squares optimization. The
constants γ and β in (18) are chosen ad hoc such that the
two priors initially contribute relative to the reprojection er-
ror with certain amounts, say 0.2 and 0.02. Below, the initial
application of the two priors is described. The algorithm is
summarized in Table 1.

6.1 The Coordinate Frame

The temporal smoothness prior measure (16) obviously de-
pends on the mixing matrix. Consequently we (partially)
determine this as the r × r full rank matrix A minimiz-
ing EJ(JA) = ‖LA‖2. The motivation is that determining the
mixing matrix ensures that the camera motion is ‘close’ to
the optimal one. To avoid the shrinking effect of reducing the
prior value by simply scaling down J we require det(A) = 1.
Let L = U�VT be an SVD of L. A closed-form solution for
A is provided in the Appendix.

A =
⎛

⎝ r

√
√
√
√

r∏

k=1

σk

⎞

⎠V�−1. (19)

Given A we change the coordinate frame by J ← JA and
S ← A−1S without changing the reprojection error. How-
ever the value of the prior EJ(J) is significantly reduced.

6.2 Surface Shape Prior Implementation

Having fixed the non-rotational part of the mixing matrix
it becomes meaningful to compute an estimate of the struc-
ture S. Given the modified joint motion matrix J, S is sought
to minimize a weighted sum of the reprojection error and the
surface shape prior:

ERE(J,S) + βES(S)

= ‖V � (X − JS − t1T)‖2

+ β
∑

(j1,j2)∈�

α(j1, j2) · ‖Sj1 − Sj2‖2, (20)

where V is the combined inlier and visibility matrix and �

is the set of ‘close’ point tracks. The S minimizing this ex-
pression leads to a larger reprojection error compared to the
initial solution. The reprojection error increases with β . We
choose a value of β such that the reprojection error either re-
mains below say 2 pixels or is increased by a factor smaller
than say 0.5. Since the result is not sensitive to an accurate
value of β an approximate value is found using an itera-
tive approach with only few iterations. Equation (20) can be
rewritten:

ERE(J,S) + βES(S) = ‖v · (x̄ −Ms)‖2 + β‖Ls‖2, (21)

where x̄ = vect(X̄) and s = vect(S). M = diagM(J) is a
(2NM) × (rM) block diagonal matrix with M repetitions
of J. If p = |�| is the number of ‘close’ pairs of tracks then
L has p row blocks L(j1,j2) of the form:

L(j1,j2) = α(j1, j2) · (0 . . .0, I,0 . . .0,−I,0 . . .0), (22)

where I and 0 are the r × r identity and zero matrices, and
where the position of the two identity matrices correspond
to the indexes j1 and j2. Thus L has size (rp)× (rM). With
this rewriting we can directly see that the least squares solu-
tion is:

s = [M�M+ βL�L]−1M�x. (23)

Due to the sparseness of the matrices an implementation us-
ing a sparse matrix representation is advantageous.
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Fig. 2 Reprojection error and generalization error versus the variance
of added noise σ for different percentages of hidden points to compute
the generalization error

7 Experimental Results

In the experiments reported below we will first test the abil-
ity of the basic estimation method (without priors) to behave
well on “easy” synthetic sequences with partial, noisy, and
outlier corrupted data. Next we report experiments show-
ing the advantages of the temporal smoothness prior and the
shape smoothness prior on real images. Finally, an example
of track gluing is reported.

7.1 Experiments on Easy Synthetic Data

We simulated N = 180 cameras observing a set of M = 1000
points generated from l = 5 basis shapes, hence with rank
r = 3l = 15. The configuration weights were chosen in order
to give a decaying energy to successive deformation modes,
and such that the singular spectrum decayed smoothly to
zero at the true rank value. The simulation setup produces
a complete measurement matrix from which we extract a
sparse, band-diagonal measurement matrix X with about
50% of the data, similar to what a real intensity-based point
tracker produces. Gaussian distributed noise with zero mean
and a variance of σ 2 was added to the image points. In the
first experiment the true rank was assumed known. No prior
information was used. Figure 2 shows plots of the reprojec-
tion error and the generalization error as functions of σ . The
generalization measures are made in 5 bands including the
training data and 11%, 22%, 49%, 84%, and all of the data
held back for test. Figure 2 shows that the error is approxi-
mately proportional and slightly larger to the noise level. As
expected the generalization error increases with the gener-
alization distance. The reason that the generalization error

Table 2 Average and standard deviation of estimated rank estimate
as function of the true rank. In the test 300 “easy” sequences with a
varying amount of up to 50% outliers was used

True rank 3 6 9 12 15 18

Average 3.67 5.98 8.47 11.06 13.68 16.32

Std. 0.44 0.41 0.57 0.60 0.62 0.76

is only slightly larger compared to the reprojection error is
that the data was designed to be “easy”.

In the second experiment the rank value estimation was
tested using the same data. Table 2 show the average and
the standard deviation of the estimated rank value as func-
tion of the true rank value. In the test 50 sequences for each
of 6 different amounts of outlier contamination (0%, 10%,
20%, 30%, 40% and 50%) was used. No matter the degree
of outlier contamination the results were, as expected, very
similar. In Table 2 these numbers are averaged. As seen
GRIC slightly over/under-estimates the rank when this is
small/large.

The results show that the basic implicit non-rigid struc-
ture-from-motion modeling works well on “easy” synthetic
data. When the difficulty of the data increases, e.g. when the
singular value spectrum becomes flatter, the modeling error
increases, and the rank estimate gets more uncertain with a
tendency to be overestimated. In case of real data, overes-
timation is less meaningful because the model is empirical,
i.e. no real data are fully explained by the model. In any
case such “overestimation” does not seem serious if priors
are used.

7.2 Experiments with Priors Using Real Videos

In the following experiments we measure the improvement
in generalization by applying the two priors. The general-
ization is measured by the average point prediction accu-
racy as a function of the generalization distance, i.e. the
column-wise distance in frames to the closest data point
used for training. To make the experiment realistic only real
sequences are used. Figure 3 shows single frames from the
two sequences called Bears and Groundhog day. The se-
quence Bears shows a limited amount of deformation of a
continuous surface. In total 94 points were visible in 94 im-
ages. The Groundhog day sequence is more difficult show-
ing several independent deformations. Originally the mea-
surement matrix was partial, so a complete sub-matrix of
75 frames and 117 point tracks was extracted. From the two
complete matrices diagonal bands with 50% entries were se-
lected for training. A third sequence was constructed from
the (complete) sequence Bears by splitting each track in
three sub-tracks. To make the test more realistic the data
related to the last 1–7 frames of each track was randomly
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Fig. 3 Images from the Bears sequence (top) and the Groundhog day
sequence (bottom) with marked points

deleted. This resulted in a new measurement matrix with 282
tracks. The visibility matrix is shown to the left in Figure 6.

On the sequence Bears with partial data the rank was es-
timated to 5. After initial estimation ERE = 0.82 pixels. Ap-
plying the priors increased this to 1.20 pixels. The tempo-
ral smoothness measure was reduced by a factor of 108.7.
Fig. 4 shows on the top a plot of the average generaliza-
tion error as function of the generalization distance. With-
out prior use the generalization becomes bad even for short
generalization distances. With prior use the error is signif-
icantly reduced. For this, relatively easy, sequence the esti-
mated model seems reliable up to a distance of about 15–20
frames. To illustrate the effect of the prior usage Fig. 5 show
a close-up of 4 tracks from the Bears sequence. The posi-
tions computed by using the two priors (squares) are much
closer to the true positions (stars) than the ones obtained by
not using the priors (diamonds).

On the sequence constructed from Bears by track split-
ting the rank was, as before, estimated to 5. The reprojec-
tion error was increased from 0.53 pixel to 1.74 pixels by
application of the priors. The temporal smoothness measure
was reduced by a factor of 124.2. Figure 4 shows on the
bottom that the average generalization error with prior us-
age is almost constant about 2–3 pixels independently of the
generalization distance. This is much less than without prior

Fig. 4 Average generalization error as function of the generalization
distance for the sequence Bears (top) and Groundhog day (middle), and
the sequence obtained from Bears by track splitting (bottom)

usage. The reason the generalization errors here is 3–4 times
smaller compared to the one showed on the top of Figure 4
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Fig. 5 Close-up sequence of 4 point tracks which visible parts (use for training) all ending close to frame number 47. ‘True’ positions, given by
the tracker, are shown by stars. Predicted positions estimated without using the priors are shown by diamonds. Predicted positions estimated with
use of the priors are shown by squares

Fig. 6 Left: Visibility matrix for measurement matrix constructed by splitting the tracks of Bears in 3. Right: Glued tracks

is that here most data is maintained. The data is just split
into more tracks.

On the sequence Groundhog day the rank was estimated
to 14, indicating the difficulty of the sequence. The initial
reprojection error was increased from 0.96 pixel to 1.62 pix-
els by application of the priors. The temporal smoothness
measure was reduced by a factor of 5660.3. Figure 4 shows
in the middle that the improvement in generalization still is
significant, but less impressive compared to the other two
sequences. A main reason is that here the assumption on
scene smoothness made for the surface shape prior does not
exactly match the physical scene behavior.

7.3 Experiments with Track Gluing

Often tracks are split due to imperfect tracking and it would
be advantageous to glue together the parts. The experiments
reported above indicate that without the priors the general-
ization error would be too large to allow a detection of split
tracks. With use of the priors this however might be possible.
Below we report a simple experiment using the previously
described data obtained from Bears by splitting each track
in three. Figure 6 show to the left the visibility matrix of the
data.

After having estimated the model a gluing algorithm was
run. This worked by iteratively gluing a point track with the
best fitting track located up to 8 frames before or after the
point track. A threshold on the fit was used to stop the gluing
process. The resulting matrix of glued tracks showed to the
right in Fig. 6 was identical to the original unsplit measure-
ment matrix, i.e. the gluing was perfect. Probably this result

is due to the simplicity of the deformation. In cases where
tracks are split in more shorter sub-tracks a complete gluing
cannot be made in a single pass because the reliable general-
ization distance still is limited. In such cases the estimation
and gluing processes may be iterated.

8 Conclusions

We described an implicit non-rigid Structure-from-Motion
approach with priors for temporal smoothness and surface
shape coherency. We showed that the priors significantly im-
proves the prediction of points projections in frames where
data is missing, i.e. the generalization ability. Experiments
have shown the improvement of the priors sufficient for
gluing together point tracks split by imperfect tracking. To
our knowledge our approach to Non-rigid Structure-from-
Motion is the first that simultaneously can handle a substan-
tial amount of missing data and outliers, can estimate the
rank of the measurement matrix, and includes generic prior
knowledge on temporal and surface smoothness. We expect
the temporal smoothness prior to drive the estimated model
closer to an explicit configuration. Further work will show
how much this helps in upgrading to metric.

Appendix: Proof: Maximizing the Temporal
Smoothness Prior

Below we sketch a proof that by choosing A as in (19)
the temporal smoothness measure (16) is minimized. Thus



J Math Imaging Vis

we find the implicit coordinates maximizing the temporal
smoothness. Let L = U�VT be an SVD of L. Let A = QDW
be an SVD of A. We parameterize A as A = QD since
EJ(JA) = EJ(JQD). Let Y = VTQ ∈ O(r). We can rewrite
EJ(JA) as:

‖LA‖2 = ‖U�VTQD‖2

= ‖�YD‖2 = d2
1‖�y1‖2 + · · · + d2

r ‖�yr‖2, (24)

where dr ≥ dr−1 ≥ · · · ≥ d1 ≥ 0 and with yi the columns
of Y. We want to find the yi and the dk minimizing the ex-
pression under the constraints that

∏
dk = 1, and that Y is

orthonormal. Due to the ordering of the singular values we
can split the minimization problem into r subproblems cor-
responding to the terms in the sum. From this we get Y = I,
i.e. Q = V. The minimization problem then is reduced to:

min
{dk},∏dk=1,dr≥···≥d1≥0

r∑

k=1

(σkdk)
2. (25)

Introducing Lagrange multipliers λ and μj a compound ob-
jective function is formulated:

min{dk}

r∑

k=1

(σkdk)
2 + λ

⎛

⎝
r∏

z=1

dz − 1

⎞

⎠ +
r∑

j=1

μj (dj − dj−1).

(26)

It can easily be shown that this function has a minimum
given by:

2σ 2
k dk = λ

(
r∏

z=1,z =k

dz

)

= λ

dk

. (27)

Letting α = √
λ/2 and checking the unit determinant con-

straint it is seen that:

α = r

√
√
√
√

r∏

k=1

σk. (28)

Putting things together we reach expression (19).
To show that the minimum is global the Karush-Kuhn-

Tucker conditions can be applied. A sufficient condition for
the minimum to be global is that the three terms in (26) are
twice differentiable and that the Hessian matrix evaluated in
R

r+ is positive semi-definite. The Hessian for the first term
is diagonal with elements 2σ 2

k . The last term is linear so the
Hessian is a positive semi-definite null matrix. The Hessian
for the second term

∏r
z=1 dz is given by:

H =

⎛

⎜
⎜
⎜
⎝

0
∏r

i =1,2 di . . .
∏r

i =1,r di∏r
i =1,2 di 0 . . .

∏r
i =2,r di

...
...

...
...

∏r
i =1,r di

∏r
i =2,r di . . . 0

⎞

⎟
⎟
⎟
⎠

. (29)

For x ∈ R
r+ it is clear that x�Hx ≥ 0, so H is positive semi-

definite in R
r+.
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