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Abstract

Fitting a single generic AAM on an unseen face (that is not in the train-
ing set) under any pose and expression is very difficult. The variability of
the data is so high that the fitting process usually gets stuckinto one of the
numerous local minima. We show that a solution to this problem consists
to separate the variability sources. We build a pool ofspecializedAAMs.
Each AAM is trained over multiple identities, all shown under the same pose
and expression. We then retain the AAM that shows the smallest residual
error when fitted to the input image. The fitting obtained in this manner is
very accurate on unseen faces. The ultimate goal is to automatically train a
person-specific AAM. In addition, the pool of specialized AAMs allows us to
recognize the face pose and expression at each frame of the video with good
performances. The proposed method has potential applications in Human
Computer Interaction and driving surveillance, to name just but a few.

1 Introduction

The problem of face analysis in still images and videos has been extensively studied for
years. This intense research activity finds its motivation in the possibility to set up a
large range of applications in the medical, psychological and linguistic fields (cognitive
studies, expression transfer on an avatar,etc. ). Face analysis is a difficult topic since
face images vary in identity, pose and expression. The sought-after model should be
able to automatically and reliably describe previously unseen faces under any pose and
expression. We describe the two most promising approaches.

The first one is Bartlettet al.’s machine learning based expression analysis solution
proposed in [1]. Several classifiers are trained for face andeye detection, as well as for the
presence and intensity of particular Action Units. These are the elementary deformations
occuring on a face, as described by Ekman’s Facial Action Coding System [6]. This
method is probably the best performing one in the literaturefor expression analysis on
unseen faces(faces that are not explicitly learnt by the classifiers). The method is non
model-based. This makes it difficult to retrieve the shape, and so restrain the range of
possible applications.

The second established approach is the Active Appearance Model (AAM) proposed
by Cooteset al. [3]. An ad hoc face AAM is trained on manually labeled images,so
as to learn the shape and appearance bases. An optimization process is used to fit the



AAM on an input image: the shape and appearance coefficients of the model are tuned
until the model instance matches the input picture. Retrieving the face shape is important
for many video post processing systems. Obviously the performance of such systems is
directly related to the quality of the face shape description, i.e., the fitting accuracy is
crucial.

As Grosset al. [7] first pointed out, it is important to distinguish betweentwo situa-
tions, providing two different kinds of achievable fitting accuracy:

• theperson-specificcontext, where the fitted face has been explicitly learnt by the
model. The fitting accuracy is usually very good in this context, and reliable for
post processing systems. In [8], Luceyet al.use person-specific AAMs to retrieve
the face shape and successfully classify facial deformations into Action Units.

• theperson-genericcontext, where the fitted face is not in the training set. As first
shown by Grosset al. in [7], the fitting process is much harder than in the person-
specific context. In [10], Peyraset al. showed with carefully chosen experiments
that fitting an unseen face with an AAM is much less accurate than fitting a face
that belongs to the set of images used to train the model. Theyexplained the rea-
son for this: in the generic context, the appearance counterpart of the model cannot
fully explain the appearance of the face in the input image. As an unfortunate con-
sequence, the minimum error of the cost function corresponds to a biased position
of the model. Even when initialised in the best possible position (the ground-truth
shape), the AAM drifts away.

The problem of fitting unseen faces is a corner-stone for an extended amount of ap-
plications. As of today, no method have proven able to accurately fit previously unseen
faces under a wide range of poses and expressions. AAMs appear to provide an inter-
esting basis to face this problem. One could think that adding more training data would
increase the ability of the model to generalize to unseen faces. Indeed, this ability in-
creases with the amount of training data. In practice however, the higher complexity of
the AAM makes its fitting unreliable because this induces numerous local minima in the
cost function. In other words, the model is so flexible that it‘explains’ spurious non face
solutions in the image. As a consequence, the solution for reliable and accurate fitting
must combine these two contradictory conditions:

• the complexity of an AAM must be kept as low as possible so as topreserve a large
convergence basin and be able to find the global cost minimum,

• the range of face images that the AAM can explain must be large, so that the global
cost minimum matches the sought after solution.

The first condition is satisfied by limiting the size of the training set while the second
one requires to expand the training set. To bypass such a contradiction, we propose to
separate the sources of variability within the training data. Instead of considering the face
as an object that varies in identity, pose and expression, wesee it as a collection of objects
that vary in identity only: each object has a constant pose and expression. In this view,
an AAM must model only one of the three sources of variability: identity, so as to fit a
variety of unseen faces under the same pose and expression. We say that such an AAM is
specializedto a particular pose and expression pair. To deal with many poses and facial
deformations, we train apool of specialized AAMs.



Contribution. We showed in [10] that fitting an unseen face with local modelsincreases
the generalization ability and the fitting accuracy in comparison to global models cover-
ing all facial features. The fitting bias is reduced to a pointwhere the fitting accuracy on
unseen faces is equivalent to the accuracy of manual labels.Following this insight, we
design two categories of specialized AAMs that locally model the face: theupper AAMs,
built to fit the eyes and eyebrows, and thelower AAMs, designed to fit the mouth. This
also presents the advantage to model separately the possible combinations of facial de-
formations. Our strategy consists to run all upper and lowerAAMs on one input picture.
For each category we keep the AAM presenting the smallest residual error. This AAM
is expected to be the most accurately fitted on the face, and should represent the current
pose and expression of this face. Consequently, we expect our method to automatically
provide accurate labels on unseen faces under varying expression and pose, and also to
correctly classify the pose and expression at any frame of a video. The process is presum-
ably slow and costly. This is often not a limitation: the longoff-line training is performed
only once, on a video of a person who frequently uses the device at hand. As an exam-
ple, communication with personal-computers and car drivermonitoring systems can be
equipped with this technology. As two important contributions, we show that:

• good fitting accuracy, good robustness to position perturbation and high classifica-
tion rates are obtained,

• the obtained labels can be used to automatically train a person-specific AAM, which
is able to fit the face and classify its expression in real-time.

Organization. Section 2 reviews the literature and introduces the AAMs. Section 3
presents the specialized AAMs and the pose and expression database we have used to
perform our experiments. In section 4 we show experimental results on still images in a
leave-one-identity-out fashion, and on a video where an unseen person displays a series of
poses and expressions. We compare the performance of the specialized AAMs against the
classical AAM learning all data. Section 5 gives a conclusion and our perspectives. The
good fitting results of the specialized models will allow us to build a person-specific AAM
for real-time tracking and pose and expression classification on the just-learnt person.

2 Background

2.1 Previous Work

The concept of fitting several models is not new: Cooteset al. used one model for each
face pose in [4]. However, despite the advantages it presents, this solution were not
pursued afterward.

The AAM is not the unique face fitting solutions in the literature. We review some
others. Cristinacceet al.proposed a competitive template matching solution calledCon-
strained Local Modelsin [5], which were further studied by Wanget al. in [11]. This
solution exhibits better fitting results than AAMs. Note that these methods can be em-
bedded as the specialized models in our framework. Indeed, pools would increase the
discriminability between correct and wrong alignments, which is an important ability
when aligning objects with a very high and complex range of variability.



The 3DMM (3D Morphable Model) presented by Vetteret al. in [2] can recover the
3D structure of a face from a single picture. This model is tooheavy to automatically and
reliably fit faces under any pose and expression. Here too, the specialization of multiple
3DMMs could be help to improve the results.

2.2 Background on the AAM

An AAM combines two linear subspaces, one for the shape and one for the appearance.
They are learnt from a labeled set of training images [3]. A certain percentage of the whole
training set shape and appearance variance is kept. As a ruleof thumb, [10] showed that
keeping 60% shape variance and 100% appearance variance is ‘optimal’ in the person-
generic context. We therefore keep 60% shape and 95% appearance variance, so as to
keep the AAM size reasonable.

Fitting an AAM consists to find the shape and appearance instances that make the
residual error between the image and the synthesized model as small as possible. We use
Baker and Matthews’ optimization framework [9] with theSimultaneous Inverse Compo-
sitional Algorithm.

3 A Pool of Specialized AAMs

3.1 The Concept

In [10], both global and local models are specialized on the frontal pose and neutral ex-
pression. Since stuffing various poses and expressions intoa single AAM spoils its fitting
performance, we extend here the concept ofspecialized AAM. The idea is to build a pool
of AAMs, each being specialized on a particular pose and expression pair. The whole
pool would then encompass a continuum of poses and expressions.

Each specialized AAM is built overN different identities, giving the AAM a cer-
tain ability to explain unseen faces. Unfortunately, none of the publicly available face
databases present a large range of facial deformations under several head poses and an
homogeneous illumination. For this reason, we had to build our own pose and expression
database that we present in the rest of the section.

3.2 The Pose and Expression Database

Our current database has 15 identities taken under 3 views (frontal, 10◦ and 20◦ in azimut)
displaying 21 facial (upper or lower) deformations. We keptthe illumination homoge-
neous. All pictures (63 per identity) were manually labeledthoroughly to maximize the
label accuracy. Taking pictures and labeling them represents about 3 hours of work per
identity. The facial deformations we use are showed in figure1. Figure 2 shows a sample
of people from the database.

It is obvious that more people, more poses and more deformations could be included
in the database to fit more unseen people under a less restricted amount of poses and
expressions. However one faces several difficulties:

• it is time consuming and tediousto label images with high accuracy, as this present
study requires.



Figure 1: Facial deformations represented in the database.The manually placed land-
marks represent the vertices used for training or fitting (for testing purposes). The defor-
mation number is indicated on top of each of the thumbnails. Each deformation is meant
to represent some Action Units or a particular combination of them [6].

id 1 id 2 id 3 id 4 id 5

0◦

10◦

20◦

Figure 2: 5 of the 15 identities of the database for all poses and deformation n◦5.



• theappearance and deformationof faces arewide-ranging. The set of people form-
ing the database must capture this diversity, in quality andquantity.

• the quality of the deformations is very importantto prevent from badly defined
deformation classes and their possible overlaps. The selected people composing
the database should therefore be actors or possess some particular talents to perform
facial deformations on demand.

4 Evaluation and Tests

4.1 Leave-One-Identity-Out Test

The test consists to train a pool of specialized AAMs onN identities and to operate the
fitting on one of the remaining faces. In this way, the identity we fit is unknown from the
AAMs. We perform this leave-one-identity-out test 15 times. N can at most be 14. For
each test identity, 63 images (21 expressions under 3 poses)must be fitted with all upper
or all lower specialized AAMs. For each image, we run all AAMsand keep as the winner
the one that makes the smallest residual error at convergence, after 30 iterations. Our goal
is to assess the two following points:

• the fitting accuracy, i.e., the quality of each label position on the face at conver-
gence: we measure it by comparison with manual labels taken as a reference,

• thebasin of convergence, i.e., the ability to cope with perturbed initializations,

• the classification rate, i.e., the frequency of correct correspondence between the
pose and expression of the winning AAM and the true pose and expression.

From the first and second observations we will see whether oursolution allows one to au-
tomatically label a sequence showing an unseen face. From the third observation, we will
see if such a sequence can also be automatically labeled in terms of pose and expression.

4.1.1 Fitting Accuracy and Convergence Basin

To score the fitting accuracy of the winning AAM on a test image, we normalize the
coordinates of the manual labels (taken as a reference) in scale. This makes the external
eyerespmouth corners distant by 100resp80 pixels for the upperrespthe lower model.
The scale value used to normalize the reference shape is alsoapplied to the winning
AAM’s shape. We consider the accuracy error to be the mean euclidean distance between
the labels of the reference and the fitted shape.

The top of figure 3 shows that the fitting accuracy of specialized models increases
with the numberN of identities learnt by the specialized models. This accuracy is however
lower than the accuracy of the single learn-all-data AAM. This holds when the models are
very well initialized, using the manual labels. On the otherhand, bottom of figure 3 shows
that the specialized models are more robust than the single model to initial perturbations
and more often converge to the correct solution. This is a suitable property for tasks like
tracking: in video sequences, the geometric discrepancy between the frames can be large
and the fitting function must present a steep and large basin of convergence to ensure the
model to find a correct solution in any frame. A test on a video is performed in§4.2.
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Figure 3: (Top) the fitting accuracy is illustrated for various sizesN of the training dataset.
The behavior is similar for specialized upper AAMs (top left) and lower AAMs (top right).
For comparison purposes with theN = 14 case, the dashed curve represents the accuracy
obtained with a single AAM classically learning all deformations, identities and poses.
For these tests, manual labels are used to perfectly initialize all model fittings. (Bottom)
the fitting robustness to the initial position is compared for single and specialized upper
AAMs (bottom left) and lower AAMs (bottom right) for different perturbation intensities.
The case of perfect initialization is repeated for comparison sake. For the perturbed cases,
the models are initialized in a shifted position along the horizontal and vertical axes. Two
shifting magnitudes are tested: 1/14 and 1/7 of the distance separating the two external
eye corners. For the latter, there is initially no overlap between the eyes in the image and
the eyes in the model.

4.1.2 Classification Results

Table 1 shows the percentage of correct classification obtained on all test images for
different training set sizes and for two position perturbation magnitudes in theN = 14
case. The classification rate increases with the number of identities learnt by the AAMs.
For N = 14, 71% correct expression classification is reached on unseen identities when
no perturbation is introduced in the initial position. Thispercentage of correct expression
classification is high, and most of the classification confusion is obviously made between
classes that are very close. The three different intensities for the smile (deformations
n◦2, 3 and 4), and the two mouth apertures (deformations n◦18 and 19) can easily be
confused and the classification failure mainly comes from this reason. Coarser clusters of
expressions would improve the classification results, whereas further detailing the range
of expressions in the database would increase the possible overlap between classes.

4.2 Test on a Sequence

We compare the tracking ability of our pool of specialized AAMs and the single learn-
all-data AAM. To do so, we select, manually label the most informative frames of the



↓ Correct Classification of↓ N=5 N=8 N=14 N=14 (perturb.1/14) N=14 (perturb.1/7)

Expression 64% 68% 71% 67% 23%
Angle 68% 73% 74% 72% 40%
Expression + Angle 48% 52% 54% 50% 10%

Table 1: Percentage of correct classification of expressiononly, angle only and both ex-
pression and angle. Results are given for various sizes of the training set and for the case
where the model trained over 14 identities is perturbed in position.

sequence and train an AAM able to fit the whole sequence with high accuracy. This
provides the reference face labels at each frame for the testdescribed below.

The test consists to perform the long multiple specialized AAM fitting process on
each frame and score the fitting accuracy with respect to the reference labels. A similar
test is done with the single, learn-all-data upper and lowerAAMs. The fitting result on
one frame is used to initialize the model on the following frame. Results are normalized
in shape as in§4.1.1. Figure 6 compares the tracking accuracy of specialized and sin-
gle AAMs, whereas figures 4 and 5 shows some fitting results obtained with specialized
AAMs and with the single AAMs. For the upper face, the single AAM is often more accu-
rate when it starts close from the solution, confirming our previous observations. On the
other hand, more robustness to sudden facial deformations and pose changes is observed
for the specialized models. The single model is not able to track eye blinks and pose vari-
ations. This tasks is however well accomplished by the specialized models. For the lower
face, the single AAM is unable to track the mouth and remains in its initial position along
the whole video. The model expressivity is too high to be sensitive to the displacement
of low gradient area such as the mouth. Indeed, it can expresswith low residual error any
area surrounding the mouth. The specialized models manage to correctly fit all frames of
the sequence.

5 Conclusion

We proposed a solution to the difficult problem of fitting AAMson unseen faces, allow-
ing variations in pose and expression. This is done by means of a pool of AAMs, each
one being specialized on a particular pose and expression. These AAMs are fitted on the
picture in a multiple fitting fashion. We tested our solutionand compared it with the clas-
sical way that consists to train a single AAM on a large training set, including variability
sources in pose, expression and identity. We showed that theinertia of such an AAM is
so high that the model easily stays into its initial position. On the other hand, our pool of
specialized AAMs present a good ability to discriminate thedifferent pairs of pose and
expression, and shows to accurately fit the face despite fasthead motion and expression
changes often present in a video. We plan to use the accurate fitting of our specialized
models to automatically label all frames of a sequence, and train a person-specific AAM
for this person. This AAM can be used to reliably track the face in real-time during the
following sessions. In addition, the specialization of each AAM may allow us to flag the
face pose and expression at each frame of the subsequent videos in real-time.

The main next difficulty we foresee is to make our solution invariant to illumination



Figure 4: Fitting results obtained with the specialized models on some frames (number
22, 41, 45, 52, 58, 74, 78 and 106) extracted from a video showing identity 2. High fitting
accuracy is often observed and difficult facial changes suchas eye blinks and sudden pose
variations are retrieved reliably. The classification of 5resp1 upperresplower deforma-
tions is missed among 23resp11 deformations occuring over the complete sequence. An
example of failure is showed on the bottom left frame where deformation n◦7 is confused
with deformation n◦0.

Figure 5: Fitting results of the single learn-all-data upper and lower AAMs showed for
the same frames as in Figure 4. The inertia of these models areso high that they cannot
handle large feature displacements. This is particularly true for the lower AAM because
the mouth is likely to present small image gradients. The upper AAM shows to nicely
track the raised eyebrows and provide good fitting accuracy on some of the frames.
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Figure 6: The fitting accuracy error along the frame sequenceis compared for the single
AAM and the specialized AAMs. Left and right show the resultson upper and lower
face respectively. Tracking results are accurate and reliable for the specialized models.
The tracking can be even more accurate for the single AAM on the upper face, but it
is also less reliable when sudden changes occur. On the lowerface, the single model
results completely unreliable. The fitting error of the frames shown on figures 4 and 5 are
indicated by squares.

changes and occlusions. Real-life contexts require the applications to be robust to such
changes.
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