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Abstract

Fitting a single generic AAM on an unseen face (that is nohattain-
ing set) under any pose and expression is very difficult. Tdréatility of
the data is so high that the fitting process usually gets shiokone of the
numerous local minima. We show that a solution to this probié®nsists
to separate the variability sources. We build a poospécializedAAMS.
Each AAM is trained over multiple identities, all shown untlee same pose
and expression. We then retain the AAM that shows the smabsgual
error when fitted to the input image. The fitting obtained iis thhanner is
very accurate on unseen faces. The ultimate goal is to atittatha train a
person-specific AAM. In addition, the pool of specialized M8 allows us to
recognize the face pose and expression at each frame ofdée with good
performances. The proposed method has potential appliain Human
Computer Interaction and driving surveillance, to namejus a few.

1 Introduction

The problem of face analysis in still images and videos has lextensively studied for
years. This intense research activity finds its motivatiorthie possibility to set up a
large range of applications in the medical, psychological Enguistic fields (cognitive
studies, expression transfer on an avatér,). Face analysis is a difficult topic since
face images vary in identity, pose and expression. The seaftgr model should be
able to automatically and reliably describe previouslyaamsfaces under any pose and
expression. We describe the two most promising approaches.

The first one is Bartletet al's machine learning based expression analysis solution
proposed in [1]. Several classifiers are trained for facesgedietection, as well as for the
presence and intensity of particular Action Units. Thegethe elementary deformations
occuring on a face, as described by Ekman’s Facial Actionif@o8ystem [6]. This
method is probably the best performing one in the literafareexpression analysis on
unseen faceffaces that are not explicitly learnt by the classifiers).e Thethod is non
model-based. This makes it difficult to retrieve the shape, o restrain the range of
possible applications.

The second established approach is the Active AppearanceIMAAM) proposed
by Cooteset al. [3]. An ad hoc face AAM is trained on manually labeled imagss,
as to learn the shape and appearance bases. An optimizabioesp is used to fit the



AAM on an input image: the shape and appearance coefficiéniteeanodel are tuned
until the model instance matches the input picture. Ratrgethe face shape is important
for many video post processing systems. Obviously the padace of such systems is
directly related to the quality of the face shape descniptie., the fitting accuracy is
crucial.

As Grosset al.[7] first pointed out, it is important to distinguish betwetevo situa-
tions, providing two different kinds of achievable fittingaracy:

e the person-specificontext, where the fitted face has been explicitly learnthey t
model. The fitting accuracy is usually very good in this cahtaend reliable for
post processing systems. In [8], Luogtlyal. use person-specific AAMSs to retrieve
the face shape and successfully classify facial deformaiitto Action Units.

o theperson-genericontext, where the fitted face is not in the training set. Ast fir
shown by Grosegt al.in [7], the fitting process is much harder than in the person-
specific context. In [10], Peyrat al. showed with carefully chosen experiments
that fitting an unseen face with an AAM is much less accurade fitting a face
that belongs to the set of images used to train the model. €kghained the rea-
son for this: in the generic context, the appearance copateof the model cannot
fully explain the appearance of the face in the input imageaA unfortunate con-
sequence, the minimum error of the cost function corresptmd biased position
of the model. Even when initialised in the best possibletosithe ground-truth
shape), the AAM drifts away.

The problem of fitting unseen faces is a corner-stone for &nebed amount of ap-
plications. As of today, no method have proven able to adelyréit previously unseen
faces under a wide range of poses and expressions. AAMs aftppeovide an inter-
esting basis to face this problem. One could think that agldiore training data would
increase the ability of the model to generalize to unseeestaéndeed, this ability in-
creases with the amount of training data. In practice howele higher complexity of
the AAM makes its fitting unreliable because this induces @tous local minima in the
cost function. In other words, the model is so flexible th&xplains’ spurious non face
solutions in the image. As a consequence, the solution fiabte and accurate fitting
must combine these two contradictory conditions:

e the complexity of an AAM must be kept as low as possible so asdeerve a large
convergence basin and be able to find the global cost minimum,

e the range of face images that the AAM can explain must be |amthat the global
cost minimum matches the sought after solution.

The first condition is satisfied by limiting the size of theiing set while the second
one requires to expand the training set. To bypass such aadistton, we propose to
separate the sources of variability within the trainingadétstead of considering the face
as an object that varies in identity, pose and expressiosg@ét as a collection of objects
that vary in identity only: each object has a constant poskexipression. In this view,
an AAM must model only one of the three sources of variabilidentity, so as to fit a
variety of unseen faces under the same pose and expresssawthat such an AAM is
specializedo a particular pose and expression pair. To deal with masgpand facial
deformations, we train pool of specialized AAMs



Contribution. We showed in [10] that fitting an unseen face with local moateleases
the generalization ability and the fitting accuracy in congzan to global models cover-
ing all facial features. The fitting bias is reduced to a pwihere the fitting accuracy on
unseen faces is equivalent to the accuracy of manual laBeltowing this insight, we
design two categories of specialized AAMs that locally nidde face: theipper AAMs
built to fit the eyes and eyebrows, and tbever AAMs designed to fit the mouth. This
also presents the advantage to model separately the possifbinations of facial de-
formations. Our strategy consists to run all upper and lo%&¥ls on one input picture.
For each category we keep the AAM presenting the smallegtuaiserror. This AAM

is expected to be the most accurately fitted on the face, asddhepresent the current
pose and expression of this face. Consequently, we expechethnod to automatically
provide accurate labels on unseen faces under varying &sipreand pose, and also to
correctly classify the pose and expression at any frame mfeov The process is presum-
ably slow and costly. This is often not a limitation: the laof§tline training is performed
only once, on a video of a person who frequently uses the datiband. As an exam-
ple, communication with personal-computers and car drivenitoring systems can be
equipped with this technology. As two important contribas, we show that:

e good fitting accuracy, good robustness to position pertighand high classifica-
tion rates are obtained,

e the obtained labels can be used to automatically train @pespecific AAM, which
is able to fit the face and classify its expression in reaktim

Organization. Section 2 reviews the literature and introduces the AAMsctiSa 3
presents the specialized AAMs and the pose and expressiahat® we have used to
perform our experiments. In section 4 we show experimepgallts on still images in a
leave-one-identity-outfashion, and on a video where apemgperson displays a series of
poses and expressions. We compare the performance of ttialggsel AAMs against the
classical AAM learning all data. Section 5 gives a conclnsiad our perspectives. The
good fitting results of the specialized models will allow a$tild a person-specific AAM
for real-time tracking and pose and expression classifioatn the just-learnt person.

2 Background
2.1 Previous Work

The concept of fitting several models is not new: Coetiesl. used one model for each
face pose in [4]. However, despite the advantages it preséms solution were not
pursued afterward.

The AAM is not the unique face fitting solutions in the litarsg. \We review some
others. Cristinaccet al. proposed a competitive template matching solution called-
strained Local Models$n [5], which were further studied by Waref al.in [11]. This
solution exhibits better fitting results than AAMs. Notettllzese methods can be em-
bedded as the specialized models in our framework. Indemmlspvould increase the
discriminability between correct and wrong alignments,jclihis an important ability
when aligning objects with a very high and complex range oifmlity.



The 3DMM (3D Morphable Model) presented by Vetadral. in [2] can recover the
3D structure of a face from a single picture. This model istteavy to automatically and
reliably fit faces under any pose and expression. Here tecspbcialization of multiple
3DMMs could be help to improve the results.

2.2 Background on the AAM

An AAM combines two linear subspaces, one for the shape aedarthe appearance.
They are learnt from a labeled set of training images [3]. Aaie percentage of the whole
training set shape and appearance variance is kept. As afrtiamb, [10] showed that
keeping 60% shape variance and 100% appearance variara@imal’ in the person-
generic context. We therefore keep 60% shape and 95% apygearariance, so as to
keep the AAM size reasonable.

Fitting an AAM consists to find the shape and appearanceriostathat make the
residual error between the image and the synthesized medehall as possible. We use
Baker and Matthews’ optimization framework [9] with tBémultaneous Inverse Compo-
sitional Algorithm

3 A Pool of Specialized AAMs
3.1 The Concept

In [10], both global and local models are specialized on thatal pose and neutral ex-
pression. Since stuffing various poses and expressiona git@le AAM spoils its fitting
performance, we extend here the conceptpcialized AAMThe idea is to build a pool
of AAMs, each being specialized on a particular pose andesgion pair. The whole
pool would then encompass a continuum of poses and expngssio

Each specialized AAM is built oveN different identities, giving the AAM a cer-
tain ability to explain unseen faces. Unfortunately, nohéhe publicly available face
databases present a large range of facial deformations gaderal head poses and an
homogeneous illumination. For this reason, we had to buitdbwn pose and expression
database that we present in the rest of the section.

3.2 The Pose and Expression Database

Our current database has 15 identities taken under 3 viearg#l, 10 and 20 in azimut)
displaying 21 facial (upper or lower) deformations. We k#ma illumination homoge-
neous. All pictures (63 per identity) were manually labelearoughly to maximize the
label accuracy. Taking pictures and labeling them reptesaout 3 hours of work per
identity. The facial deformations we use are showed in figuieigure 2 shows a sample
of people from the database.

It is obvious that more people, more poses and more defarngtiould be included
in the database to fit more unseen people under a less redteotount of poses and
expressions. However one faces several difficulties:

e itis time consuming and tediots label images with high accuracy, as this present
study requires.



Figure 1: Facial deformations represented in the datab@ke.manually placed land-
marks represent the vertices used for training or fitting tgsting purposes). The defor-
mation number is indicated on top of each of the thumbnadshEleformation is meant
to represent some Action Units or a particular combinaticimem [6].
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Figure 2: 5 of the 15 identities of the database for all poselsdeformation rb.



e theappearance and deformatiafifaces arevide-ranging The set of people form-
ing the database must capture this diversity, in qualityGurehtity.

e the quality of the deformations is very importattt prevent from badly defined
deformation classes and their possible overlaps. Thetselgeople composing
the database should therefore be actors or possess somelpatalents to perform
facial deformations on demand.

4 Evaluation and Tests

4.1 Leave-One-ldentity-Out Test

The test consists to train a pool of specialized AAMshidentities and to operate the
fitting on one of the remaining faces. In this way, the idgntie fit is unknown from the
AAMs. We perform this leave-one-identity-out test 15 tim&scan at most be 14. For
each test identity, 63 images (21 expressions under 3 posest)be fitted with all upper
or all lower specialized AAMs. For each image, we run all AA&® keep as the winner
the one that makes the smallest residual error at conveegafier 30 iterations. Our goal
is to assess the two following points:

e thefitting accuracy i.e., the quality of each label position on the face at conver-
gence: we measure it by comparison with manual labels takearreference,

e thebasin of convergencee., the ability to cope with perturbed initializations,

¢ the classification ratei.e., the frequency of correct correspondence between the
pose and expression of the winning AAM and the true pose aprkssion.

From the first and second observations we will see whethesa@ution allows one to au-
tomatically label a sequence showing an unseen face. Frethitldl observation, we will
see if such a sequence can also be automatically labeledis td pose and expression.

4.1.1 Fitting Accuracy and Convergence Basin

To score the fitting accuracy of the winning AAM on a test image normalize the
coordinates of the manual labels (taken as a referencepla.sthis makes the external
eyerespmouth corners distant by 168sp80 pixels for the upperespthe lower model.
The scale value used to normalize the reference shape ispfdied to the winning
AAM’s shape. We consider the accuracy error to be the medideaa distance between
the labels of the reference and the fitted shape.

The top of figure 3 shows that the fitting accuracy of speaalimodels increases
with the numbeN of identities learnt by the specialized models. This accyighowever
lower than the accuracy of the single learn-all-data AAMisTiolds when the models are
very well initialized, using the manual labels. On the oti@nd, bottom of figure 3 shows
that the specialized models are more robust than the singtkehto initial perturbations
and more often converge to the correct solution. This is taBl& property for tasks like
tracking: in video sequences, the geometric discrepanwydas the frames can be large
and the fitting function must present a steep and large bé&sionvergence to ensure the
model to find a correct solution in any frame. A test on a videpdrformed irg4.2.
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Figure 3: (Top) the fitting accuracy is illustrated for vargsizesN of the training dataset.
The behavior is similar for specialized upper AAMs (top)eitd lower AAMs (top right).
For comparison purposes with the= 14 case, the dashed curve represents the accuracy
obtained with a single AAM classically learning all deforioas, identities and poses.
For these tests, manual labels are used to perfectly in@iall model fittings. (Bottom)
the fitting robustness to the initial position is compareddiogle and specialized upper
AAMs (bottom left) and lower AAMs (bottom right) for differg perturbation intensities.
The case of perfect initialization is repeated for commarsake. For the perturbed cases,
the models are initialized in a shifted position along thezantal and vertical axes. Two
shifting magnitudes are tested/14 and ¥7 of the distance separating the two external
eye corners. For the latter, there is initially no overlapisen the eyes in the image and
the eyes in the model.

4.1.2 Classification Results

Table 1 shows the percentage of correct classification mdxaon all test images for
different training set sizes and for two position pertuidiatmagnitudes in th& = 14
case. The classification rate increases with the numbeeotiites learnt by the AAMs.
For N = 14, 71% correct expression classification is reached onemnisientities when
no perturbation is introduced in the initial position. Thisrcentage of correct expression
classification is high, and most of the classification coitiugs obviously made between
classes that are very close. The three different intessitie the smile (deformations
n°2, 3 and 4), and the two mouth apertures (deformatici8 rand 19) can easily be
confused and the classification failure mainly comes frorason. Coarser clusters of
expressions would improve the classification results, ed@®further detailing the range
of expressions in the database would increase the possidtiap between classes.

4.2 Teston a Sequence

We compare the tracking ability of our pool of specializedM#& and the single learn-
all-data AAM. To do so, we select, manually label the mosbinfative frames of the



| Correct Classification of || N=5 | N=8 | N=14 || N=14 gerubi14) | N=14 pertun1r7)
Expression 64% | 68% | 71% 67% 23%
Angle 68% | 73% | 74% 72% 40%
Expression + Angle 48% | 52% | 54% 50% 10%

Table 1: Percentage of correct classification of expressity) angle only and both ex-
pression and angle. Results are given for various sizesdfdiming set and for the case
where the model trained over 14 identities is perturbed sitfom.

sequence and train an AAM able to fit the whole sequence wih hccuracy. This
provides the reference face labels at each frame for theésstibed below.

The test consists to perform the long multiple specializédVAfitting process on
each frame and score the fitting accuracy with respect toetfegence labels. A similar
test is done with the single, learn-all-data upper and lowsks. The fitting result on
one frame is used to initialize the model on the followingriea Results are normalized
in shape as i34.1.1. Figure 6 compares the tracking accuracy of speeland sin-
gle AAMs, whereas figures 4 and 5 shows some fitting resul@iodd with specialized
AAMs and with the single AAMs. For the upper face, the singleMis often more accu-
rate when it starts close from the solution, confirming o@vpus observations. On the
other hand, more robustness to sudden facial deformatmmhp@se changes is observed
for the specialized models. The single model is not ableattktieye blinks and pose vari-
ations. This tasks is however well accomplished by the gfized models. For the lower
face, the single AAM is unable to track the mouth and remairitsiinitial position along
the whole video. The model expressivity is too high to be segrgo the displacement
of low gradient area such as the mouth. Indeed, it can expri#s$ow residual error any
area surrounding the mouth. The specialized models mapagerectly fit all frames of
the sequence.

5 Conclusion

We proposed a solution to the difficult problem of fitting AAMg unseen faces, allow-
ing variations in pose and expression. This is done by mehagool of AAMs, each
one being specialized on a particular pose and expressiwseTAAMs are fitted on the
picture in a multiple fitting fashion. We tested our solutaord compared it with the clas-
sical way that consists to train a single AAM on a large tragset, including variability
sources in pose, expression and identity. We showed thatnéhia of such an AAM is
so high that the model easily stays into its initial positi@m the other hand, our pool of
specialized AAMs present a good ability to discriminate diféerent pairs of pose and
expression, and shows to accurately fit the face despitdést motion and expression
changes often present in a video. We plan to use the accutatg 6f our specialized
models to automatically label all frames of a sequence, &id & person-specific AAM
for this person. This AAM can be used to reliably track thesfatreal-time during the
following sessions. In addition, the specialization offeA@M may allow us to flag the
face pose and expression at each frame of the subsequens udeal-time.

The main next difficulty we foresee is to make our solutioran@nt to illumination
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Figure 4: Fitting results obtained with the specialized slsdbn some frames (number
22,41, 45,52,58, 74, 78 and 106) extracted from a video sigidentity 2. High fitting
accuracy is often observed and difficult facial changes ssa@ye blinks and sudden pose
variations are retrieved reliably. The classification é5p1 uppermresplower deforma-
tions is missed among 28sp11 deformations occuring over the complete sequence. An
example of failure is showed on the bottom left frame whefemheation 77 is confused
with deformation AO.
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Figure 5: Fitting results of the single learn-all-data upged lower AAMs showed for
the same frames as in Figure 4. The inertia of these modeoangh that they cannot
handle large feature displacements. This is particulauly for the lower AAM because
the mouth is likely to present small image gradients. ThesugpAM shows to nicely

track the raised eyebrows and provide good fitting accuracgome of the frames.
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Figure 6: The fitting accuracy error along the frame sequ&nicempared for the single
AAM and the specialized AAMs. Left and right show the resutsupper and lower
face respectively. Tracking results are accurate andbielifr the specialized models.
The tracking can be even more accurate for the single AAM enutbper face, but it
is also less reliable when sudden changes occur. On the lawey the single model
results completely unreliable. The fitting error of the fesshown on figures 4 and 5 are
indicated by squares.

changes and occlusions. Real-life contexts require thécapipns to be robust to such
changes.
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