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Abstract

This paper deals with shading and AAMs. Shading is

created by lighting change. It can be of two types: self-

shading and external shading. The effect of self-shading

can be explicitly learned and handled by AAMs. This is

not however possible for external shading, which is usually

dealt with by robustifying the cost function.

We take a different approach: we measure the fitting

cost in a so-called Light-Invariant space. This approach

naturally handles self-shading and external shading. The

framework is based on mild assumptions on the scene re-

flectance and the cameras. Some photometric camera re-

sponse parameters are required. We propose to estimate

these while fitting an existing color AAM in a photometric

‘self-calibration’ manner.

We report successful results with a face AAM with test

images taken indoor under simple lighting change.

1. Introduction

Active Appearance Models (AAMs) were introduced in

[4] and since then have been the topic of many studies such

as [2, 9]. They model the visual shape and appearance of

an object or an object class and have been particularly suc-

cessful to model faces. Face AAMs are used in this paper

without loss of generality.

One of the main weaknesses of the AAMs is that there

reliability generally degrades while the amount of variabil-

ity increases in the training data. Sources of variability in-

clude person identity, expression, pose and shading. An

AAM trained for several such sources will generally be

prone to fall into local minima.

On the other hand, an AAM which has not been specif-

ically trained to handle shading drifts away from the ex-

pected solution when the lighting changes. This makes

AAMs useless for most of the applications where lighting

conditions cannot be kept under control. Several recent pa-

pers consider this problem. Global illumination changes are

modeled thanks to an affine normalization in the appearance

basis [1]. Shaded areas are rejected as outliers thanks to a

robust cost function [12]. These solutions are not fully sat-

isfactory in an unconstrained lighting context.

Another approach is to build a rich training database in-

cluding a large amount of lighting variations [11]. However,

for many applications, we cannot reasonably pretend to be

able to collect sufficiently many such training data. In addi-

tion, it is useful not to overload the appearance statistics but

rather to separate the different sources of variability. Keep-

ing the model complexity as low as possible usually results

in improved fitting performances and better accuracy. A pa-

per which recently followed this direction is [6]. It uses

an Active Illumination Appearance (AIA) that models self-

shading by additively combining two appearance bases, one

for identity and one for self-shading.

We tackle the AAM fitting problem in the unconstrained

illumination context. We do not explicitly model the ap-

pearance variations due to shading. This is based on the

Light-Invariant transformation of [5]. From color training

data acquired under any canonical illumination condition

(which is also homogeneous in most cases) with a single

camera, the Light-Invariant AAM fitting procedure we pro-

pose fits faces taken under uncontrolled illumination condi-

tions. The only assumptions are a simplified model for the

scene BRDF (Bidirectional Reflectance Distribution Func-

tion) and the photometric camera response. This is partly

inspired by [10] in which direct Light-Invariant homogra-

phy computation is successfully demonstrated.

Combining the Light-Invariant theory with AAMs not

only allows us to efficiently fit AAMs to face images for

which the lighting conditions are uncontrolled, it further al-

lows synthesizing the canonical illumination appearance of

the face. Thereafter, we assume that the canonical illumi-

nation is homogeneous. It has been shown that shadow free

appearance reconstruction is in general an ill-posed prob-

lem [5]. We benefit from the strong prior knowledge that the

observed object is known. We show successful shadow free

face reconstruction. An overview of the proposed method

is presented in Figure 1.

The paper is organized as follows. In §2 we describe the

original AAM formulation and the Light-Invariant space.

We discuss the possibility of combining the AAM frame-



Figure 1. Overview of the proposed method.

work with the Light-Invariant image theory in §3. Two al-

gorithms are introduced. The basic Light-Invariant AAM

(LI-AAM) fitting, with its mathematical development, are

given in §4. The photometric ‘self-calibration’ of a regu-

lar AAM is explained in §5. We consider the possibility to

handle different training and test cameras. This allows us

to reconstruct a shadow free RGB appearance, as described

in §6. In §7, we experimentally compare the fitting perfor-

mance obtained with classical fitting of a greylevel AAM,

a color AAM, and various LI-AAM fittings. We conclude

and give our perspectives in §8.

2. Background and General Points

2.1. Active Appearance Models

An AAM combines two linear subspaces, one for the

shape and one for the appearance. They are both learnt from

a labelled set of training images [4].

2.1.1 The Shape Counterpart

The shape of an AAM is defined by the N vertex coordi-

nates of a mesh s describing the object boundaries and de-

formations:

s =
(

u1, v1, u2, v2, · · · , uN , vN

)

, (1)

where ui, vi are the coordinates of vertex i. Principal Com-

ponent Analysis (PCA) is applied to training shapes, cen-

tered on the mean shape s0. A shape subspace Bs =
[s1, · · · sn] of n− 4 shape eigencomponents is obtained, re-
ducing the dimensionality of the training set. Four eigen-

vectors sn−3, · · · , sn are added to model 2D similarity

transformations [9].

An instance of shape s(p) is defined as a linear combina-
tion of shape eigenvectors with weights p = (p1, · · · , pn):

s(p) = s0 +

n
∑

i=1

pisi. (2)

Using the generated set of meshes parameterized by p,

a warp function W (x; p) is defined as a piecewise affine
transformation from the base shape s0 to the transformed

mesh s(p):

x′ = W (x; p) x =

(

u

v

)

x′ =

(

u′

v′

)

, (3)

where (u′, v′)T is the warped coordinates.

2.1.2 The Appearance Counterpart

The training images are warped using W (x; p) to normal-
ize these in size. A photometric normalization is then ap-

plied to get the appearance training data. PCA is applied

on these data in order to build a linear appearance subspace

Ba = [A1, · · · , Am] ofm−2 image eigencomponents cen-
tered on the mean appearance image A0. To compensate

for bias and gain in the image intensity, the mean vector A0

and a constant image AI are added (corresponding to the

m − 1th and mth components). This is the same process

for color and greylevel images: the number of channels in

the appearance images matches that of the training images.

An instance of appearance is defined as a linear com-

bination of the Ai(x) weighted by a set of parameters
λ = (λ1, · · · , λm):

A(x) = A0(x) +

m
∑

i=1

λiAi(x). (4)

2.1.3 Fitting

Fitting an AAM consists to find the shape and appearance

parameters that make it best match the input image. A cost

function is minimized with respect to the shape and appear-

ance parameters:

∑

x

[

A0(x) +

m
∑

i=1

λiAi(x) − I(W (x; p))

]2

. (5)



The cost function (5) evaluates the pixel value discrepancy

between the warped input image and an instance of appear-

ance of the model. An iterative Gauss-Newton minimiza-

tion process is used to retrieve parameters p and λ.

2.2. LightInvariant Image Theory

The transformation for Light-Invariant image formation

is based on [5], which proposes a method for a single color

image. This method relies on a simplified photometric im-

age formation model where all surface materials follow

a lambertian model, the lights are modeled as planckian

sources and the camera sensor is narrowband. We consider

faces to be lambertian to some extent. This assumption suf-

fices for a range of lightings but might break down in cases

such as specularities.

A more complex model of the camera is proposed in

[8, 7], which takes into account nonlinearities in the im-

age formation process (i.e. vignetting and the radiometric

response function of the camera), and its usage for photo-

metric alignment of images. Such a model allows to com-

pensate for the camera response, which improves the appli-

cability of a simplified image formation in general purpose

cameras.
Given the three color components ρ = (ρ1, ρ2, ρ3), log

chromaticity ratios are formed:

X1 = log

„

ρ1

ρ3

«

, X2 = log

„

ρ2

ρ3

«

. (6)

An illumination invariant quantity L can be found by

projecting (X1,X2) along direction ē⊥ = (cos(θ), sin(θ))
parameterized by its angle θ from which:

L(ρ, θ) = X1(ρ) cos(θ) + X2(ρ) sin(θ). (7)

This projection equates two colors corresponding to point

viewed under different illuminations. It thus maps a color ρ

to its corresponding Light-Invariant representation.

Transforming the value of each pixel of the color image

S results in L(S, θ), a 1D shadow invariant image. This
image transformation is global in that it does not depend on

the pixel position q ∈ R
2, but only on its color value.

The only relevant parameter governing the transforma-

tion is the angle θ of the invariant line, which only depends

on the camera spectral properties. We elevate the RGB data

to a log, obtaining what we call the logRGB space. The
transformation opportunely becomes linear:

L(ρ, θ) = L(θ)





log(ρ1)
log(ρ2)
log(ρ3)



 , (8)

with L(θ) =
(

cos(θ), sin(θ)
)

(

1 0 −1
0 1 −1

)

.

Several solutions to estimate the angle θ are proposed

in the literature. In [5] an off-line calibration step is pro-

posed. It uses a color pattern or a set of preregistered im-

ages showing illumination changes. A ‘self-calibration’ ap-

proach is also presented. The strategy consists to find the

angle for which the entropy of the invariant image is mini-

mum. The later method is proved to be capable of finding

the correct angle by using a single image where remarkable

shaded areas are present. Despite its effectiveness in some

cases, there are situations where it fails (e.g. in the presence

of global illumination changes or soft shadows).

3. Combining AAMs and Light-Invariance

There are several possible ways of combining the AAMs

with the Light-Invariant transformation L. The general idea

is to project the generated color image and the test color im-

age to the Light-Invariant space, and to match them within

that space:

∑

x

[

ALI

0 (x) +

m
∑

i=1

λiA
LI

i (x) − ILI(W (x; p))

]2

, (9)

where ALI
0 , all ALI

i
and ILI are Light-Invariant images,

pre-transformed from the 3D color space to the 1D Light-

Invariant space. We therefore get a classical 1D dataset, and

the problem resembles the one in (5) for greylevel images.

The main drawback of this approach, which limits the

system usability, is that we need to know in advance the

angle for the test data. As we explained above, there ex-

ist calibration methods but their applicability is restricted in

several practical cases. The best thing would be to set up an

approach which does not require a specific off-line calibra-

tion step.

Following the same philosophy as in [10], a more gen-

eral solution is proposed by embedding the angles within

the cost function. Under this approach, the angles can be

estimated together with the shape and appearance parame-

ters of the AAM.

To do so, the training of appearance is done in the lo-

gRGB space described in §2. It is linearly mapped to the

invariant space with (8) and, as described in §6, allows us to

reconstruct the appearance in RGB.

The resulting cost function is:

∑

x

[

L(θ1)

(

Ã0(x) +
m

∑

i=1

λiÃi(x)

)

−L(θ2)(I (W (x; p))

]2

, (10)

where I represents the logRGB test image, Ãis are the

logRGB appearance components, θ1 and θ2 are the angle



parameters for the training sequence and the test image re-

spectively. Using two different angles allows the system to

work with different cameras (or the same camera with dif-

ferent photometric adjustments) for training and testing.

We examine two scenarios:

Case 1: Photometric ‘self-calibration’ of the training

camera. The AAM can be ‘self-calibrated’ while fit-

ting. If the training and test images are taken with the

same camera θ1 = θ2. If two different cameras are

used, we generally have θ1 6= θ2. It is strictly nec-

essary in both cases that changes in illumination arise

between the training and the test images. If not, the an-

gle or angles cannot be obtained and move randomly

during optimization.

Case 2: Basic Light-Invariant AAM (LI-AAM) fitting.

We assume that θ1 is known (the AAM is photometri-

cally calibrated). In practice, θ2 is rarely known. We

estimate it while fitting the AAM in the Light-Invariant

space.

4. Basic Light-Invariant AAM fitting

The basic Light-Invariant AAM (LI-AAM) fitting in-

cludes the angle θ2, needed to convert the test images to

the invariant space. As we stated before the training is per-

formed in logRGB so a linear appearance basis is obtained

within that space.

The appearance basis is made of an average vector Ã0

and the set of m appearance vectors Ãi. The cost function

is (10). It is minimized over p, λ and θ2 using an addi-

tive Gauss-Newton algorithm. We refer the reader to [3] for

more details.

5. Photometric Calibration of a Regular AAM

There are two possible situations:

• The same camera took the testing and training images.

The cost function is minimized over p, λ and θ1 = θ2

• Different cameras took the testing and training images.

The cost function is minimized over p, λ, θ1 and θ2

6. Shadow-Free Appearance Reconstruction

Fitting the AAM in the Light-Invariant space not only al-

lows to handle uncontrolled illuminations but it also permits

to retrieve the face appearance under the canonical illumi-

nation (the one in the training set). We conveniently choose

to transform the RGB data to the logRGB since it makes the

transformation ‘more linear’. The second advantage of our

choice is that when the AAM correctly fits the face on the

input image, the synthesized logRGB appearance can easily

be back-converted to the original RGB space.

Assuming that the color components are strictly positive,

the logRGB space is invertible to RGB. Given the set of ap-

pearance parameters λ and the appearance basis in logRGB

Ãi, · · · , Ãm, the reconstructed RGB is:

A(x) = e(Ã0(x)+
P

m

i=0
λiÃi(x)) (11)

where e is the element-wise exponential.

Such an operation is usually ill-posed when no prior in-

formation is provided on the image content [5]. In our case

the AAM gives a unique solution.

Shadow-free appearance reconstruction can be useful for

face recognition systems usually, exhibiting better perfor-

mances under controlled illumination, and for image com-

pression applications, where it is useful to encode facial and

illumination data separately.

7. Experimental Results

To evaluate the performance of the above presented al-
gorithms, we tested their robustness to noise and their resis-
tance to initial geometric shape displacement. We measured
a geometric fitting error using manually labelled images and
the angle error to the ground-truth. So as to allow the reader
to compare with various existing methods, we study the re-
sults of RGB, greylevel, and different Light-Invariant (LI)
AAM fitting procedures:

• LI-AAM: Basic Light Invariant AAM fitting, proposed in

§4, where only the input image angle θ2 is unknown.

• LI-AAM(LIT): Basic Light Invariant AAM fitting, pro-

posed in §4, where only the input image angle θ2 is unknown

but performing the training in LI space.

• LI-AAM(PC): Photometric calibration of the AAM pro-

posed in §5. Both θ1 and θ2 are obtained.

• LI-AAM(PC): Photometric calibration of the AAM pro-

posed in §5, imposing the constraint θ1 = θ2.

• RGB-AAM: A regular AAM fitted in color space.

• Grey-AAM: A regular AAM fitted in greylevel space.

7.1. Simulated Perturbations

The whole set of algorithms are tested against image in-

tensity noise and initial geometric displacement.

A person-specific AAM is trained using 6 face images

taken under a mainly homogeneous illumination, and dif-

ferent poses.

The original images of the database are corrupted by

noise with variance σn over the range [0 − 255] and on
each color channel. One of the images used for training

is corrupted by noise and an artificial global change of il-

lumination is created. The shadow area modifies the RGB

color values of the image to simulate the response of a cam-

era with angle θ = 146 degrees perturbed by a light source



with a given color temperature T (See Figure 2.a). The ini-

tial position of the model mesh is obtained by displacing its

points from the hand labelled solution by a random distance,

the variance of which denoted γ.

(a) (b)
Figure 2. (a) Artificial perturbation on an original RGB image. (b)

Extract of the homogeneously illuminated face images used for

training.

We compare the performance of all algorithms for a

range of perturbation parameters γ and σn. Figure 3.a

shows the geometric error measured after a sufficient num-

ber of iterations to let each AAM converge (we used 50 it-

erations). On Figure 3.b and Figure 3.c, the geometric error

and the angle error are tested against the noise (also mea-

sured after 50 iterations).

We observed that:

• LI-AAM and LI-AAM(LIT) perform exactly the same

in all tests, so the use of logRGB for training appear-

ance do as good as the direct use of the LI space.

• The image noise substantially affects all the proposed

Light-Invariant methods. However LI-AAM shows to

be the most robust.

• The initial geometric displacement substantially and

equivalently affects all the Light-Invariant methods.

7.2. Real Illumination Changes

We tested the proposed solution on two sets of real data.

Each set is composed of two sequences, both presenting one

character changing head pose under neutral expression and

finally smiles. On one sequence, the face is taken under

homogeneous illumination as shown on Figure 2.b.

The presented color images are used to train the various

AAMs. On the other sequence, the face is illuminated later-

ally as shown on Figure 4, and we compare the AAMs per-

formance on this sequence. Figure 5 shows the evolution of

the geometric error against the iteration number. As an ob-

servation, both LI-AAM and LI-AAM(LIT) present (equiv-

alently) better convergence characteristics than the other LI

methods. Also it clearly appears how the Grey-AAM and

RGB-AAM quickly diverge.
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Figure 5. Geometric Error versus iteration number for the test im-

age shown in Figure 4.a

8. Discussion

We tackled the difficult problem of Active Appearance

Model fitting in an unconstrained illumination context. An

AAM in its basic formulation is very sensitive to an un-

known illumination.

Instead of classically matching the model appearance

to the input image in the color space, we project the im-

ages, both from the synthesized and the input ones into a

Light-Invariant space where the effect of shading are can-

celed. This only requires to tune a camera dependent angle

θ, for the cameras used for shooting the training and the test

datasets. The calibration of these parameters, necessary to

the Light-Invariant transformation, is done jointly with the

appearance and shape parameters. This is what we called

the Light-Invariant AAM fitting.

Two different scenarios are proposed: in the first acts the

basic LI-AAM algorithm for which only the angle corre-

sponding to the input image is unknown, and in the second

is involved the photometric calibration of an existing AAM

(LI-AAM(PC)) for which the angles corresponding to both

the training and the test data (the cameras used to take them)

are sought after.

Our approach does not need that the camera is pre-

calibrated and makes the system useful to unsourced (color)

image databases. In addition, we show how training the

AAM in logRGB allows to reconstruct the RGB shadow-

free appearance of a face after the fitting is performed.

Experimental results show that our proposal outperforms

the regular AAM approaches (using RGB or greylevel val-

ues), when the input images present different illumination

conditions.
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