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Abstract

We deal with the 3D reconstruction of deformed paper-
like surfaces given a template and a single perspective im-
age, for which the internal camera parameters are known.

The general problem is ill-posed. We show that when
the surface rulings are parallel the problem is well-posed.
Given a procedure to recover the rulings direction, this par-
ticular problem is equivalent to the reconstruction of a 2D
curve seen from a set of 1D camera pairs given a 1D tem-
plate.

Paper can be physically modeled by exploiting local
properties. This allows us to formulate the reconstruction
problem by non linear variational optimization.

We provide experimental results which validate our ap-
proach on simulated and real data.

1. Introduction
Template-based monocular deformable surface recon-

struction has recently received a growing interest [11]. The
general case cannot be solved without prior knowledge on
the observed surface [8].

For instance, in the case of single face images, 3D Mor-
phable Models have proved to be effective to recover the
camera pose and the 3D head shape [2]. Generic de-
formable surfaces can be modeled using triangular mesh
grids and recovered by minimizing a generic regularity en-
ergy term [11]. Those methods, although effective, use em-
pirical models to describe real deformations.

We address the case of developable surface to model ma-
terial such as paper [12]. In other words, papers are consid-
ered as unstretchable surfaces with everywhere vanishing
gaussian curvature. This is a realistic assumption if only
smooth deformations occur. This model can be described
by local constraints related to the first and second funda-
mental forms.

We assume that a set of point correspondences is avail-

able between the template and the (perspective) image. The
problem is illustrated in Figure 1. It is formulated as a func-
tional minimization with free boundary conditions with non
linear constraints on the first and second partial derivatives
of the surface. This physical model is ill-posed, in the sense
that there is generally an infinite number of solutions.

We show that the reconstruction problem can be simpli-
fied to a large extent by considering those isometries that
map the template to a developable surface with parallel rul-
ings. In this case the deformed surface can be parametrized
by the rulings direction and a planar generatrix curve (see
Figure 2).

In this situation the reconstruction problem is well-
posed: we show that this is equivalent to reconstructing a
planar curve seen by 1D cameras. Our reconstruction pro-

Figure 1. We tackle the template based single image paper recon-
struction problem. We show that it is well-posed when the surface
rulings are parallel, such as in the top right surface. We give a
practical procedure for finding the generatrix and the 3D surface.



cedure has two main steps: we first reconstruct the surface
generatrix plane and then a 2D curve seen from multiple 1D
cameras.

Intuitively these constrained deformations (i.e. parallel
rulings) correspond to bending a rectangular piece of pa-
per by moving two opposite edges and constraining these to
remain parallel. This is what happens, for instance, when
book pages are deformed by keeping the binding and the
opposite edge parallel.

The application range is limited. From a theoretical
standpoint, however this work presents a lower bound for
the well-posedness of template based reconstruction in the
case of isometric deformations.

Figure 2. Two examples of paper deformations. Left: a generic
isometry. Right: an isometry that allows the problem to be reduced
to 1D: in this case all the rulings are parallel.

The paper is organized as follows. In Section 3 we
present the formulation for the constrained two dimensional
case and demonstrate in Section 4 that it is equivalent to a
2D stereo reconstruction. Section 5 describes the one di-
mensional problem. In Section 6 we express the constrained
problem with variational optimization and present some im-
plementation details in Section 7. In Section 8 we validate
the approach by showing preliminary results on both syn-
thetic and real data. Finally, Section 9 concludes the paper.

2. Previous Work

Paper-like surface have been successfully described us-
ing developable surfaces, which satisfy the vanishing gaus-
sian curvature constraint. [9] proposed a quasi-minimal de-
formable model which showed to be effective for 3D re-
construction with more than one image. Other deformable
models have been proposed by [10]. These methods, do not
take advantage of the particular physical properties of the
developable surfaces.

Surface reconstruction has also been performed by ap-
plying shape-from-contour mainly for document digitiza-
tion. [4] assumes the pages to be generalized cylinders with
straight meridians, which is equivalent to our constrained
model. [6] generalizes the problem to any applicable sur-
faces and express it as a set of differential equations. Unfor-
tunately shape-from-contour requires the complete knowl-
edge of the boundary projection. Hence these methods are

not applicable if the boundary is partially or fully occluded,
a common case for augmentation purposes.

We exploit the variational framework. In particular, our
problem has natural boundary conditions and does not have
a closed form solution. Other computer vision topics which
make use of variational methods either use fixed boundary
conditions (such as inpainting algorithms [13, 7]) or cyclic
boundary conditions for closed domains (such as level set
algorithms [5, 15, 14]). In some other cases the boundaries
are free to move but it is possible to recover the analytic
solution to the Euler-Lagrange equations such as the Thin-
Plate Spline [3].

3. Problem Statement

Given an inextensible surface with everywhere van-
ishing gaussian curvature, we aim to recover a function
Γ3 : R2 → R3 which maps a template point to the cor-
responding 3D point of the deformed surface. We have a
perspective image of the deformed surface and we assume
to know the camera internal parameters. Without loss of
generality we consider the camera placed at the origin of
the global reference system (see Figure 1).

Let us consider the template image. It is a compact
closed region θ with boundary β. A point is represented
by its coordinates q = [u, v]T. We next consider the per-
spective image. It represents the same closed region which
has undergone an inextensible (isometric) deformation and
a projection. We consider as available a set of correspond-
ing points (qi, q

′
i).

The domain coordinates of Γ3 will be referred as u (or
u, v for the 2D case). Vectors Γu and Γuu represent respec-
tively the first and second derivatives of function Γ w.r.t. the
first domain coordinate u. The region θ ∈ R2 is mapped
by Γ3 into the region Θ ∈ R3, whereas β ∈ R2 is mapped
by Γ3 to the curve B ∈ R3

In the case of a generic isometry all points of the surface
must obey to the following constraints:

• since the gaussian curvature is invariant under isome-
tries and the template is a flat surface (thus with zero
gaussian curvature), it must vanish.

• the metric should not change. This constraints involves
that the three first fundamental form parameters are in-
variant under isometries.

To solve the constrained reconstruction problem, we al-
low only deformations that map θ to a developable surface
with parallel rulings. In this case the developable surface
directrix lies on a plane perpendicular to all rulings. With-
out loss of generality we consider in the following that π is
the plane containing the directrix related to the lower edge
of the template. Intuitively these deformations correspond



to bending a rectangular piece of paper by moving two op-
posite edges and keeping them parallel. In this case, π is
orthogonal to these two edges.

In particular, we show that for these deformations the
problem is equivalent to a one dimensional reconstruction,
where the domain θ is a one dimensional manifold, the map-
ping Γ is a function from R to R2 and the projection is given
by a set of one dimensional cameras.

We assume that the plane π is known (refer to Section 8
for a way to recover this plane) and parametrize the map-
ping Γ3 as:

Γ3(u, v) = T · Γ̃(u, v) = T ·
(

Γ(u)
v

)
(1)

where Γ : R → R2 maps the horizontal coordinate of the
template onto a curve on π equipped with a suitable coordi-
nate system (x, y, nπ) and T is the transformation that maps
this latter coordinate system to the global one (X, Y, Z).
Notice that T might be considered fixed if π is known in
advance and the reference system (x, y, nπ) is defined.

This representation of the surface Θ allows one to dis-
regard the gaussian curvature constraint since it is enforced
by construction. The surface is finally projected onto the
image plane by the known camera matrix S ∼ K ·

(
I 0

)
where ∼ means equality up to scale.

The following section demonstrates that the problem at
hand reduces to a one dimensional formulation that exploits
multiple 1D cameras

4. A One Dimensional Formulation
Let as consider a point q ∈ θ. This point is mapped by

Γ3 to the 3D space and then projected by the camera to:

q′ ∼ S · T
(

Γ̃(u, v)
1

)
= ST

Γ(u)
v
1

 . (2)

We write the columns of the projection matrix ST = S · T
as ST =

(
s1 s2 s3 s4

)
and rewrite Equation (2) as:

q′ ∼
(
s1 s2 (s4 + s3v)

)
·
(

Γ(u)
1

)
= Sv·

(
Γ(u)

1

)
. (3)

By separating the two components of q′ we get:

q′
u ∼ Sx ·

(
Γ(u)

1

)
=
(

Sva

Svc

)
·
(

Γ(u)
1

)
(4)

q′
v ∼ Sy ·

(
Γ(u)

1

)
=
(

Svb

Svc

)
·
(

Γ(u)
1

)
, (5)

where Sva, Svb, Svc are the three row vectors of matrix Sv .
Each of these two equations represents a 1D projection of
the same point Γ(u) onto a virtual 1D camera projection

line. The projection matrices Sx and Sy in particular lin-
early depend on coordinate v. This means that the con-
strained 2D case is equivalent to the 1D reconstruction prob-
lem that exploits two pairs of 1D cameras for each surface
section orthogonal to the rulings.

5. Formulating the Constraints

Figure 3. The one dimensional equivalent problem. In this case Γ
is represented by a curve on the plane and the projection is done
by 1D cameras such as S.

The equivalent problem for a one dimensional manifold
domain is stated as follows (see Figure 3). We consider a
template consisting of a straight line θ. A point on the tem-
plate is represented by its coordinate u (and thus the domain
is equipped with a unitary metric operator). The template is
isometrically mapped by Γ to a planar curve Θ. We have
a set of 1D projections of Θ given by known 1D cameras
(2 × 3 matrices). For each known camera there is a differ-
ent set of point correspondences between the template and
the projected Θ projection: (u, u′) where u, u′ ∈ R. The
problem is thus to recover Γ such that:

• the reprojection error of the point correspondences is
minimized

• the deformation induced by Γ is isometric, thereby pre-
serving lengths along the curve w.r.t. the template

Exploiting only these two constraints the problem is well-
posed as far as the extracted points are concerned, but there
are still multiple solutions for all other Θ points. In par-
ticular consider two subsequent correspondence points. If
their euclidean distance in 2D is smaller than their geodesic
distance (the distance on the template) then there exist an in-
finite number of curve segments connecting the two points
which all share the same length.

The introduction of a smoothing term, which must be
minimized, allows one to recover a solution with, for in-



stance, the least curvature. This is equivalent to finding the
smoothest surface.

The isometry constraint is expressed by considering the
metric induced by Γ, which depends on the first derivative,
and in particular by stating that:

‖Γu‖2 = 1 ∀u ∈ Θ (6)

.
The problem then can be expressed as a functional mini-

mization that depends on the first and second derivatives of
Γ, since all the constraints are represented by local proper-
ties.

6. Variational Formulation
In order to solve the constrained 2D problem we express

it as the following functional minimization:

Γ = arg min
Γ

(Ed[Γ] + Em[Γu] + Es[Γuu]) , (7)

where:

• Ed[Γ] represents the data term which states that the re-
projection r(q, Γ, S, T ) of the feature point q lying on
the surface Γ should be as close as possible to the cor-
responding image feature q′. r is the reprojection func-
tion, which depends on the projection matrix S and the
surface Γ and has the form:

r(q, Γ, S, T ) =
Sab · T ·

(
Γ(u)

v

)
Sc · T ·

(
Γ(u)

v

) , (8)

where Sab is the matrix composed by the first two rows
of S and Sc is the last row of S;

• Em[Γu] represents the metric term which is used to
enforce the surface deformation to be an isometry;

• Es[Γuu] represents the smoothing term which states
that the second partial derivatives of the surface should
be as small as possible, describing the fact that we as-
sume the deformation to be smooth.

With this notation we write the energy terms as:

Ed[Γ] =
∑

i

‖r(qi,Γ, S, T )− q′
i‖

2 (9)

Em[Γu] =
∫

θ

(
‖Γu(u)‖2 − 1

)2

(10)

Es[Γuu] =
∫

θ

‖Γuu(u)‖2 (11)

Equation (9) may be restated as an integral on the domain θ
as:

Ed[Γ] =
∫

θ

(∑
i

Gi,σ(q) ‖r(qi,Γ, S)− q′
i‖

2

)
dq (12)

where Gi,σ(q) represents a gaussian function centered on
feature qi of the template and standard deviation σ. This
particular form of the data term allows one to express the
integrand as a continuous functional over the domain.

The variational problem is thus of the form:

arg min
Γ

(E[Γ]) = arg min
Γ

(e(u, Γ,Γu,Γuu)) (13)

The integrand function e depends on Γ and its first and
second derivatives. By applying the variational fundamen-
tal theorem we obtain two partial differential equations de-
pending on Γ and its derivatives (up to the fourth). These
equations represent a set of constraints on Γ in order to be
a local minimum of the functional and must be satisfied in
each point of the domain θ. We refer the reader to [14, 1]
for a good description of the variational framework.

Notice that our problem cannot make use of fixed bound-
ary conditions since the two end points must be able to
move freely. This means that we have to subject these to
particular natural boundary conditions which are automati-
cally given by the application of the fundamental theorem.

7. Implementation Details
To solve the set of Euler-Lagrange equations on each

point of θ and the natural boundary condition on each point
of β we parametrize the function Γ over the domain with a
set of N pairs of unknown (xi, yi). To correctly evaluate
its derivatives we add a set of extra nodes outside θ. No-
tice that we do not enforce the Euler-Lagrange equations on
these nodes, although we use them to evaluate the equations
for domain points close to the boundary. The final system
has 2(N +8) non linear equations over 2(N +8) unknowns
that we solve using standard Gauss-Newton descent.

The lack of fixed or cyclic boundary conditions poses
problems w.r.t. the approximation of the derivatives. The
central scheme, although symmetric, gives rise to solutions
with loosely connected nodes which cannot be avoided. The
forward and backward schemes, on the other hand, limit this
sampling effect but are asymmetrical and have slower con-
vergence. In order to maintain a symmetric scheme and, at
the same time, avoid these unwanted effects we double all
equations using the forward and the backward approxima-
tions.

The three energy terms are weighted using a set of fixed
parameters, whose values are empirically selected. In par-
ticular, we run subsequent minimizations by having at first
an higher data term weight in order to reach a solution that



minimizes the reprojection error and then another with an
higher metric term weight.

8. Experimental Validation
Solving the 2D constrained problem requires to know the

directrix plane π, since the optimization is done on a curve
lying on this plane. If the projection of the four corners of
the template and the length of one of the sides are known,
π can be exactly recovered. This is a problem with four
unknowns (the perspective depth of the four corner) which
can be solved by applying the constraints of coplanarity and
orthogonality among the four segments connecting the ex-
tracted points and the known length of one of the edges. We
solve this non linear problem using a least-squares proce-
dure that generally gives a good estimate of the plane. In
the case where the corners are not visible it is still possible
to exploit the image of four points lying on two different rul-
ings (as has been done for the surface in Figure 8). If these
points are not available one can exploit some deformable
warp between the template and the image, recovered from
the point correspondences. The warp is used to detect the
largest template rectangle visible in the perspective image.
The four extrapolated corners are then used to recover the
plane.

The known template dimensions are used to obtain a rec-
tified and properly scaled template from an initial perspec-
tive image.

Our method has been validated on both synthetic and
real data. We performed simulated experiments to recover
the pose of the surface and to perform comparisons with
ground truth. We show a sample reconstruction result for
these sets of experiments in Figure 4 and Figure 5. In all
the experiments the initial solution is given by a flat surface
orthogonal to plane π. The results where good even in the
presence of gaussian noise on the initial points coordinate
values (we used a maximum standard deviation σ = l/250
where l is the horizontal image plane length).

We performed preliminary real experiments that showed
promising. We show some of the results in Figure 7 and
Figure 8 where the solutions have been recovered exploit-
ing around 30 correspondences (Figure 6). In all cases the
reconstruction we obtained was realistic. We performed the
augmentation of the image by replacing the original tem-
plate with a custom image or by adding virtual 3D content
to the scene (Figure 7). In the second experiment, the sur-
face is only partially visible in the image. Nevertheless it
has been fully reconstructed (Figure 9).

9. Conclusion
We presented a method to reconstruct deformable paper-

like surfaces when these are subject to a subset of the pos-
sible isometries. In particular we dealt with the case of sur-

Figure 4. Final solution for the surface reconstruction on simulated
data. For this experiment we exploited 25 feature point correspon-
dences to recover the pose of the surface.

Figure 5. Comparison of the final surface directrix (blue dotted
line) with respect to the ground truth (gray line). The circled nodes
are related to the peaks of the data term gaussians. The red points
represent the extra nodes used for the discrete approximations.

Figure 6. Point correspondences between the template and the im-
age for the first experiment.

faces with parallel rulings. We showed that the problem can
be cast to a 2D stereo reconstruction of the generatrix with
multiple 1D cameras. This demonstrates that the problem is
well-posed.



Figure 7. Left: the solution is illustrated by projecting the surface
normals on the original view. Right: the same image has been
retextured.

Figure 8. The image of the second experiment. In this case the
paper is partially occluded. The projection of the reconstructed
surface is shown in blue. To detect the generatrix plane we ex-
ploited the two segments shown in red.

Figure 9. A synthetic view of the reconstructed surface.

We are currently investigating whether more generic
isometries are well-posed problems, such as the case in
which only the two paper edges are constrained to be paral-
lel. In practical applications the initial directrix plane esti-
mation influences the overall accuracy of the reconstruction.
This will be investigated in future work. The variational ap-
proach could be directly used to solve the general ill-posed
problem. In this situation the formulation becomes more
complex because we must add terms related to the gaus-
sian curvature and to the metric constraints. In addition, the
standard numerical minimization becomes computationally
intensive since both the number of unknowns and the num-
ber of equations drastically increase.
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