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Abstract

We present a novel approach that, given two sets of un-
matched keypoints, simultaneously estimates the in-plane
camera motion and keypoint matches without using pho-
tometric information. Standard approaches estimate the
epipolar geometry based on putative matches, first estab-
lished with photometric information, then accepted or re-
jected using the epipolar constraint.

Our method discretizes the space of essential matrices at
different levels. It searches for the essential matrix and key-
point matches which are the most geometrically coherent.
We maximize geometric coherence, that we define as the
number of points that can be matched based on the epipolar
and unicity constraints. We applied this general framework
to sets of images acquired by a moving tripod. We present
promising results on simulated and real data.

1. Introduction
A core task in computer vision is to compute the rel-

ative camera motion between two views from image fea-
tures. It has a wide area of application from image stitching
to special effects, medical imaging and image categoriza-
tion. Motion estimation from keypoints has been widely
studied [10]. Keypoints are extracted automatically from
the images. Putative matches are estimated using correla-
tion directly from image intensity or via descriptors such
as SIFT [9] or SURF [1]. State of the art techniques ver-
ify the putative matches using RANSAC [5] by estimating
a model from a minimal number of points with algorithms
such as the 8-point [6], 7-point [18] or the recent 5-point
[15]. These robust methods were improved many times
for example using oriented geometry [3] or using statisti-
cal considerations [11].

Unfortunately, putative matches cannot always be esti-
mated. For example, in the presence of strong perspective
changes, massive change of illumination or glare, or when

∗e-mail: Pierre.Georgel@Gmail.Com
†e-mail: Adrien.Bartoli@Gmail.Com

different cameras are combined such as a Time-of-Flight
camera with a regular CCD camera. Previous work has
been done to overcome the putative matching problem by
simultaneously finding a transformation and point matches.
For an affine transformation, the RAST method [2] and Ge-
ometric Hashing [17] are quite popular. Soft Assign [14]
has been successfully applied to affine transformation esti-
mation and deformable warps but also to full camera pose
estimation; e.g. estimation of the transformation from a 3D
/ CAD model to an image. The recent blind PnP [12] uses
pose priors and error propagation to estimate plausible 2D
- 3D matches and the full pose simultaneously. All these
approaches have in common the fact that the transformation
they try to estimate maps a point to another point, which
is not the case in relative motion estimation when points
are in relation with epipolar lines. [4] uses Markov Chains
Monte-Carlo simulation and EM to maximize a likelihood
over structure and motion parameters. This method does
not handle clutter. [11] addresses the problem for relative
pose estimation from a statistical point of view. [7] pro-
poses a method that discretizes the parameter space. It has
global convergence, but requires known point matches and
does not deal with wrong matches. To summarize, all previ-
ous methods for camera motion estimation through epipolar
geometry use photometric information.

We show that point matches and relative motion can be
estimated simultaneously without using photometric infor-
mation. Our framework is based on geometric cues only. It
locally finds the ‘best’ motion despite the ambiguity of the
point to epipolar line constraint. We provide a set of essen-
tial matrices to this local matching process. We study the in-
plane camera motion case, for instance a camera mounted
on a tripod where the height, roll and tilt are fixed. This
system has two parameters. We use a quad-tree strategy
to subdivide the essential matrix space. From a given es-
sential matrix, putative matches are drawn using covariance
estimate and guided matching. These matches are then val-
idated with spectral clustering based on a new similarity
measure. This is based on an ‘essential distance’ that we in-
troduce. Finally, we enforce the unicity constraint by max-
imizing a similarity measure. Using the obtained matches
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we finally estimate the epipolar geometry by minimizing a
robust cost.

Paper organization. We first present our method in sec-
tion 2. Section 3 then gives implementation details and re-
sults. We conclude in section 4. In appendix A we describe
our ‘essential distance’ and in supplementary material the
proof of the overlapping properties and in a new compact
support kernel used in the paper.

Notation. Matrix are in upper case bold (e.g. A) and vec-
tor in lower case bold (e.g. a). We consider two cameras: a
source S and a target T . � (a,b) ⊂ R2 is the quad formed
by the two points a ∈ R2 and b ∈ R2. o�(a,b) ∈ R2 is
the center of the quad � (a,b) and c�(a,b) ∈ R2×4 its four
corners. E is the set of Essential Matrices [8]; it is a variety
of dimension N (N ≤ 5) in R9 (the set of 3× 3 matrices).

2. The Proposed Method

The goal of our method is to estimate an essential ma-
trix Ẽ ∈ E from two sets of unmatched image points
({qk} ⊂ S and {pl} ⊂ T ). In order to perform this
task we sample E and then estimate putative matches from
a given epipolar geometry with parameters u. Samples for
u ∈ RN are obtained through a discretization E of E. We
first describe our camera setup, its parameterization and the
developed subdivision scheme. We then explain the match-
ing procedure and finally the robust cost we minimize.

2.1. Discretizing the Motion Model

Camera setup. We consider a camera mounted on a tri-
pod. The camera is oriented such that it is parallel to the
horizon. The camera and tripod system remains rigid over
time; only the system moves. The camera motion thus has
two degrees of freedom: an horizontal translation and a sin-
gle rotation around the y-axis (see figure 1 for a schematic).
This is the usual motion of a tripod. We suppose that the
cameras are internally calibrated (i.e., the 3× 3 matrices of
intrinsics KS , KT known). We can thus parametrize the
essential matrix with two angles u = [θ, α]>. These define
a relative rotation R (u) and translation t (u) as

R (u) =

 cos (π − θ − α) 0 sin (π − θ − α)
0 1 0

− sin (π − θ − α) 0 cos (π − θ − α)

 ,
t (u) =

 sin (θ)
0

cos (θ)

 .
(1)

It should be noted that this model does not handle pure ro-
tation. The pure rotation case being ‘simpler’, because the

epipolar geometry is not existent and therefore a point cor-
responds to a point and not to a line, we decided to not in-
cluded in our study. But it could be easily added.

We obtain the essential matrix as E (u) =
R (u) [t (u)]× and the fundamental matrix as
F (u) = K−>T E (u) K−1

S . The essential matrix is
parametrized by u ∈ [0, 2π]2. It is possible to determine
if a given u creates overlapping views i.e., if the cameras
share a part of their fields of view. The overlapping
property ψ (u) is:

Property 1 Overlapping Property – See supplementary
material for Proof

ψ (u) = 0 ⇔ π + γS + γT < θ+ α < 3π − γS − γT

with γS (resp. γT ) half the field of view of the source cam-
era (resp. target). ψ (u) = 0 means no overlap. γS (resp.
γT ) is extracted from the camera intrinsics in KS (resp.
KT ).

Discretization. We discretize E using a quad-tree with a
root quad �0 = �

(
0, [2π, 2π]>

)
. The subdivision of a

level to a finer resolution is performed by splitting all quads
of the current level in four quads of equal size. Using the
overlapping property one can decide whether or not a quad
has to be subdivided. The overlapping indeed has a transi-
tivity property that guarrantees that we do not miss sought
solution:

Property 2 Transitivity of Overlapping Property – See
supplementary material for Proof

Let � (a,b) ⊂ �0

(
∀u ∈ c�(a,b), ψ (u) = 0

)
⇒ (∀u ∈ � (a,b) , ψ (u) = 0)

This property means that if none of the 4 corners of a quad
satisfies the overlapping property then all the quads issued
from this quad can be discarded. This way we can obtain a
fine discretization of E while avoiding to subdivide where it
is not of use. We define the h-th layer of subdivision Eh as
the centers of all the quads of the layer, with E0 = o�0 . A
result of the subdivision is shown in figure 1.

2.2. Geometric Only Matching

We introduce a method to obtain putative matches based
only on geometric constraints. These matches depend only
on u ∈ E ⊂ Rn and E (u) ∈ E. First a superset of matches
is estimated using a loose epipolar constraint from u. The
subset which is the most homogeneous from an epipolar
point of view is then extracted. Finally, the unicity con-
straint is enforced. The final set can then be plugged into a
robust cost function.
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Figure 1. (left) Exemplary in-plane motion (middle) Top view of the 2-parameter camera setup we consider with u = [θ, α]>. The
translation only depends on the angle θ while the rotation uses both angles θ and α. (right) A quad-tree subdivision to 6 layers of the
essential matrix space E for the camera setup we consider. The empty diagonal comes from the non-overlapping criterion.

2.2.1 Putative Matches from Geometric Guided
Matching

First, we need to define a superset of plausible matches us-
ing E (u). This superset includes the correct matches if u is
the correct solution. One could use a threshold on the dis-
tance between a point and an epipolar line but that would
give a bias towards the epipole. Therefore we use covari-
ance propagation as suggested in [13] for the propagation
of error in the sampled fundamental matrix. Blind PnP [12]
uses a similar approach but their trust area is always closed
(ellipsoids) making the process less ambiguous. The prop-
agation process defines two hyperbola around the epipolar
lines: they define the trust region. The conic equation is as
follow:

Cq = ll> − k2
(
JuΣuJ

>
u + JqΣqJ

>
q

)
(2)

with l = Fq; i.e. the epipolar line for point q and define Ju

(resp. Jq) is the jacobian of F(u)q
‖F(u)q‖ with respect to u (resp.

q). We suppose that the error for the location of point q and
the parameters u is uniform and therefore Σq = Σu = I .
The only parameter to adjust is k2 which is in relation with
the quality of the results; its choice is discussed later. The
criterion of 〈q,p〉 being or not a plausible match is defined
as:

σk2 (q,p,u) = 1
⇔ p ∈ Cq

⇔
(
p>Cqp

)
.
(
p>l Cqpl

)
> 0

(3)

with pl ∈ l an arbitrary point on the line l. It is important to
note that the test is performed both ways, reverting the role
of the source and the target cameras. For simplicity of nota-
tion we did not include it. For more information about this
guided matching method the reader is referred to [13]. Us-
ing test (3) we obtain a rough superset of plausible matches
‘around’ the epipolar geometry u. It is ambiguous because

the epipolar constraint does not predict the point but instead
indicates whether a point is compatible with a neighboring
epipolar geometry. Therefore we need to cluster this su-
perset, and find an homogeneous, from an epipolar point of
view, subset that should mostly contain correct matches.

2.2.2 Extraction of a Coherent Epipolar Geometry by
Spectral Clustering

In order to cluster the superset computed in the previous
section, the most prominent (i.e., for which the support is
the largest) epipolar geometry is selected. We compute a
criterion of homogeneity for each pair of matches. This cri-
terion is based on the epipolar geometry ũkl ∈ E that is the
closest to u and verifies the epipolar constraint for 〈qk,pl〉.
The epipolar geometry ũkl is defined as:

ũkl = arg mineu d2
E (u, ũ) s.t. p>l F (ũ) qk = 0, (4)

where dE is a pseudo-distance on the variety E defined in
appendix A, different from the euclidean distance. The eu-
clidean distance supposes the variety to be linear in the pa-
rameter space. However, E is nonlinear, as (1) shows. Our
distance dE represents more accurately the underlying non-
linear variety E. (4) is solved using Lagrange multipliers.It
should be noted that the resulting ũkl might not belong to
the discrete set E .
Using the estimated parameters ũ we build a similarity ma-
trix S, that compares two epipolar geometries ũkl and ũfg ,
as follows:

S (i, j) = ρ4τ


dl(qk,F (ufg)

> pl)
+ dl(qf ,F (ukl)

> pg)
+ dl (pl,F (ufg) qk)
+ dl (pg,F (ukl) qf )


S (j, i) = S (i, j)
S (i, i) = 0

(5)



with ρτ a kernel function with a compact support of size
τ (see supplementary materials for details) and i (resp. j)
corresponds to the matrix entry for the pair 〈qk,pl〉 (resp.
〈qf ,pg〉).
Now we form the normalized Laplacian matrix L =
D−

1
2 (D− S) D−

1
2 with D the diagonal matrix composed

of
∑
j S (i, j) as explained in [16] and perform an eigen-

value decomposition of L. The smallest (non-zero) eigen-
vector clusters the space between a set of compatible
matches and a set of heterogenous matches. The cut is made
for values greater than τeig = 1√

2nCorres
. This threshold

τeig is based on the fact that the eigenvector is a unit vec-
tor of dimension nCorres and based on our experiments it
performs well for this problem. This gives a subset of ho-
mogeneous (from an epipolar point of view) matches but
it might include points which are matched multiple times,
which is not feasible. Unicity has to be enforced to obtain a
usable set of matches for the final robust estimation step.

2.2.3 Enforcing Unicity

Once we have a set of homogeneous matches M we have
to enforce the unicity constraint for the matches. We do not
want to have a point in S (resp. T ) to be matched several
times in T (resp. S) because it would bias the robust cost
function. We create Ω the set of set of matches such that
unicity is satisfied for all sets M̂j ∈ Ω. These sets verify:

∀ 〈q,p〉 ∈ M̂j s.t.


〈q,p〉 ∈ M
@q′ 6= q s.t. 〈q′,p〉 ∈ M̂j

@p′ 6= p s.t. 〈q,p′〉 ∈ M̂j

(6)

We determine the best set in Ω as:

M̂ = arg maxcMj∈Ω

∑
k

Dk, (7)

with D computed as in section 2.2.2. The maximum score
represents the largest set which is the most homogeneous /
similar (remember that S is a similarity matrix) in compar-
ison to the others.

We finally obtain a coherent and unicity-satisfaying set
of M̂ matches ‘around’ u. We determine the parameter û
that best represent M̂ using the similarity matrix S as:

û = ui s.t. i = arg max
j

Dj,j (8)

2.3. Nonlinear Motion Refinement

Using a set of putative matches we still have to estimate
an essential matrix accurately. We cannot guarantee that the
putative matches only include inliers. Therefore we have to
use robust nonlinear estimation based on the point to epipo-
lar line cost function. We propose to minimize the following

cost:

q (u) =
∑

〈q,p〉∈cM
(

(1− ρτ (dl (p,F (u) q)))2

+
(
1− ρτ

(
dl
(
q,F> (u) p

)))2 )
(9)

with ρτ a compact kernel (see supplementary materials).
We use û for the initialization of the minimization. Our
cost function q disregards those points which are far off the
epipolar lines (by more than τ pixels).

The different steps of the algorithm are summarized in 1.
Input: Subdivisions {Eh}, keypoints {qk} in the source and {pl} in

the target images
Output: Solutions sol composed of an epipolar geometry eu and pairs

of matches cM
foreach E ∈ {Eh} do

foreach u ∈ E do
foreach 〈qk,pl〉 such that σk2 (qk,pl,u) = 1 do
M.push-back( 〈qk,pl〉 );
compute ukl using (4) with 〈qk,pl〉;

end
ifM.size() > nmin thenfM← cluster M % Section 2.2.2;cM← enforce unicity on fM % Section 2.2.3;

if cM.size() > nmin then
compute eu using

Dbu, cME
% Section 2.3;

if RE(eu, cM) < τnoise then
sol.push-back(

Deu, cME
);

end
end

end
if sol.size() > 0 then

return;
end

end
end

Algorithm 1: Proposed algorithm for simultaneous
camera motion estimation and point matching.

3. Experiments and Results
In this section we describe the experiment setup, imple-

mentation details and present results on synthetic and real
data.

3.1. Implementation Details

Algorithm 1 was implemented in Matlab. The con-
strained estimation (4) was solved using fmincon and
the robust cost (9) was minimized using lsqnonlin. If
the algorithm finds several minima, we select the solution
with maximum number of matches. All the experiments
were done on different quad-core machines with the use
of parfor (parallel for loop) to easily spread the calcula-
tion between cores. The synthetic data were created using
a camera with a field of view of 30.96◦. The 3D points
were generated randomly in front of the cameras and then
projected to the views. The minimum number of necessary
matched points nmin was 8.

All the estimated parameter ũ were evaluated against the
estimated pair of matches M̃ and the true pair of matches
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Figure 2. [up] Log Registration Error (RE) results obtained with
estimated matches with varying starting point RE(eu, fM) [down]
Log RE results with true matches REeu,M) (left) k2 = 0.01,
τ = 10 (right) k2 = 0.102, τ = 15.
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Figure 3. [left] Impact of the variation of k2 and τ (top) Recall rate
(bottom) Mean processing time; [right] Histogram of the level of
discretization on which the algorithm converged (top) k2 = 0.01,
τ = 10 (bottom) k2 = 0.102, τ = 15.

M with a point to line Registration Error model :

RE (u,M) =
1

2N

N∑
i=0

(
dl (F (u) qi,pi)

+ dl
(
F> (u) pi,qi

) ) .
(10)

3.2. Experiments

First, we want to determine a correct value for the in-
verse of the chi-square cumulative distribution (k2) and a
threshold τ used for the similarity and for the robust cost
function (9). The former impacts the size of the putative
matches sets and therefore the computational time. The
latter modifies the convergence and stability against noise.
They both change the basin of convergence. As shown in
figure 2 where we applied the matching algorithm using as
input parameter u0 around u (with 25 3D points). We var-
ied the parameters in [−0.2; 0.2]2. In figure 2, the reader
can get a feeling of the convergence rate evolution depend-

ing on k2 and τ . Furthermore, it should be noted that the
final registration error applied to the estimated matches M̃
and the known matches M give similar numerical result.
This means that when the algorithm converged it is toward
the true solution.

Then we drew random parameters u and a structure of 25
3D points to perform the estimation (without noise and out-
lier); this means that we have 25 source points that have a
match in the target image. We used the complete algorithm
over eight discretization level. All process converged to a
pose which registered the true match (RE

(
ũ,M

)
) under

an error of 10−10. We study the variation of the processing
time and recall rate (percentage of matches found) and the
mean processing time. Some combination gave interesting
results with good recall rates (more > 80%) and interesting
speed:

{
k2, τ

}
∈ {{0.01, 10} , {0.01, 15} , {0.102, 15}}.

It is interesting to see that the smaller the superset of
matches is (when k2 is small), the more the convergence
happens on at precise (e.g. higher) discretization, see figure
3. We decide to use

{
k2, τ

}
= {0.01, 15} because it gave

a good recall rate and was offering the best possible speed.
For the rest of the experiments we used only 7 subdivisions
( 2502 essential matrices) because its offers a good conver-
gences ( > 95%) and speeds up the process compare to an
8−th subdivision which adds 7482 new configurations to
test.

Then, we studied the consequence of clutter for the per-
formance of the algorithm. We used again 25 3D points.
Depending on the required number of outliers we removed
true matches and replaced them by random points. We used
σnoise = 10−10 pixels. For each percentage of outliers
we used 50 randomly picked poses. We studied the true
convergence rate, the false convergence rate (percentage of
result where we thought we converged but it was wrong),
the computation time, the recall rate (how many percents
of the true matches we found) and finally the percentage of
false/erroneous matches (estimated matches that were not
present in the true matches set). We always computed a av-
erage over all runs. The results are visible in figure 4(a).
The first lesson about this experiment is that we never con-
verge to a false minimum: we either converge to the right
solution or we diagnose we did not. Second the processing
time can quadruple with increasing clutter. The main reason
for this is that we have to process through E before declar-
ing that we did not find any solution. Third, the matches are
well extracted from the data with a mean recall rate over the
different levels of clutter of 75 %. Finally, there are few to
no false matches. Overall we see that the method performs
well in the presence of clutter.

Thereafter, we performed experiments against noise in
the detected points. We applied the same protocol as for
the previous experiments and corrupt the image points with
a Gaussian noise of standard deviation σ. We decide upon
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Figure 4. (left) Experiments against clutter: the proposed method has a good convergence and recall rate;(center) Experiments against
feature detection noise: again, the proposed method performs well; (right) Registration error after convergence. (Note: time in log scales)

convergence based on the noise level σnoise =
√

2σ. The
results are displayed in figure 4(b). This demonstrates that
our algorithm handles noise even though we only consider
25 3D points. The algorithm performs faster with increas-
ing noise because the increasing convergence threshold and
therefore the convergence condition becomes looser. That
is why the rate of wrong convergence increases with the
noise because the criteria is too loose. The performance of
the algorithm degrades with the noise level but offers good
registration error as shown in figure 4(c). We speculate that
using a re-projection error cost would improve this result
since it is a ML estimator.

Finally, using a calibrated camera on a table we captured
a scene from two different views and selected harris cor-
ners. The scene is composed of two identical objects that
would confuse any photometric based approach. See in fig-
ure 5 how our algorithm copes even in the presence of ge-
ometric ambiguities (geometrically aligned structured). It
manage to match only one of the cup because of the un-
precision of the keypoints and calibration. The resulting
pose is ũ = [114.3280, 93.9593]> (angles are expressed
in degrees) which is close to the manually estimated pose
u = [113.2165, 94.9960]>. This demonstrates the applica-
bility of the method with real data.

4. Conclusion

We presented a framework to estimate the epipolar ge-
ometry from two unmatched sets of keypoints without using
photometric information. When RANSAC-like approaches
use matches to simultaneously estimate the motion, we es-
timate one motion and the matches. In order to achieve this
difficult task, we use a discrete set of essential matrices and
an efficient and powerful geometric only matching proce-
dure. The variety of essential matrices is explored using a
proposed pseudo-distance between essential matrices. The
matching method makes use of error propagation for guided
matching, spectral clustering with a new similarity measure
to extract homogeneous matches and ensures matches to be
unique by post processing. Finally, the obtained geometric
putative matches are evaluated through robust nonlinear es-

timation. We demonstrated the use of the algorithm on a
moving camera mounted on a tripod that bares all the ambi-
guities of epipolar geometry but not its dimensionally bur-
den.

Future work should include a general overlapping crite-
rion and transitivity property for the full 5 degrees of free-
doms case. It should also include the use of quads to evalu-
ate the covariance of the final estimate. The implementation
should make more use of the parallel aspect of the approach.

Acknowledgement: This work was made possible by
DAAD and Egide which funded the travel grant Surf-3D.

A. Fundamental and Essential Distances
In this appendix, we introduce a pseudo-distance be-

tween epipolar geometries. The proposed measure is based
on the distance introduced by Zhang [18], though our dis-
tance is more systematic since it does not include a random
process.

In order to introduce our distance we define a set of tools.
Let F1 and F2 be the two fundamental matrices wg=hich
define the two epipolar geometries to compare. We define
as CT the conic that passes through the four corners of the
image T . We will not be computing explicitly these con-
ics. Instead we define the transformation TT between the
unit circle CO and CT ; this can be trivialy estimated. Let
q be an image point in S and li = Fiq (with i ∈ {1, 2})
its corresponding epipolar line in T . To improve the read-
ability we define lT := T−>T l as an epipolar line in the
coordinate frame of CO. We define ∩T (l) = l ∩ CT to
be the intersection between the epipolar line and the conic
of T . In order to simplify the calculation we compute the
intersection within the coordinate system of the unit cir-
cle CO, therefore we rewrite the intersection problem as
∩T (l) = T−1

T
(
lT ∩ O

)
.

Three results are possible: no intersection, one intersec-
tion point, two intersection points. These different cases
will be sorted using the distance dO from a line to the
origin l. The ‘no intersection’ case is determined when
dO
(
lT
)
> 1. The two other cases happen for dO

(
lT
)
≤ 1.



Figure 5. Wide Baseline Experiment; Matching result with multiple similar object; most of the features are repeated between the two cups;
in green correct matches and in red the input keypoints.

Since they can be summarized in the same equation, we
write ∩T := ∩T. (l), with . ∈ {±,∓}. Expressed in the
coordinate system of O, the solutions of lT ∩ O are:

dO
(
lT
)
≤ 1⇒ lT ∩ O = w

 −l1l3 ± l2r (lT )−l2l3 ∓ l1r
(
lT
)

l21 + l22

 ,

(11)
with w the projection function ([x/z, y/z, 1]>) and
r
(
lI
)

=
√
l21 + l22 − l23.

We are now ready to define our distance function. We
discretize the image S into a set of 2D points q ∈ S and
define:

dF (F1,F2) =
∑
q∈S

σ (l1)σ (l2)
{±,∓}∑
.

∥∥∥∥T∩. (l1)−
T
∩
.

(l2)
∥∥∥∥

(12)
with σ (li) = s

(
dO
(
lTi
))

and s representing a steep sig-
moid that is truncated to zero for all points that do not cross
the conic (i.e. > 1); this sigmoid is used to have a continu-
ous behavior.
In order to obtain a symmetric function we redefine (12) by:
dF (F1,F2)← dF (F1,F2) + dF

(
F>1 ,F

>
2

)
.

We can finally define the essential distance dE and
for simplicity of notation we write dE (u1,u2) =
dF
(
K−>T E (u1) K−1

S ,K−>T E (u2) K−1
S
)
.
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