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Abstract

The Thin-Plate Spline warp has been shown to be a very effective parameterized model of the optic

flow field between images of various types of deformable surfaces, such as a paper sheet being bent. Recent

work has also used such warps for images of a smooth and rigid surface. Standard Thin-Plate Spline warps

are however not rigid, in the sense that they do not comply with the epipolar geometry. They are also

intrinsically affine, in the sense of the affine camera model, since they are not able to simply model the

effect of perspective projection.

We propose three types of warps based on the Thin-Plate Spline. The first one is a rigid flexible warp.

It describes the optic flow field induced by a smooth and rigid surface, and satisfies the affine epipolar

geometry constraint. The second and third proposed warps extend the standard Thin-Plate Spline warp

and the proposed rigid flexible warp to the perspective camera model. The properties of these warps

are studied in details and a hierarchy is defined. Experimental results on simulated and real data are

reported.
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1 Introduction

Given two images of some scene surface, there exists an R2 → R2 function, called a warp, mapping a

point from the source image to the corresponding point in the target image. For instance, two images of a

rigid planar surface taken by a perspective camera are related by an homographic warp. For a non-planar,

3D scene, the warp is more complex since it depends on the surface depth. When the observed surface

is deformable, the warp is even more complex. Examples of rigid scene models include the cases where

the scene structure is piecewise planar as in (Yang et al., 2005) or nearly planar as in (Irani et al., 1999).

Examples of deformable scene models include the flexible low-rank model as in (Bregler et al., 2000), the

learned low-rank model in (Salzmann et al., 2007), the face model in (Blanz and Vetter, 2003) and the paper

model in (Perriollat and Bartoli, 2006).

Representing the warp using a parametric function requires prior assumptions about the observed scene

structure. One common, fairly generic assumption is that the inter-image optic flow field is smooth.1 This

naturally leads to using the Thin-Plate Spline (TPS) as a building block for the warps. The TPS is a

smooth, compact and convenient R2 → R function that minimizes the bending energy of the 2.5D surface it

defines, while satisfying a set of constraints induced by data points. The standard TPS warp is very flexible

in that it is controled by centres that may be placed anywhere in the images. It is known to be an efficient

approximation to many types of deformations (Bookstein, 1989). The standard TPS warp has recently been

used as a simple parametric warp for images of a rigid and smooth 3D surface in (Wills and Belongie, 2004)

and (Masson et al., 2005), for respectively wide-baseline image matching and object tracking.

There are, however, two main issues with the use of the standard TPS warp in this context, that have

not been dealt with in the literature:

• The standard TPS warp overfits affine images of rigid surfaces. The standard TPS warp does

not in general satisfy the rigidity constraint modeled by the affine epipolar geometry. In that sense it

is ‘too flexible’ in affine imaging conditions and for rigid surfaces.

• The standard TPS warp does not model perspective. The standard TPS warp is intrinsically

affine, in the sense of the affine camera model, since its formulation does not include a division. For

instance, as mentioned in (Wills and Belongie, 2004), it is not able to ‘reproduce’ a simple homographic

warp with a finite number of centres.2

1The inter-image optic flow field is smooth if the observed surface is itself smooth, opaque (so that points at the back of the
surface are hidden from the cameras) and does not self-occlude in the two observed images. The effects of self-occlusions on the
optic flow field were studied in (Gay-Bellile et al., 2009).

2Even though a large number of centres may be used to approximate perspective transformations arbitrarily well.
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Henceforth, we call DA-Warp the standard TPS warp (for ‘Deformable Affine’). This paper brings con-

tributions that address the two above mentioned issues, through the proposal of three new warps illustrated

in figure 1. First, a specialization of the DA-Warp to rigid surfaces is introduced. This warp is called

RA-Warp (for ‘Rigid Affine’) and is very similar to the DA-Warp with an epipolar constraint on the warp

coefficients. This solves the first issue. Second, the extension of the RA-Warp to the perspective camera

model is proposed. This warp, dubbed RP-Warp (for ‘Rigid Perspective’), naturally includes the FP-Warp

(‘Flat Perspective’)3 similarly to the RA-Warp including the FA-Warp. This solves the second issue for the

case of rigid surfaces. Third, we introduce the DP-Warp (for ‘Deformable Perspective’) which is shown to be

the perspective analogue of the DA-Warp. This solves the second issue for the case of deformable surfaces:

perspective transformations can be approximated arbitrarily well by our DP-Warp with much fewer centres

than for the DA-Warp. The derivation of these warps is made possible by a feature-driven parameterization

of the TPS that we propose. The hierarchy and dependencies between these four types of warps – the

DA-Warp and the three new types of warps – as well as the FA-Warp and the FP-Warp are studied in

details. In order to derive warps independent of the intrinsic camera parameters, we consider uncalibrated

cameras.

Deformation

DA-Warp

Deformation

DP-Warp

RP-Warp

RA-Warp

Scene

Rigid Deformable

Im
ag
in
g

A
ff
in
e

Pe
rs
p
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Figure 1: Summary showing the standard DA-Warp and the three new types of warps we propose (the
RA-Warp, the RP-Warp and the DP-Warp) that deal with affine and perspective projections of rigid and
deformable surfaces.

One of the reasons for the popularity of the TPS is that the 2.5D surface it defines interpolates a set

of centres with minimal bending energy. In the DA-Warp, a TPS is used for each of the two coordinates.
3The FP-Warp is a 2D homographic warp with 8 parameters. Similarly, the FA-Warp (‘Flat Affine’) is a 2D affine warp with

6 parameters.
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These two TPS functions share their centres. Their bending energy thus becomes empirical as it is expressed

within the target image. In contrast, the bending energy of the proposed warps is related to a 2.5D or a 3D

surface.

The paper is organized as follows. Previous work is reviewed in §2. We describe our notation in §3

followed by our feature-driven parameterization of the TPS. Affine and perspective projection warps are

respectively presented in §§4 and 5. The hierarchy and relationships between the warps are studied in §6.

Methods for estimating the warps are given in §7. Experimental results are reported in §8 and a discussion

is provided in §9. The Appendices bring proofs for some of our results.

A set of images along with point correspondences is used to illustrate the algorithms throughout the

paper. These are images of a poster. They were taken under various imaging conditions (affine and perspec-

tive) and with various deformations. We manually picked 206 point correspondences. We also generated a

warp visualization grid by rectifying the images for which the poster is flat. The point correspondences and

the warp visualization grid are shown in figure 2 for one image and the complete set of images is shown in

figure 3. All the algorithms we use in this paper estimate the warps by minimizing a transfer error, defined

as the discrepancy between the points transferred by the warp from the source to the target image, and the

points measured in the target image. We report the RMSR (Root Mean Square Residual) in pixels, which

is proportional to the transfer error and represents the extent to which the model fits the data. All the

comparisons are done with l ∈ {3, 9, 30} deformation centres for the warps. The reason is as follows. First,

l = 3 is the minimum number of deformation centres for all warps. In that case they take very simple forms

(for instance, the DA-Warp becomes an FA-Warp). Second, l = 9 is a quite small number of centres (think

of it as a (3× 3) grid for instance), that allows for some flexibility in the warps. Third, l = 30 is the other

extreme: it makes the warps very flexible.

2 Previous Work

Deformable image warps are used in different contexts, such as augmented reality (Pilet et al., 2008) and

medical image registration (Bookstein, 1989). The DA-Warp i.e., the standard TPS warp, is amongst the

most popular parameterized warps, even though there is a great body of work on defining other warps,

such as the FFD (Free-Form Deformations) (Sederberg and Parry, 1986), the MFFD (Multilevel FFD) (Lee

et al., 1996), more recently the MLS (Moving Least Squares) (Schaefer et al., 2006) or the diffeomorphic

warps in (Cootes et al., 2004).

The DA-Warp was introduced in the seminal paper (Bookstein, 1989), based on the TPS. The TPS was

derived in (Duchon, 1976) as the function that interpolates or approximates data points while minimizing
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(a) (b)

Figure 2: (a) shows image FA1 of the poster overlaid with the 206 interest points that we manually entered
on all the images of figure 3. (b) shows the warp visualization grid created with an homographic warping
of a regular grid. This grid is later used for illustrating the computed warps.

Maximum zoom (≈ ‘Affine images’) Minimum zoom (‘Perspective images’)
Flat surface Deformation 1 Deformation 2 Flat surface Deformation 1 Deformation 2

FA1 DA11 DA21 FP1 DP11 DP21

FA2 DA12 DA22 FP2 DP12 DP22

Figure 3: Images of a poster that were taken for different imaging conditions and deformations, with their
‘name’ (F for Flat, D for Deformation, A for Affine and P for Perspective). The ‘affine images’ were obtained
by strongly zooming on the poster, while the ‘perspective images’ were obtained by standing close to the
poster. The effect of perspective is typically seen by foreshortening (see images FP1 and FP2, for instance).
We selected source and target images from the images shown in this figure to illustrate the different warps
throughout the paper. Every possible image pair formed by two of these images satisfies the assumption of
smoothness of the image optic flow field we mentioned in the introduction: the surface is smooth, opaque
and does not self-occlude.
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the integral bending energy. It is worth of note that several papers use the integral bending energy for

other purposes. For instance, it is used as a term in a compound cost function for 3D surface reconstruction

in (Terzopoulos, 1983), and more recently, for 3D reconstruction of curved surfaces from a single view in

(Prasad et al., 2006).

A number of papers focus on defining new estimation methods for the DA-Warp. (Bookstein, 1989) ini-

tially proposed a method relying on choosing point landmark correspondences as centres for the DA-Warp.

(Lim and Yang, 2005) and (Bartoli and Zisserman, 2004) recently proposed two different strategies to esti-

mate the DA-Warp with a direct method i.e., intensity-based. (Chui and Rangarajan, 2003) simultaneously

solve for the DA-Warp and match points using the principle of softassign, which uses the discrepancy be-

tween a source point transferred by the warp and a target point as a probability of matching. (Donato and

Belongie, 2002) propose algorithms for the fast computation of the DA-Warp from point correspondences.

In contrast to existing work, we build on the TPS to derive new types of warps by taking into account

the possible rigidity of the observed surface and the perspective camera model. Methods for estimating

those warps from point correspondences are given.

3 Notation and Preliminaries

We give our notation, present the TPS and its feature-based parameterization, and explain how rigidity is

modeled using the fundamental matrix.

3.1 Notation

Scalars are in italics (e.g., x), vectors in bold right fonts (e.g., q) and matrices in sans-serif and calligraphic

fonts (e.g., P and E). The elements of a vector are written as in a> = (a1 a2 a3) where > is vector and matrix

transpose. We do not make a difference between coordinate vectors and physical entities. The coordinates

of a point in the source image are written with a 2-vector q> = (x y). Rr and Pr designate respectively

the Euclidean and projective spaces of dimension r. We write d2 (q,q′) = ‖q− q′‖2 the Euclidean distance

between two points q and q′ with ‖·‖2 the vector two-norm and matrix Frobenius norm. Homogeneous

coordinates are written as in q̌> ∼ (q̌1 q̌2 q̌3), where ∼ means equality up to scale. Scaled homogeneous

coordinates are written as in q̃> =
(
q> 1

)
. The homogeneous to affine coordinates function ψ is defined by

q = ψ (q̌):

ψ (q̌) def=
1
q̌3

q̌1
q̌2

 .
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The skew-symmetric (3 × 3) cross-product matrix [q̌]× is defined such that [q̌]× q̌′ = q̌ × q̌′. Full column

rank portrait matrix pseudo-inverse is defined by X† =
(
X>X

)−1
X>. Notation X†> designates the transpose

of the pseudo-inverse of matrix X.

We consider l centres with coordinates ck in the source image, with k = 1, . . . , l. They are gathered in

an (l × 2) matrix P containing their x and y coordinates on its columns, and an (l × 3) matrix P̃ with a

third column of ones (i.e., P̃ = (P 1), with 1 a vector of ones with the appropriate size). Matrix P̌ equals

matrix P̃ with each row rescaled by some scalar factor i.e., P̌ = diag (d) P̃. The centres in the target image

are written c′k. Matrices P′, P̃′ and P̌′ are defined in the target image similarly as for the source image.

Warps in affine coordinates are written W, while W̃ and W̌ are used for scaled homogeneous and

homogeneous coordinates respectively. The sets of FA-Warps and FP-Warps (i.e., affine and homographic

warps respectively) are denoted SFA and SFP. For a (2 × 3) FA-Warp matrix B and a (3 × 3) FP-Warp

matrix Ȟ, we have:

WFA (q;B) def= Bq̃ and W̌FP

(
q; Ȟ

) def∼ Ȟq̃.

3.2 TPS – The Thin-Plate Spline

The TPS is an R2 → R function driven by assigning target values αk to the 2D centres ck and enforcing

several conditions: the TPS is the Radial Basis Function that minimizes the integral bending energy. The

idea of using the Thin-Plate equation as an interpolation map is due to (Duchon, 1976). The standard

R2 → R2 TPS-Warp, or DA-Warp with our naming conventions, is obtained by ‘stacking’ two TPS functions

sharing their centres, as described in the next section.

Standard parameterization. Given the l centres, the TPS is usually parameterized by an l+3 coefficient

vector h>α,λ =
(

w> a>
)

and an internal regularization weight λ ∈ R+. These coefficients can be computed

from the target vector α as described in the next paragraph. There are l coefficients in w and three

coefficients in a. The TPS is given by:

ω (q;hα,λ) def=

(
l∑

k=1

wk ρ
(
d2 (q, ck)

))
+ a>q̃, (1)

where ρ (d) def= d log (d) is the TPS kernel function for the squared distance. The coefficients in w must satisfy

P̃>w = 0. These three ‘side-conditions’ ensure that the TPS has square integrable second derivatives. It is

convenient to define the (l + 3)-vector `q as:

`>q
def=

(
ρ
(
d2 (q, c1)

)
· · · ρ

(
d2 (q, cl)

)
q̃>
)
,
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allowing the TPS (1) to be rewritten as a dot product:

ω (q;hα,λ) = `>q hα,λ. (2)

Standard estimation. Applying the TPS (1) to the centre cr with target value αr gives:

(
l∑

k=1

wk ρ
(
d2 (cr, ck)

))
+ a>c̃r = αr.

Combining the equations obtained for all the l centres with the side-conditions P̃>w = 0 in a single matrix

equation gives:


Kλ P̃

P̃> 0


︸ ︷︷ ︸

D


w

a


︸ ︷︷ ︸
hα,λ

=


α

0


with Kr,k =

 λ r = k

ρ
(
d2 (cr, ck)

)
otherwise

As can be seen, λI is added to the leading block Kλ of the design matrix D, and acts as an internal regular-

ization. Solving for hα,λ by inverting D is the classical linear method for estimating the TPS coefficients due

to (Bookstein, 1989). The coefficient vector hα,λ is thus a nonlinear function of the internal regularization

weight λ and a linear function of the target vector α. In practice, we set λ to some small value such as

λ = 10−4, to ensure that Kλ and thus D are full rank matrices.

Feature-driven parameterization. We express hα,λ as a linear ‘back-projection’ of the target vector

α. This is modeled by the matrix Eλ, nonlinearly depending on λ, given by the l leading columns of D−1:

hα,λ = Eλα with Eλ
def=

K−1
λ

(
I− P̃

(
P̃>K−1

λ P̃
)−1

P̃>K−1
λ

)
(
P̃>K−1

λ P̃
)−1

P̃>K−1
λ

 . (3)

This parameterization of hα,λ has the advantages to separate λ and α and to introduce units.4 The

side-conditions are naturally enforced by this parameterization: it can easily be verified that P̃>w =(
P̃> 0

)
hα,λ =

(
P̃> 0

)
Eλα = 0, ∀λ ∈ R and ∀α ∈ Rl.

Incorporating the parameterization (3) into the TPS (2) we obtain what we call the feature-driven
4While hα,λ has no obvious unit, α in general has (e.g., pixels, meters).
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parameterization τ (q;α, λ) = ω (q;hα,λ) for the TPS:

τ (q;α, λ) def= `>q Eλα. (4)

Properties. Equation (4) is a feature-driven parameterization since α contains the target values for the

centres. In practice, these can be the coordinates of image or 3D points. The following important properties

are used later in the paper:

q̃> = `>q EλP̃ ∀q ∈ R2 (5)

q̃>θ = `>q EλP̃θ ∀q ∈ R2 ∀θ ∈ R3. (6)

This shows that an R2 → R affine transformation with parameters θ can be reformulated as a TPS with

arbitrary centres. These properties stem from the fact that5 EλP̃ = (0 I)>, giving:

q̃>θ = `>q

0

θ

 = `>q EλP̃θ.

It is straightforward to see that these properties imply:

`>q Eλ1 = 1. (7)

The integral bending energy κ =
∫

R2

∥∥∇2τ (q;α, λ)
∥∥2

dq = w>Kλw is also given by κ = α>Ēλα, where Ēλ

is the (l × l) bending energy matrix given by amputating Eλ of its last three rows:

Ēλ
def= K−1

λ

(
I− P̃

(
P̃>K−1

λ P̃
)−1

P̃>K−1
λ

)
. (8)

The bending energy matrix is symmetric and has rank l − 3. The eigenvectors corresponding to the l − 3

nonzero eigenvalues are the principal warps, the corresponding eigenvalues indicating their bending energy

(Bookstein, 1989).

The asymptotic internal regularization behaviour of the TPS is:

lim
λ→+∞

τ (q;α, λ) = ζ>q̃ with ζ
def= P̃†α.

In other words, the TPS tends to an affine transformation with a 3-vector of coefficients given by P̃†α.

5We have D(0 I)> =
“
P̃> 0

”>
, thus D−1

“
P̃> 0

”>
= (0 I)> and EλP̃ = (0 I)>.
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Due to the 3 side-conditions, 3 is the minimal number of centres to define a TPS. This is also the minimal

case for the warps derived in this paper, since they all use the TPS as a building block. In this minimal

case, the TPS is an affine transformation with parameters θ = P̃−1α. Based on the fact that P̃ is of size

(3× 3) in this particular case, we substitute α = P̃θ for some θ ∈ R3 in the TPS (4). Thanks to property

(6), we get τ (q;α;λ) = q̃>θ, giving:

τ (q;α;λ) = q̃>P̃−1α. (9)

We observe that this form of TPS is a particular case of the asymptotically regularized TPS. For all the

warps studied in this paper, using the minimal number of centres leads to a special case of the asymptotically

regularized warp.

3.3 Rigid Surfaces

We first describe how rigidity is modeled by the fundamental matrix. We then show how to extract a pair

of projection matrices from the fundamental matrix.

Rigidity. The rigidity of the observed scene is modeled by the fundamental matrix that we write F or A

for the perspective and affine camera models respectively. A pair of corresponding points q ↔ q′ satisfies

the rigidity constraint i.e., is the projection of the same 3D point, if and only if it satisfies the fundamental

equation q̃′>F q̃ = 0, holding in both the perspective and affine cases. Thus, a warp W is rigid if and only

if:

W̌ (q)>F q̃ = 0 ∀q ∈ R2. (10)

Parameterizing the affine fundamental matrix as:

A def∼


0 0

ı
0 0

>

 with >
def= (c d e) and ı>

def= (a b) , (11)

we rewrite the definition (10) of a rigid affine warp as:

W (q)>ı + q̃> = 0 ∀q ∈ R2. (12)
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The (perspective) fundamental matrix has 7 degrees of freedom and lies on a nontrivial algebraic variety in

R9, written F. The affine fundamental matrix has 4 degrees of freedom and is a point in P4, as is reported

in for instance (Hartley and Zisserman, 2003).

Fundamental and projection matrices. The fundamental matrix is an implicit reconstruction of the

two cameras. Following (Luong and Vieville, 1996), canonical cameras for both the affine and perspective

camera models are obtained by setting the source (3 × 4) camera matrix to (I 0) and the target one to

ǦF =
(
[ě′]×F ě′

)
, where the target epipole e′ is defined by F>ě′ = 0. In the affine case, we write SA the

first two rows of ǦF , the third row being (0 0 1 0). Within this canonical reconstruction basis, a 3D point

with depth δ can be written:6

Q̌ ∼


q

1

δ

 =

q̃

δ

 .

Note that scaled homogeneous coordinates Q̃ (leading to proper affine cameras) are obtained by Q̃ = MQ̌,

where matrix M simply swaps the third and fourth coordinates. Note that MM ∼ I. Reprojecting a 3D

point in the target camera ǦF gives the transfer equation:

q̃′ ∼ ḠF q̃ + ǧFδ, (13)

with ḠF the first three columns of ǦF and ǧF the fourth one. In the affine case, the target camera matrix

SA has size (2× 4). Defining S̄A and sA similarly to ḠF and ǧF , the transfer equation (13) specializes to:

q′ = S̄Aq̃ + sAδ. (14)

A short calculation shows that:

sA = e′ =

 0 1

−1 0

 ı and S̄A = ı>.

An important remark that can be made here is that the target canonical projection matrix is defined up to

a 4 degrees of freedom ambiguity, since ǦF =
(
ǦF + ǧFπ> νǧF

)
is also a valid projection matrix, ∀π ∈ R3

and ∀ν ∈ R∗. This changes the 3D coordinate frame that is being implicitly used by the warps. However,
6δ is actually the inverse of the depth relative to the source camera. If the camera is calibrated this is the ‘true’ inverse

depth, otherwise this is the inverse projective depth. The advantages of this 3D point parameterization are that it is minimal
(i.e., it has 3 effective parameters in q and δ) and still it handles points at infinity.
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we demonstrate in Appendix D that this choice has no influence on our two proposed rigid warps.

4 Warps with the Affine Camera Model

We derive the warps corresponding to an affine camera model, namely the DA-Warp and the RA-Warp.

The RA-Warp forms the subset of the DA-Warps satisfying the rigidity constraints.

4.1 DA-Warp – The Standard TPS-Warp

We derive the classical DA-Warp from the TPS and give some of its properties, and a novel derivation of

the warp in terms of a deformable 3D surface acquired by affine cameras. This interpretation shows that

the DA-Warp is intrinsically affine and that it overfits affine images of a rigid surface, as will be illustrated

by an example.

4.1.1 Derivation

The standard R2 → R2 TPS-Warp is obtained by stacking two R2 → R TPS functions sharing their centres

and internal regularization weight. Let P′ = (x′ y′). Using (4), we get:

τ (q;x′, λ)

τ (q;y′, λ)

 =
(

`>q Eλ

(
x′ y′

))>
.

The DA-Warp is thus defined as:

WDA (q;P′, λ) def= MDA`q with M>
DA

def= EλP′. (15)

We call this warp the Deformable Affine Thin-Plate Spline Warp, or ‘DA-Warp’ since, as shown below, it

models images of deformable surfaces and corresponds to an affine camera model. Thanks to property (7),

we can write an homogeneous version of the DA-Warp as:

W̃DA

(
q;P′, λ

) def= M̃DA`q with M̃>
DA

def= EλP̃′. (16)



4 Warps with the Affine Camera Model 12

4.1.2 Properties

The set of DA-Warps is written SDA. It has 2l degrees of freedom through P′ ∈ R2l. The asymptotic internal

regularization behaviour is as follows:

lim
λ→+∞

WDA

(
q;P′, λ

)
= LDAq̃′ with L>DA

def= P̃†P′.

In other words, a DA-Warp tends to an FA-Warp represented by the (2×3) matrix LDA. More precisely, LDA

represents the FA-Warp minimizing the transfer error.7 A proof is given in Appendix A.1. In the minimal

case of l = 3 centres, the DA-Warp is an FA-Warp given by WDA (q;P′, λ) = P′>P̃−>q̃ = WFA

(
q;P′>P̃−>

)
.

The DA-Warp was originally introduced in (Bookstein, 1989), where its bending energy κDA is defined

as the sum of the integral bending energies over the two coordinates, giving κDA = tr
(
P′>ĒλP′

)
, where tr

is matrix trace.

4.1.3 Projected Deformable Surface Interpretation

We propose a geometric interpretation of the DA-Warp, as the warp induced by the observation of a

deforming surface with an affine camera: a 3D surface is observed in the source image, moves and deforms,

and is observed again in the target image. This is illustrated in figure 4.

Deformation

DA-Warp

Figure 4: The DA-Warp relates the projection by two affine cameras of a deforming surface. Note that
replacing the affine by the perspective projection subsequently leads to the proposed DP-Warp.

In order to model the surface depth, its displacement and deformation, we introduce an R2 → R3 map,

parameterizing the target surface in a concise manner by the 3D coordinates C′
k of the l centres. This map

is built by stacking three TPS functions sharing their centres and internal regularization weight, similarly
7The transfer error is the discrepancy between the data points in the target image and the points transferred by the warp

from the source image, see §7 for more details.
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to the construction of the DA-Warp with two TPS functions. More formally, gathering the ‘3D centres’ C′
k

in a single (l × 3) matrix Z> = (C′
1 · · · C′

l), the map is written:

R (q;Z, λ) def= M3D`q with M>
3D

def= EλZ. (17)

It will be seen that for the rigid warps, namely the RA-Warp and the RP-Warp, the 3D surface can be

expressed as the graph of a function, or equivalently as a 2.5D surface or a Monge patch, with respect to

the first camera. In the deformable case at hand, and also for the DP-Warp, such a representation is not

possible, and one has to resort to the full R2 → R3 map R. The reason for this is that R contains the

surface deformation that occurs between the two images. In other words, a 3D point as seen by the second

camera cannot be parameterized as a point lying on the viewing ray of the corresponding point seen in the

first camera, due to the surface deformation.

Reprojecting a 3D surface point in the target image gives:

q′ = SAM
(

Z>E>λ `q

)
.

Using property (7) and defining Z̃
def= (Z 1), we get:

q′ = SAM

Z>E>λ
1>E>λ

 `q = SAMZ̃>E>λ `q,

that we identify with a DA-Warp (15), giving:

q′ = WDA

(
q; Z̃MS>A , λ

)
.

This shows that the centres c′k in the target image are the reprojection of the 3D centres C′
k i.e., P′ = Z̃MS>A .

The DA-Warp therefore depends on the camera matrix SA and on the observed surface parameterized by

the ‘3D centres’ in matrix Z, both encapsulated in the target image centres.

This geometric interpretation does not only provide a strong intuition on the fact that the DA-Warp

is intrinsically affine, but gives a setting for naturally deriving the DP-Warp, the perspective projection

extension of the DA-Warp in §5.2. The 3D integral bending energy is obtained by summing over the three

coordinate axes, giving κ3D = tr
(
Z>ĒλZ

)
. We note that due to the affine projection, the DA-Warp only

depends on the projection of the 3D centres. Therefore, the DA-Warp minimizes an image, ‘projected’

integral bending energy. The DP-Warp however minimizes the 3D integral bending energy κ3D.
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4.1.4 Example

We show two examples of the DA-Warp: one with perspective images and one with affine images of a rigid

surface.

Perspective images of a flat surface. The DA-Warp is known to be a powerful means to represent the

warp between two images of a smooth surfaces. We show an example illustrating that the DA-Warp fails to

capture the perspective part of the transformation. The source image is FP1 and the target image is FP2,

both showing the poster flat but with significant perspective effects. Figure 5 shows a DA-Warp estimated

with various number of centres l ∈ {3, 9, 30}.

l = 3 centres l = 9 centres l = 30 centres
RMSR = 24.67 pixels RMSR = 4.04 pixels RMSR = 1.23 pixels

Figure 5: The DA-Warp estimated between two perspective images of a flat surface. Only the target image
is shown, overlaid with the warp visualization grid transferred from the source image with the estimated
warp. As can be seen, increasing the number of centres improves the visual quality of the warp. However,
using more centres degrades the smoothness of the warp. The fitting transfer error RMSR is given. For l = 3
centres, the DA-Warp reduces to an FA-Warp, and the strong effect of perspective prevents the visualization
grid transferred from the source image to fit the poster well.

Estimating an FP-Warp i.e., an homography, gives an RMSR of 1.39 pixels, while estimating an FA-

Warp i.e., an affine transformation, gives an RMSR of 24.67 pixels. This confirms the significant perspective

effect in these images. As can be seen, the DA-Warp does not model the perspective effect well, even though

the ‘true’ warp can be well described by as few as 8 parameters by the FP-Warp.8 Adding centres makes

the flexibility of the DA-Warp to model the perspective. This however makes the warp ‘unstable’ since it

has many more degrees of freedom than what is necessary.

Affine images of a rigid surface. The example we now show illustrates the fact that a DA-Warp applied

to two affine images of a rigid smooth surface captures the rigidity. The source image is DA11 and the target

image is DA12, showing the poster under the same deformation in an affine imaging configuration. Figure 6
8The 1.39 pixels RMSR comes from the noise in the manually entered point positions, unmodeled camera effects such as

radial distortion and non-perfect planarity of the surface.
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shows a DA-Warp estimated with various number of centres l ∈ {3, 9, 30}.

l = 3 centres l = 9 centres l = 30 centres
RMSR = 21.69 pixels RMSR = 5.98 pixels RMSR = 3.79 pixels

γ = 0.00 pixels γ = 4.51 pixels γ = 4.65 pixels

Figure 6: The DA-Warp estimated between two affine images of a rigid smooth surface. Only the target
image is shown, overlaid with the warp visualization grid transferred from the source image with the esti-
mated warp. As can be seen, increasing the number of centres improves the visual quality of the warp. The
fitting transfer error RMSR and a measure of non-rigidity γ are given.

Estimating the affine epipolar geometry gave a transfer error of 3.71 pixels, which shows to which level

the studied pair of images complies with a rigid affine model. We computed a measure of non-rigidity γ of

the warp, related to the definition of a rigid affine warp (12). The functional is defined as the discrepancy

between the epipolar lines and the warp predicted points in the target image, over n points pj sampled in

the source image:

γ2 (W;F) def=
1
n

n∑
j=1

d2
⊥ (W (pj) ,Fpj) ,

where d⊥ is the point to line distance, W an R2 → R2 warp and F a fundamental matrix. The values given

in figure 6 for γ are small, and of the same order as the affine epipolar geometry RMSR. This suggests

that the DA-Warp follows the epipolar lines, and thus complies with the rigidity constraint. The order of

magnitude of γ tells us that the rigidity is up to the noise contained in the point positions.

4.2 RA-Warp – The Rigid Affine TPS Warp

The RA-Warp has very similar properties to the DA-Warp, but is a rigid warp, in the sense that it exactly

fulfills the rigidity constraint modeled by the affine epipolar geometry.

4.2.1 Derivation

Our main result for this section is that a DA-Warp is a rigid warp if and only if the l centres defining the

warp satisfy the epipolar constraint. Such a warp is called an RA-Warp. As will be seen, it has l+4 degrees

of freedom.
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The demonstration is as follows. Applying the rigid warp definition (12) to a DA-Warp (15) gives:

`>q EλP′ı + q̃> = 0 ∀q ∈ R2.

Using property (6) and factorizing gives:

`>q Eλ

(
P′ı + P̃

)
= 0 ∀q ∈ R2

P′ı + P̃ = 0(l×1),

which is the epipolar constraint for all pairs of centres. This is the rigidity constraint for the DA-Warp.

This means that the warp satifies the epipolar geometry if and only if the centres themselves satisfy it.

An alternative proof is to assume that each pair of centres ck ↔ c′k satisfies the epipolar constraint and

thus is the projection of a 3D point Ck with C>
k =

(
c>k δk

)
. Reprojecting all the centres in the target image

gives:

P′
> = SA

P̃>

δ>

 .

Substituting into the DA-Warp (15) gives:

WDA

(
q;P′, λ

)
= SA

P̃>

δ>

 E>λ `q, (18)

which is the projection of some 3D point
(
`>q Eλ

(
P̃ δ

))>
by the target camera, thereby satisfying the

rigidity constraint, which completes the proof.

The RA-Warp is thus a DA-Warp with centres satisfying the rigidity constraint. This is used in the next

section to find a formulation for the RA-Warp based on the epipolar geometry and a depth map. We write

the RA-Warp using reprojected points as centres for the DA-Warp:

WRA (q; δ,A, λ) = WDA

(
q;
(
P̃ δ

)
S>A , λ

)
.

The RA-Warp depends on the depth δ of the centres and on the target camera SA which itself depends on

the affine fundamental matrix A. We define:

WRA (q; δ,A, λ) def= MRA`q with M>
RA

def= Eλ

(
P̃ δ

)
S>A . (19)
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This definition of the RA-Warp can be made homogeneous by replacing the (2×4) camera SA by its (3×4)

equivalent GA in the above equation, giving:

W̃RA (q; δ,A, λ) def= M̃RA`q with M̃>
RA

def= Eλ

(
P̃ δ

)
G>A . (20)

4.2.2 Properties

From the above derivation follows that the set of RA-Warps, denoted SRA, is a subset of SDA:

SRA ⊂ SDA.

The set of FA-Warps SFA is included into SRA, as demonstrated in Appendix C.1. The RA-Warp has l + 4

degrees of freedom through (δ,A) ∈ Rl × P4. We interpret the parameters δ as the depth of the centres

with respect to the source camera.

The asymptotic internal regularization behaviour of the RA-Warp is derived directly from the one for

the DA-Warp:

lim
λ→+∞

WRA (q; δ,A, λ) = lim
λ→+∞

WDA

(
q;
(
P̃ δ

)
S>A , λ

)
= LRAq̃ with L>RA

def= P̃†
(
P̃ δ

)
S>A .

In other words, an RA-Warp tends to an FA-Warp represented by the (2 × 3) matrix LRA. We prove in

Appendix A.2 that this FA-Warp is rigid and can be written as a plane-induced affine warp:

LRA = S̄A + sAδ>P̃†.

Note that π> = δ>P̃† is the reduced plane equation defined such that the transfer error is minimized, under

the assumption that the point correspondences satisfy the rigidity constraint, as shown in Appendix B.1.

In the minimal l = 3 centres case, we substitute the TPS (9) in the RA-Warp (21), which gives

WRA (q; δ,A, λ) = S̄Aq̃ + sAδ>P̃−>q̃. Factorizing gives WRA (q; δ,A, λ) =
(
S̄A + sAδ>P̃−>

)
q̃, which,

as in the asymptotic regularization case, is a plane affinity.

4.2.3 Projected Rigid Surface Interpretation

A geometric interpretation of the RA-Warp directly stems from its definition (19). The RA-Warp is induced

by a surface defined as a 2.5D surface parameterized by a TPS mapping points from the source image to
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their depths. This R2 → R TPS is of the form (4) and has the same source centres as the RA-Warp. This

is derived by expanding the formulation (19) of the RA-Warp and using property (6):

WRA (q; δ,A, λ) = S̄Aq̃ + sAτ (q; δ, λ) . (21)

This interpretation is illustrated in figure 7. We note that the RA-Warp explicitly depends on the target

camera, contrarily to the DA-Warp.

RA-Warp RP-Warp

(a) (b)

Figure 7: (a) The RA-Warp is interpreted as relating the projection by two affine cameras of a rigid and
smooth surface. (b) Replacing the affine by the perspective projection subsequently leads to the RP-Warp.

4.2.4 Example

We show an example of the RA-Warp applied to affine and perspective images of a rigid surface.

Affine images of a rigid surface. We show the result of estimating an RA-Warp on the same data

as in §4.1.4 for a rigid smooth surface. Our goal is to compare the DA-Warp and the RA-Warp on this

particular example. Figure 8 shows the result. The RMSR we obtained for the RA-Warp is slightly higher

than for the DA-Warp. This difference is due to two factors. First, the approximation made when using

the affine camera model onto which the RA-Warp is based. Second, the noise in the point positions that

were manually specified. As previously mentioned, fitting the affine epipolar geometry gives a transfer error

of 3.71 pixels. This provides a lower bound for the RMSR of any rigid affine warp. We recall that for a

fixed number of centres, the RA-Warp has fewer degrees of freedom than the DA-Warp. For instance, for

l = 30 centres, the DA-Warp has 2l = 60 degrees of freedom while the RA-Warp has l + 4 = 34 degrees

of freedom. This shows that with nearly half the number of parameters of the DA-Warp, the RA-Warp

has the same order of representational power (i.e., ability to represent the image deformation), obtained by
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explicitly taking advantage of the surface rigidity.

l = 3 centres l = 9 centres l = 30 centres
RMSR = 21.69 pixels RMSR = 7.02 pixels RMSR = 5.28 pixels

Figure 8: The RA-Warp estimated between two affine images of a rigid smooth surface. This figure matches
figure 6 showing the DA-Warp estimated for the same images and centres. Only the target image is shown,
overlaid with the warp visualization grid transferred from the source image with the estimated warp. As
can be seen, increasing the number of centres improves the visual quality of the warp.

Perspective images of a rigid surface. We estimated the RA-Warp on a pair of images showing the

poster rigid but with significant perspective effect, so as to illustrate the behavior of the RA-Warp in this

case. The source image we used is DP11 and the target image is DP12. The RMSR for the affine epipolar

geometry is 13.77 pixels, but is 0.57 pixels for the (perspective) epipolar geometry. This shows that the

images are rigidly linked, but do not comply very well with the affine camera model. Figure 9 shows the

result for various number of centres l ∈ {3, 9, 30}. Increasing the number of centres does not improve the

visual quality of the RA-Warp much. The reason is that the RMSR of the RA-Warp is bounded by 13.77

pixels, the RMSR of the affine epipolar geometry. The RMSR for the DA-Warp is 21.12 pixels, 7.23 pixels

and 3.94 pixels for l = {3, 9, 30} centres respectively. This shows that by increasing the number of centres,

and thus the flexibility of the DA-Warp, it can fit a perspective transformation, as we discuss in the next

section. It will be seen that our RP-Warp has much less degrees of freedom than the DA-Warp and leads

to a lower RMSR.

4.3 Behaviour with the Perspective Camera Model

As pointed out in (Wills and Belongie, 2004), the DA-Warp, and thus the RA-Warp, are not able to

model the effect of perspective projection. This stems from the lack of a fraction in the warp formulations

(15) and (19), that are linear combinations of deformation centres. We confirmed this with our geometric

interpretation in terms of surfaces projected with an affine camera model. Below, we derive a more rigorous

argument. Writing the perspective rigidity constraint (10) for a DA-Warp in homogeneous coordinates (16)
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l = 3 centres l = 9 centres l = 30 centres
RMSR = 21.12 pixels RMSR = 15.36 pixels RMSR = 14.27 pixels

Figure 9: The RA-Warp estimated between two perspective images of a rigid smooth surface. Only the
target image is shown, overlaid with the warp visualization grid transferred from the source image with the
estimated warp. As can be seen, increasing the number of centres does not improve much the visual quality
of the warp.

gives:

W̃DA

(
q;P′, λ

)>F q̃ = 0 ∀q ∈ R2

`>q EλP̃′F q̃ = 0 ∀q ∈ R2.

This leads to EλP̃′F = 0, meaning that the rigidity constraint implies that all the centres must lie on the

target epipole e′. The only eligible warp maps all points onto e′ and is thus degenerate.

We showed in §§4.1.4 and 4.2.4 on an example that the DA-Warp and the RA-Warp do indeed not behave

well in the presence of perspective effects. Figures 5 and 18 show that however, with a ‘large’ number of

centres, the DA-Warp approximates the perspective transformation to a large extent, even though the latter

has few degrees of freedom. This is because the TPS is dense in the space of diffeomorphisms of the

image domain. The space of diffeomorphisms contains perspective transformations, and therefore a TPS

can approximate perspective transformations arbitrarily well, although this may require a large number of

centres. The RA-Warp however cannot approximate a perspective transformation, as figure 9 shows. This

is because the camera geometry the RA-Warp uses is affine and cannot be made more flexible by increasing

the number of centres. Our goal is now to embed the perspective projection model into these two affine

warps, the DA-Warp and the RA-Warp, to allow them to gracefully deal with perspective effects.

5 Warps with the Perspective Camera Model

We propose two warps: the RP-Warp and the DP-Warp, which introduce perspective projection in the affine

warps of the previous section.
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5.1 RP-Warp – The Rigid Perspective TPS Warp

The RP-Warp is an extension of the RA-Warp to perspective projection, as figure 7 illustrates.

5.1.1 Derivation

We derive the RP-Warp by introducing a perspective projection in the RA-Warp. The RP-Warp thus

satisfies the epipolar geometry by construction. Following the reasoning in §4.2, we pick up a 3D point Q

on the scene surface, defined by an R2 → R TPS parameterized 2.5D surface, and reproject it in the target

image, giving from equation (21):

W̌RP (q; δ,F , λ) ∼ ḠF q̃ + ǧFτ (q; δ, λ) . (22)

Replacing τ by its expression (4), applying property (6) to the first term and factorizing we get:

W̌RP (q; δ,F , λ) ∼ ḠF P̃>E>λ `q + ǧFδ>E>λ `q ∼
(
ḠF P̃> + ǧFδ>

)
E>λ `q,

and thus:

W̌RP (q; δ,F , λ) def∼ M̌RP`q with M̌>
RP

def∼ Eλ

(
P̃ δ

)
G>F . (23)

This is the homogeneous Rigid Perspective Thin-Plate Spline Warp. The homogeneous coordinates of the

transferred image point are linear functions of `q. The affine coordinates are obtained as ratios of linear

functions through WRP (q; δ,F , λ) def= ψ
(
W̌RP (q; δ,F , λ)

)
.

5.1.2 Properties

The set of RP-Warps, denoted SRP, is a superset of SRA:

SRA ⊂ SRP.

This is shown easily by choosing for F an affine fundamental matrix. SRP is also a superset of SFP, as shown

in Appendix C.1. An RP-Warp is guaranteed to be rigid since it implicitly projects 3D points, giving image

points satisfying the epipolar constraint. It has l + 7 degrees of freedom through (δ,F) ∈ Rl × F, where F

is the 7-dimensional space of fundamental matrices.

The asymptotic internal regularization behaviour is:

lim
λ→+∞

W̌RP (q; δ,F , λ) ∼ ĽRPq̃ with Ľ>RP
def∼ P̃†

(
P̃ δ

)
G>F . (24)
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An RP-Warp thus tends to an FP-Warp represented by the (3× 3) homogeneous homography matrix ĽRP.

We prove in Appendix A.2 that this is a plane-induced rigid warp i.e., that ĽRP factors as:

ĽRP ∼ ḠF + ǧFδ>P̃†.

Note that π> = δ>P̃† is the reduced plane equation that minimizes a weighted algebraic transfer error, under

the assumption that the point correspondences satisfy the rigidity constraint, as shown in Appendix B.2.

In the minimal l = 3 centres case, we substitute the TPS (9) in the RP-Warp (22), which gives

W̌RP (q; δ,F , λ) ∼ ḠF q̃ + ǧFδ>P̃−>q̃. Factorizing gives W̌RP (q; δ,F , λ) ∼
(
ḠF + ǧFδ>P̃−>

)
q̃, which,

as in the asymptotic regularization case, is a plane homography.

5.1.3 Example

We show how the RP-Warp deals with the perspective images of a rigid surface used to illustrate the RA-

Warp in §4.2.4, with the same experimental setup. Contrarily to the RA-Warp, as the number of centres

grows, the RMSR significantly decreases for the RP-Warp, while the visual quality of the warp improves.

This shows that the RP-Warp models perspective well. For the particular minimal case of l = 3 centres, the

RP-Warp is an FP-Warp.

l = 3 centres l = 9 centres l = 30 centres
RMSR = 29.56 pixels RMSR = 6.59 pixels RMSR = 3.96 pixels

Figure 10: The RP-Warp estimated between two perspective images of a rigid smooth surface. The figure
matches figure 9 showing the RA-Warp estimated for the same images and centres. Only the target image
is shown, overlaid with the warp visualization grid transferred from the source image with the estimated
warp. As can be seen, increasing the number of centres does improve the visual quality of the warp. For
l = 3 centres, the RP-Warp reduces to a plane-induced homography. The visualization grid is distorted in
that case since the source visualization grid itself comes from an image where the surface is deformed.

5.2 DP-Warp – The Deformable Perspective TPS Warp

The DP-Warp extends the DA-Warp by introducing perspective projection.
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Deformation

DP-Warp

Figure 11: The DP-Warp relates the projection by two perspective cameras of a deforming surface. It is an
extension of the classical DA-Warp to perspective projection.

5.2.1 Derivation

The DP-Warp forms a superset of all the other warps derived so far in this paper, including the standard

DA-Warp. The RP-Warp is derived by introducing perspective projection in the RA-Warp, as figure 7

illustrates. We derive the DP-Warp from the DA-Warp using the same trick. We consider the deformable

surface geometric interpretation shown in figure 4. The surface seen by the target camera is defined by an

R2 → R3 map R (q;Z, λ) = Z>E>λ `q (see equation (17)). Following §4.1.3, we project a point on this surface

to the target image, giving:

q̌′ ∼ ǦFM

Z>E>λ `q

1

 .

This process is illustrated in figure 11. Using property (7) and factorizing, we get:

q̌′ ∼ ǦFMZ̃>E>λ `q.

The centres P̌′ ∼ Z̃MG>F in the target image are the reprojection of the ‘3D centres’ in matrix Z. The weights

of the homogeneous coordinates in P̌′ are important: they model the perspective part of the DP-Warp, which

we define as:

W̌DP

(
q; P̌′, λ

) def∼ M̌DP`q with M̌>
DP

def∼ EλP̌′. (25)
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The affine coordinates are obtained as ratios of linear functions throughWDP

(
q; P̌′, λ

) def= ψ
(
W̌DP

(
q; P̌′, λ

))
.

Similarly to the DA-Warp, the DP-Warp depends on the camera matrix ǦF and the ‘3D centres’ in matrix

Z, through the target image centres.

5.2.2 Properties

The set of DP-Warps, denoted SDP, forms a superset of all the warps studied in this paper, and in particular

of SRP and SDA:

SRP ⊂ SDP and SDA ⊂ SDP.

The DP-Warp has its parameters in the (l× 3) matrix P̌′ defined up to scale and thus has 3l− 1 degrees of

freedom.9

The asymptotic internal regularization behaviour is formulated below for all data points chosen as

centres. A consequence is that the limiting warp we get is undetermined i.e., it has some free parameters.

Unsurprisingly, it actually has (3l − 1)− 2l = l − 1 free parameters i.e., the difference between the number

of free parameters of the DP-Warp and the number of constraints given by interpolating the l centres:

lim
λ→+∞

W̌DP

(
q; P̌′, λ

)
∼ ĽDPq̃ with Ľ>DP

def∼ P̃†diag (d) P̃′.

The (l × 1) vector d, defined up to scale, represents the l − 1 free parameters of the limiting FP-Warp,

represented by matrix ĽDP. This corresponds to the FP-Warp minimizing some algebraic transfer error.

More details are given in Appendix A.3. In the minimal l = 3 case, the DP-Warp is an FP-Warp given by

W̌DP

(
q; P̌′, λ

)
∼ P̌′>P̃−>q̃ ∼ W̌FP

(
q; P̌′>P̃−>

)
.

The 3D integral bending energy κ3D is identical to the one given for the DA-Warps in §4.1.3.

5.2.3 Example

We show the result of estimating a DP-Warp on the same data as in §4.1.4 for a flat surface. Our goal

is to show that the DP-Warp adds the perspective part ‘missing’ to the DA-Warp. Figure 12 shows the

result. What we first observe is that the DP-Warp models the actual warp very well, whatever the number

of centres. In the particular case of l = 3 centres, the DP-Warp becomes an FP-Warp, and has a 1.39

pixels RMSR. The DA-Warp cannot model the perspective and requires many more centres to achieve a

‘low’ RMSR. As the number of centre grows, the RMSR for the DP-Warp slightly decreases since the extra
9Consequently, and in the absence of external regularization, the DP-Warp cannot be estimated by choosing as centres

all data points: each point correspondence giving two contraints, we end up with 2l contraints, which is less than the 3l − 1
unknowns. Methods for estimating the DP-Warp are reported in §7.
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degrees of freedom model the noise in the point position. The resulting warp however keeps a nice visual

behavior.

l = 3 centres l = 9 centres l = 30 centres
RMSR = 1.39 pixels RMSR = 1.06 pixels RMSR = 0.87 pixels

Figure 12: The DP-Warp estimated between two perspective images of a flat surface. This figure matches
figure 5 showing the DA-Warp estimated for the same images and centres. Only the target image is shown,
overlaid with the warp visualization grid transferred from the source image with the estimated warp. As
can be seen, increasing the number of centres causes overfitting.

6 A Hierarchy of Warps

The aim of this section is to define a hierarchy between the sets of standard DA-Warps SDA, of FA-Warps

and FP-Warp SFA and SFP, and of the three types of warps we introduced, SRA, SRP and SDP. The

four most important warps were summarized in figure 1. The proofs of the statements below are given in

Appendix C. The whole hierarchy is illustrated in figure 13. So far, we have established SRA ⊂ SDA and

SRA ⊂ SRP. Intuitively, the common warps to SDA and SRP must be rigid and affine. More precisely, we have

SRA = SDA ∩ SRP. We have also established that SDP is a superset of all the other warps i.e., SRP ⊂ SDP

and SDA ⊂ SDP, and thus SRA ⊂ SDP. The set of DA-Warps SDA does not contain any flat perspective

warp. More formally, (SFP r SFA) ∩ SDA = ∅, implying (SFP r SFA) ∩ SRA = ∅.

SDA, 2l SDP, 3l − 1

SFA, 6 SFP, 8

SRA, l + 4 SRP, l + 7

Figure 13: Hierarchical representation for the three proposed types of warps – the RA-Warp, the RP-Warp
and the DP-Warp – along with the standard TPS warp, dubbed DA-Warp, and the flat warps FA-Warp
and FP-Warp. ‘D’ stands for Deformable, ‘R’ for rigid, ‘F’ for flat, ‘A’ for Affine and ‘P’ for Perspective.
The number of degrees of freedom for l centres is indicated in the legend for each warp.

We define what we call the intrinsic dimension of each warp as the number of R2 → R TPS functions



7 Estimation of the Warps 26

implied in its formulation, or equivalently the scalar factor multiplying l in its number of degrees of freedom,

giving the following dimensions:

Structure Camera model Warp Number of parameters Intrinsic dimension

Flat
Affine FA 6 0

Perspective FP 8 0

Rigid
Affine RA l + 4 1

Perspective RP l + 7 1

Deformable
Affine DA 2l 2

Perspective DP 3l − 1 3

The intrinsic dimension is an important cue: it says if the warp can be determined by choosing all data

points as centres, and if extra constraints are left. More precisely, if the intrinsic dimension is 0, 1 or 2,

then the warp is in general uniquely determined. Only the DP-Warp does not fulfill this condition. If the

intrinsic dimension is 0 or 1, then the warp is uniquely determined and extra constraints are left. For the

DA-Warp, once the warp is defined and interpolates the centres, then no other constraint is left, while for

instance for the RP-Warp, the points are constrained to lie on the epipolar lines.

7 Estimation of the Warps

We propose methods for the estimation of each type of warps presented in this paper from point correspon-

dences.

7.1 General Points

The m point correspondences are written qj ↔ q′j . The l centres in the source image in matrix P are

typically chosen on a fixed size regular grid. Broadly speaking, the unknowns are the corresponding centres

in the target image.

All warps are estimated by minimizing the transfer error. It is defined by the discrepancy, measured

by the Euclidean distance, between the data points in the target image, and the corresponding points

transferred by the sought after warp from the source image:

T (W) def=
m∑

j=1

d2
(
W (qj) ,q′j

)
.

This gives the RMSR as
√

1
mT (W). In other words, the estimation methods we give do Empirical Risk

Minimization (ERM), assuming that the source data points are the inputs and the target data points the
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outputs of some learning problem. Assuming that the target data points are subject to an i.i.d. gaussian

noise, the estimation methods can also be seen as Maximum Likelihood Estimators (MLE). We assume that

the number of data points is larger than the number of centres: m � l. In practice, as we mentioned in

§3.2, the minimal number of centres is l ≥ 3 for all warps. For most warps, the transfer error is Nonlinear

Least Squares (NLS). Two-step methods and algebraic approximations are used to get an initial estimate

through Linear Least Squares minimization (LLS), solved using the pseudo-inverse technique or Singular

Value Decomposition (SVD), if the system is homogeneous, enforcing unit two-norm on the unknown vector,

see for instance (Hartley and Zisserman, 2003, A5). We normalize the coordinates of the target points so

that they lie in the interval −
√

2 . . .
√

2 and their mean is at the origin – this has been shown to bring

the algebraic error close to the Euclidean one (Chojnacki et al., 2003). The initial estimate is refined by

iteratively minimizing the NLS transfer error with the Levenberg-Marquardt algorithm, see e.g., (Hartley

and Zisserman, 2003, A6) and Sequential Quadratic Programming to deal with the possible constraint.

The estimation procedures we propose below for the rigid cases, that is to say for the RA-Warp and the

RP-Warp, follow the classical Structure-from-Motion paradigm of first reconstructing the cameras (i.e., the

‘motion’) and then the structure, see for instance (Hartley and Zisserman, 2003, II). The structure is usually

computed as a set of sparse features by triangulation. In the warp case, structure estimation takes the form

of estimating the warp coefficients δ, giving the inverse projective depth of the centres, and therefore the

sought 3D structure. As in usual Structure-from-Motion, this initial estimation step could be followed by

the joint refinement of both structure and motion and by bundle adjustment.10

7.2 The DA-Warp

We minimize the transfer error over the coordinates of the centres in the target image in P′ by solving:

min
P′

m∑
j=1

d2
(
WDA

(
qj ;P′, λ

)
,q′j
)
.

Writing `qj as `j , and replacing WDA by its expression (15), we get:

(LLS) min
P′

m∑
j=1

∥∥∥`>j EλP′ − q′j
>
∥∥∥2
.

The minimal number of point correspondences is m ≥ 3.
10Applying bundle adjustment to warps is not trivial since it requires one to define a ‘generative’ model, whereby the image

points are predicted from some unknown structure that is to be estimated, and naturally generalizes to more than two images.
Defining bundle adjustment for image warps thus falls out of the scope of this paper.
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7.3 The RA-Warp

Our algorithm first estimates the affine fundamental matrix A and then the warp coefficients δ. The minimal

number of point correspondences is m ≥ 4.

1. Estimation of the affine fundamental matrix A. We estimate the affine fundamental matrix

by minimizing the point-to-line transfer error i.e., the sum of squared distances between the epipolar

lines and the data points in the target image:

min
A

m∑
j=1

d2
⊥
(
q′j ,Aq̃j

)
.

Expanding the point-to-line orthogonal distance d⊥ and replacing A by its expression (11), we get:

min
ı,

1
‖ı‖2

m∑
j=1

(
>q̃j + ı>q′j

)2
.

The difficulty of this minimization problem stems from the leading factor. In order to get rid of it, we

fix the arbitrary scale of the fundamental matrix using ‖ı‖2 = 1. This makes sense since ‖ı‖2 cannot

vanish since otherwise A would become rank one. The problem turns into a constrained homogeneous

LLS minimization:

min
ı,

m∑
j=1

(
>q̃j + ı>q′j

)2
s.t. ‖ı‖2 = 1.

We rewrite the problem in matrix form: minı, ‖Iı + J ‖2 such that ‖ı‖2 = 1, where the rows of I

are q′j
> and the rows of J are q̃>j . Setting  = −J †Iı, substituting in the previous equation and

factorizing gives:

(LLS) min
ı

∥∥∥(I− JJ †) Iı
∥∥∥2

s.t. ‖ı‖2 = 1,

that we solve using the standard method based on the SVD. Note that this algorithm requires at least

m ≥ 4 point correspondences. From the affine fundamental matrix, we extract the target projection

matrix SA as indicated in §3.3.

2. Estimation of the warp coefficients δ. We minimize the transfer error by solving:

(LLS) min
δ

m∑
j=1

∥∥∥s>A`>j E>λ δ + `>j EλP̃S̄>A − q′>j
∥∥∥2
.

The minimal number of point correspondences is m ≥ 4, due to the first step of the algorithm (the second

step requires m ≥ 3 point correspondences only).
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7.4 The RP-Warp

Similarly to the algorithm for the RA-Warp we use a two-step procedure:

1. Estimation of the fundamental matrix F . We estimate F by minimizing the point-to-line transfer

error in the target image. This NLS problem is initialized by the solution obtained by the 8 point

algorithm and is stated as:

(NLS) min
F

m∑
j=1

d2
⊥
(
q′j ,F q̃j

)
.

From the fundamental matrix, we extract the target projection matrix GF as indicated in §3.3.

2. Estimation of the warp parameters δ. We minimize the following algebraic approximation to the

transfer error:

min
δ

m∑
j=1

d2
a

(
W̌RP (qj ; δ,F , λ) ,q′j

)
,

with d2
a (q̌,q′) =

∥∥S [q̌]× q̃′
∥∥2 an algebraic distance between points q and q′, and S = (I 0) simply

selects the two first rows of the cross-product. The algebraic approximation yields an LLS minimization

problem since the algebraic distance directly compares the homogeneous coordinate vectors, thereby

avoiding the need for the division required by the perspective warp. Substituting da by its expression,

and the RP-Warp by its homogeneous formulation (23), we get:

min
δ

m∑
j=1

∥∥∥∥S [q̃′j]× ǦF(P̃ δ
)>
E>λ `j

∥∥∥∥2

,

and as sought, after minor algebraic manipulations, we get:

(LLS) min
δ

m∑
j=1

∥∥∥S [q̃′j]× ǧF`>j Eλδ + S
[
q̃′j
]
× ḠF P̃>E>λ `j

∥∥∥2
.

The solution provides an initialization to minimize the transfer error:

(NLS) min
δ

m∑
j=1

d2
(
WRP (qj ; δ,F , λ) ,q′j

)
,

The minimal number of point correspondences is m ≥ 7, due to the first step of the algorithm that estimates

the fundamental matrix (the second step requires m ≥ 3 point correspondences only).
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7.5 The DP-Warp

As for the RP-Warp, we minimize an algebraic approximation to the transfer error, over the homogeneous

coordinates P̌′ of the centres in the target image:

min
P̌′

m∑
j=1

d2
a

(
W̌DP

(
qj ; P̌′, λ

)
,q′j
)

s.t.
∥∥P̌′∥∥ = 1.

The scale of P̌′ is fixed by enforcing its norm to unity. Replacing da by its expression, and W̌DP by its

homogeneous expression (25), we obtain, after some minor algebraic manipulations:

(LLS) min
P̌′

m∑
j=1

∥∥∥S [q̃′j]× diag3

(
`>j Eλ

)
vect

(
P̌′
)∥∥∥2

s.t.
∥∥P̌′∥∥ = 1,

with diagr (x) an r block diagonal matrix with x the repeated block, and with vect row-wise matrix vector-

ization. The minimizer is used to initialize the iterative minimization of the transfer error:

(NLS) min
P̌′

m∑
j=1

d2
(
WDP

(
qj ; P̌′, λ

)
,q′j
)

s.t.
∥∥P̌′∥∥ = 1.

The minimal number of point correspondences is m ≥ 4.

8 Experimental Evaluation

We report experimental results on simulated and real data. For all the results, the l centres were randomly

drawn well-spread within the area of the source image covered by the data points.11 The same centres are

used for all the compared warps. In the legends, ‘EGA’ and ‘EGP’ respectively stand for the affine and

perspective epipolar geometry.

8.1 Simulated Data

Simulation setup. We simulate a camera observing a smooth surface which may undergo deformations

between the two snapshots. The surface is generated by linearly interpolating points on a plane and on a

cylinder, creating a varying amount of surface bending. Points on the surface are projected to the images

and corrupted by an additive Gaussian noise. The default simulation parameters are m = 100 points, σ = 1

pixel noise variance, a focal length of f = 700 pixels and a scene to camera distance of 2.5. Together, the

focal length and scene to camera distance are tuned to increase or decrease the perspective while keeping
11Other options are to choose the centres from a regular grid, as image keypoints or as data points. This does not make a

noticeable difference in practice.
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constant the size of the projected scene. The default parameters yield mild perspective effects. The default

surface is slightly bent (half-way between the plane and the cylinder). The results we report are averages

over 300 randomly drawn sets of centres, and several numbers of centres l ∈ {3, 9, 30} were tested. What will

be observed is that, as expected, the larger the number of centres, the lower the transfer error for the four

warps depending on the centres (the DA-Warp, the RA-Warp, the RP-Warp and the DP-Warp). Note that

the rigid and deformable warps are respectively estimated from rigid and deformable datasets. A deformable

dataset is obtained by choosing a different amount of surface bending between the two snapshots. Note that

only the DA-Warp and the DP-Warp are estimated from deformable datasets. This is why for l = 3 centres

the RMSR for the DA-Warp and the FA-Warp do not match, as well as for the DP-Warp and the RP-Warp.

Figure 14: We simulate two cameras observing a smooth surface. This surface is created by linearly inter-
polating points on a plane and part of a cylinder. The interpolation weight thus controls the amount of
surface bending.

Influence of noise. We evaluate the influence of the noise level on the estimated warps. Figure 15 shows

the results we obtained for low and high amounts of noise. High amounts of noise are meant to show how

the warps behave when the optic flow field gets less smooth.

The perspective epipolar geometry is the only ‘physical’ model for the simulated data. Its transfer error

gracefully degrades as the noise increases. The affine epipolar geometry, the FA-Warp and the FP-Warp do

not match the simulated data and have quite high transfer errors. They are not influenced by the added

noise of low magnitude and mildly by higher magnitudes. As the number of centres increases, the DA-Warp,

the DP-Warp and the RP-Warp model the data better and better, and get consequently more and more

influenced by the added noise, even though they are sensitive to high amounts of added noise even in the

few centres case. The transfer error for the RA-Warp nearly reaches its lower bound, given by the affine
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Figure 15: The influence on the estimated warps of the amount of noise added in the projected image points.
Low and high amounts of noise are shown on the top and bottom graphs respectively.

epipolar geometry, and is slightly influenced by the low magnitude added noise for l = 30 centres and clearly

influenced by the high magnitude added noise whatever the number of centres.

To conclude, we can say that the added noise of a low magnitude significantly influences only those warps

that have a relatively ‘low’ transfer error (the order of which being a few pixels) i.e., that really models the

data. The added noise of higher magnitude however has a clear influence on all the warps, for which the

transfer error gracefully degrades as the noise increases.

Influence of the amount of perspective. We evaluate the influence of the amount of perspective on

the estimated warps. Figure 16 shows the results we obtained.

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Scene to camera distance

T
ra

ns
fe

r 
er

ro
r 

(p
ix

el
s)

 

 

RA−Warp
RP−Warp
DA−Warp
DP−Warp
FA−Warp
FP−Warp
EGA
EGP

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Scene to camera distance

T
ra

ns
fe

r 
er

ro
r 

(p
ix

el
s)

 

 

RA−Warp
RP−Warp
DA−Warp
DP−Warp
FA−Warp
FP−Warp
EGA
EGP

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Scene to camera distance

T
ra

ns
fe

r 
er

ro
r 

(p
ix

el
s)

 

 

RA−Warp
RP−Warp
DA−Warp
DP−Warp
FA−Warp
FP−Warp
EGA
EGP

l = 3 centres l = 9 centres l = 30 centres

Figure 16: The influence on the estimated warps of the amount of perspective of the camera with respect
to the observed surface.
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As expected, the transfer error for the affine warps decreases with the amount of perspective. The

perspective warps are much less influenced. As already observed for the real poster data in §4.1.4, the

DA-Warp models the data only when the number of centres grows large enough. It thus becomes quite

independent of the amount of perspective for l = 30 centres. These results confirm that the DA-Warp and

RA-Warp are intrinsically affine.

Influence of the amount of surface bending. We evaluate the influence of the amount of bending on

the estimated warps. Figure 16 shows the results we obtained.
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Figure 17: The influence of the amount of bending of the observed surface on the estimated warps.

The epipolar geometry, whether affine or perspective, is not influenced by the amount of bending. All

the other warps, whether rigid or deformable, degrade as the bending increases. While this is obvious for

the flat warps, it shows that increasing the amount of bending, thereby making more complex the structure

of the image deformation relating the two images, requires more flexibility for the warp to model the data.

This is confirmed by the fact that when the number of centres grows to l = 30, the deformable warps are

not influenced by the amount of bending, while the rigid RA-Warp and RP-Warp are much less influenced

than for lower numbers of centres.

8.2 Real Data

We report experimental results complementary to those already shown to illustrate the different warps

through the paper. Three pairs of images were used ; the same are considered below, as well as a fourth one

to compare the DA-Warp and the DP-Warp in the presence of perspective and deformation.

Deformable warps and perspective. For the pair of images shown in figure 18 (a) and (b), a low fitting

transfer error RMSR of 1.39 pixels shows that the relationship is well modeled by an FP-Warp. Figure 18

(c) confirms our previous observations: the DP-Warp models the images very well, even with the minimum
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l = 3 centres. The DA-Warp however requires much more centres to model the perspective effect as a

deformation.
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Figure 18: Deformable warps (the DA-Warp and the DP-Warp) and perspective. (a) and (b) show the source
and target images, overlaid with the warp visualization grid, transferred from the source to the target with
an FP-Warp. (c) shows the fitting transfer error RMSR as a function of the number of centres. This figure
matches figures 5 and 12.

Figure 19 shows a comparison between the DA-Warp and the DP-Warp for the pair of images DP11 and

DP22. In those images, the perspective effect is quite important, and the surface deforms between the source

and the target image. The results we obtained confirmed what we observed in the case of simulated data:

with many centres, the flexibility of the DA-Warp models the effect of perspective. The DA-Warp thus fits

the images quite well: the RMSR for both the DA-Warp and the DP-Warp reaches 4.17 pixels for l = 30

centres. For fewer centres however, there is a significant difference between the DA-Warp and the DP-Warp.

For l = 9 centres, the former has an RMSR of 14.28 pixels, while the latter has an RMSR of 6.10 pixels.

As we observed with simulated data, the difference between the DA-Warp and the DP-Warp, even though

very significant, is less important for a bent surface than for a flat surface.

Affine warps and rigidity. Figure 20 (a) and (b) shows a pair of images for which we get a fitting

transfer error RMSR of 3.71 pixels for the affine epipolar geometry. Figure 20 (c) confirms that the error

RMSR for the RA-Warp converges to the affine epipolar geometry when the number of centres grows. The

DA-Warp remains quite close to the RA-Warp but has its extra degrees of freedom used to model the noise,

and thus eventually reaches a lower fitting transfer error.

Rigid warps and perspective. Figure 21 (a) and (b) shows a pair of images for which we get a fitting

transfer error RMSR of 13.77 for the affine epipolar geometry and 0.57 pixels for the perspective epipolar

geometry. Figure 21 (c) confirms that the error RMSR for the RP-Warp converges to the perspective

epipolar geometry when the number of centres grows, and really uses the centres to model the deformation.

The RA-Warp is ‘stuck’ with a higher error since it cannot outperform the affine epipolar geometry.
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(a) – source (b) – target, DA-Warp (c) – target, DA-Warp
l = 9 centres l = 30 centres

RMSR = 14.28 pixels RMSR = 4.17 pixels
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(d) (e) – target, DP-Warp (f) – target, DP-Warp
l = 9 centres l = 30 centres

RMSR = 6.10 pixels RMSR = 4.17 pixels

Figure 19: Deformable warps (the DA-Warp and the DP-Warp) and perspective. (a) and (b,c,e,f) show
the source and target images, overlaid with the warp visualization grid, transferred from the source to the
target with various warps and numbers of centres. (d) shows the fitting transfer error RMSR as a function
of the number of centres.
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Figure 20: Affine warps (the DA-Warp and the RA-Warp) and rigidity. (a) and (b) show the source and
target images, overlaid with epipolar lines for the affine epipolar geometry. (c) shows the fitting transfer
error RMSR as a function of the number of centres. This figure matches figures 6 and 8.
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Figure 21: Rigid warps (the RA-Warp and the RP-Warp) and perspective. (a) and (b) show the source
and target images, overlaid with epipolar lines for the perspective epipolar geometry. (c) shows the fitting
transfer error RMSR as a function of the number of centres. This figure matches figures 9 and 10.

Rigid warps and 3D surfaces. The rigid warps, namely the RA-Warp and the RP-Warp, have been

shown to define a 3D surface. Figure 22 shows an example of such a surface recovered from an RP-Warp. A

pair of perspective images, DP21 and DP22, were used to estimate an RP-Warp. Given the epipolar geometry,

and knowing the internal camera calibration parameters from the header of the image files,12 we formed the

calibrated projection matrices. This allowed us to plot the cameras in 3D with the images textured-mapped

on them. We then used the TPS function from the RP-Warp (22) to find the depth of the data points and

of the points forming the visualization grid. This 3D visualization confirms the well-founded derivation of

our rigid warps based on a single TPS function giving the depth.

(a) (b) (c)

Figure 22: Extracting 3D entities from the RP-Warp. (c) shows the cameras and 3D surface extracted from
an RP-Warp estimated between two perspective images (a) and (b) of a rigid surface.

12The Exif format gives information on the state of the camera which took the picture, such as its focal length.
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9 Discussion

Three types of R2 → R2, image warps were proposed. They use the R2 → R Thin-Plate Spline as a building

block. They were designed to overcome some limitations of the standard Thin-Plate Spline warp, herein

dubbed ‘DA-Warp’ for ‘Deformable Affine’. Their derivation is based on a feature-driven parameterization

that we introduced. We formulated a rigid DA-Warp that we called the ‘RA-Warp’ for ‘Rigid Affine’.

Several arguments were given to show that both the DA-Warp and the RA-Warp are intrinsically affine, in

the sense of the affine camera model. They make linear combinations of the centres in affine coordinates.

We derived the perspective projection model analogue of these two warps, respectively called the ‘DP-Warp’

for ‘Deformable Perspective’ and the ‘RP-Warp’ for ‘Rigid Perspective’. They were shown to make linear

combinations of the centres in homogeneous coordinates. A geometric interpretation of the warps in terms of

projected surfaces was reported. The differences between them lie in the choice of a rigid or of a deformable

surface and in the affine or the perspective projection model. These warps have a direct practical impact

since instead of using the standard DA-Warp, a better adapted warp can be chosen from the proposed

ones for rigid smooth surfaces and images with perspective projection effects. The ‘generalization’ principle

that we proposed can also be applied to other types of warps. For instance, a follow-up of our work is

the NURBS-Warp (Brunet et al., 2009), the perspective version of the usual tensor-product cubic B-Spline

warp.

This paper opens several research possibilities, including:

• Estimation of the warps. Various estimation methods were proposed for deformable warps in the

literature. In this paper, we showed how (asymmetric) Maximum Likelihood Estimation (MLE) from

point correspondences could be performed. The first extension that can be thought of is the one of

performing (asymmetric) Maximum A Posteriori (MAP) to include a smoothness prior. This raises

the problem of selecting the smoothing weight properly (Bartoli, 2008). Alternatively, the number of

centres can be adjusted, as in (Bartoli, 2009). A second possible extension is to make the estimation

procedure robust i.e., resistant to erroneous point matches, as is done in (Pilet et al., 2008) for piecewise

affine warps. Finally, it is also possible to estimate warps using a direct method, with the pixel color

discrepancy as an error function, as proposed in (Bartoli and Zisserman, 2004) for the DA-Warp.

Automatic centre placement might also be considered as an open problem.

• Combined rigid and deformable warps. Estimating deformable warps with parts constrained to

move rigidly is important in medical image registration, for instance in the case of CT and PET images

of thoracic and abdominal regions (Moreno et al., 2006). Combined rigid and deformable warps can
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be obtained by merging a DA-Warp and several RA-Warps, one for each rigid part.

• Multiple view warps. The warps we derived are image to image. For the rigid surface setting at

least, it is possible to introduce other images, with warps sharing strong properties with the initial

one, namely the centre depth vector δ. This opens the issues of occlusion reasoning and the estimation

of a warp consistently over multiple views.

• Automatic surface reconstruction. For all the warps derived in this paper, there exist an under-

lying 3D surface. While it is obvious that it matches some ‘true’ surface in the rigid case, it generally

does not in the deformable case. Indeed, it is straightforward from the geometric interpretation of the

DA-Warp given in §4.1.3 to see that the depth of the ‘3D centres’ that govern the observed 3D sur-

face cannot be recovered from the target image centres (we have only two constraints in the equation

P′ = Z̃MS>A for the three unknowns of each ‘3D centres’: their depth is left unconstrained). Enforcing

surface smoothness does not raise the ambiguity since it always leads to a flat surface. In the per-

spective case, however, the homogeneous ‘scale’ of the target image centres is related to their depth,

as shown in §5.2.1. It is however expected to give quite noisy and unstable depth estimates since it

is based on the perspective effect only and ‘degenerates’ in the affine case. One possible improvement

would thus be to include strong 3D surface priors, such as pre-trained linear shape models (Salzmann

et al., 2007).
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A Asymptotic Internal Regularization Behaviour

We derive the form that the proposed warps take when the internal regularization parameter tends to

infinity.

A.1 The DA-Warp

Considering the definition (15) of the DA-Warp, and the asymptotic TPS (9), it is straightforward to see

that the asymptotic DA-Warp is an FA-Warp represented by the (2 × 3) matrix LDA =
(
P̃†P′

)>
. We can

easily see that this FA-Warp minimizes the transfer error, since arg minL
∥∥∥P̃L> − P′

∥∥∥2
= LDA.



A Asymptotic Internal Regularization Behaviour 41

A.2 The RA-Warp and the RP-Warp

This proof has two parts. First, we show that the FA-Warp and the FP-Warp, resulting from the asymptot-

ically regularized RA-Warp and RP-Warp are plane-induced rigid warps, and that the inducing plane has a

reduced equation π = P̃†δ ∈ R3. Second, we show that π is the reduced equation of the plane minimizing

the depth error with respect to the source camera. An interpretation of π as a minimizer of some transfer

error is also given.

• Part 1: Plane-induced flat warps and plane equation. (Recall that an FA-Warp induced by

a plane π is represented by the (2 × 3) matrix LRA = SA + sAπ> and an FP-Warp by the (3 × 3)

matrix ĽRP ∼ ǦF + ǧFπ>.) We give a proof for the perspective case and then specialize the result to

the affine case. The asymptotic FP-Warp matrix (24) is rewritten as:

ĽRP ∼
(
ḠF P̃> + ǧFδ>

)
P̃†>,

from which, distributing and using the property13 X>X†> = I, we get:

ĽRP ∼ ḠF + ǧFπ> with π = P̃†δ.

Replacing F by the affine fundamental matrix A, we get:

L̃RA ∼ ḠA + ǧAπ>.

Observing that the last row of ḠA is (0 0 1) and that the last element of ǧA vanishes, we get:

LRA = S̄A + sAπ>.

• Part 2: π is the reduced equation of the depth error minimizing plane. For a rigid warp, the

depth error ε3D is the discrepancy between the depth δj of the data points and the depth τ (qj ; δ, λ)

predicted by the warp:

ε23D
def=

m∑
j=1

(τ (qj ; δ, λ)− δj)
2.

The depth of a 3D point reconstructed on the plane ζ is ζ>q̃j . The depth error is thus ε23D (ζ) =∑m
j=1

∥∥∥ζ>q̃j − δ̂j

∥∥∥2
. It is straightforward to see that arg minζ ε

2
3D (ζ) = π = P̃†δ. Therefore, the

13This property holds on a full column rank portrait matrix such as P̃. It is straightforward to show that X>X†> =

X>
“`

X>X
´−1

X>
”>

= X>X
`
X>X

´−>
=

`
X>X

´>`
X>X

´−>
= I.
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asymptotic FA-Warp and FP-Warp are depth error minimizing, plane induced affinity and homography,

respectively. Using the results in Appendix B, we conclude that π has an interpretation as the

minimizer of some transfer error.

A.3 The DP-Warp

Consider the following error function for an FP-Warp represented by the (3× 3) matrix Ȟ :

ε̃a
(
Ȟ,d

)
=

m∑
j=1

∥∥djq̃′j − Ȟq̃j

∥∥2
.

This is an algebraic transfer error function, different from the one we use in §§7.4 and 7.5 to initialize the

RP-Warp and the DP-Warp, based on the distance da derived from the norm of the vector product of

homogeneous point coordinates. This error function can be rewritten in matrix form as:

ε̃a
(
Ȟ,d

)
=

∥∥∥diag (d) P̃′ − P̃Ȟ>
∥∥∥2
,

from which it is straightforward to obtain the minimizing Ȟ as a function of d by setting ∂ε̃2a
∂Ȟ

= 0:

Ȟ> = P̃†diag (d) P̃′.

which is the matrix representing the asymptotic FP-Warp for the DP-Warp.

Intuitively, ε̃2a and the above discussed algebraic error based on da are different since the former compares

all homogeneous coordinates while the one compares only the leading two ones, corresponding to the x and

y coordinates, weighted by the homogeneous coordinate of the transferred point. More formally, setting

dj = (H31 H32 H33) q̃j equalizes the two errors. Computing d by solving:

min
d
ε̃2a
(
Ȟ,d

)
,

yields:

dj =
q̃′>j Ȟq̃j∥∥∥q̃′j∥∥∥2 .

This shows that the two algebraic error functions do not in general share the same minimizer. Interpreting

the homogeneous point coordinates as 3D vectors, we note that ε̃2a is actually the sum of orthogonal distances

between the ‘direction vector’ of q̃′j and the transferred point Ȟq̃j .
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B Relationship Between the Depth and the Transfer Errors

The rigid warps can have their δ parameters estimated by minimizing the discrepancy ε3D between the

depth of the triangulated data points and the predicted depth. A tight relationship is revealed between the

3D depth error and the transfer error. The reasoning is based on the assumption that the image points are

‘corrected’, i.e., that they exactly satisfy the rigidity constraint. In the affine case, the two errors are equal

up to a global scale, while in the perspective case, each term has a different weight.

B.1 Affine Imaging Model

The transfer error for an RA-Warp is:

ε2e =
m∑

j=1

∥∥WRA (qj ; δ,A, λ)− q′j
∥∥2
.

Substituting the expression (19) of the RA-Warp, and using the rigidity assumption through the transfer

equation (14), we get:

ε2e =
m∑

j=1

∥∥∥S̄A (P̃>E>λ `j − q̃j

)
+ sA

(
δ>E>λ `j − δ̂j

)∥∥∥2
,

that simplifies, using property (6), to:

ε2e =
m∑

j=1

∥∥∥sAζ>δ>E>λ `j − sAδ̂j
∥∥∥2
,

and factors as:

ε2e = ‖sA‖2
m∑

j=1

(
τ (qj ; δ, λ)− δ̂j

)2
.

We thus have εe = ‖sA‖ε3D ∝ ε3D, the 3D depth error.

B.2 Perspective Imaging Model

The algebraic transfer error for an RP-Warp is:

ε2a =
m∑

j=1

∥∥∥S [q̃′j]×WRP (qj ; δ,F , λ)
∥∥∥2
.
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Substituting the expression (23) of the RP-Warp, and using the rigidity assumption through the transfer

equation (13), we get:

ε2a =
m∑

j=1

∥∥∥∥S [ḠF q̃j + ǧF δ̂j
]
×

(
ḠF P̄>E>λ `j + ǧFδ>E>λ `j

)∥∥∥∥2

.

Using property (6), expanding and noting that two cross-products vanish gives:

ε2a =
m∑

j=1

∥∥∥S [ḠF q̃j

]
× ǧFδ>E>λ `j + S [ǧF ]× ḠF q̃j δ̂j

∥∥∥2
.

Reordering the two factors in the leading cross-product, we factor the error as:

ε2a =
m∑

j=1

∥∥S [ǧF ]× ḠF q̃j

∥∥2
(
δ>E>λ `j − δ̂j

)2
.

Noting that [ǧF ]× ḠF ∼ F , the fundamental matrix, and identifying a TPS (4), we get:

ε2a =
m∑

j=1

‖SFq̃j‖2
(
τ (qj ; δ, λ)− δ̂j

)2
.

The algebraic transfer error is thus similar to the 3D depth error with each term reweighted by the norm of

the direction vector of the corresponding epipolar line.

C Some Relationships Between the Sets of Warps

C.1 SFA ⊂ SRA and SFP ⊂ SRP

We prove the perspective case. Specializing the result to the affine case is straightforward. Let Ȟ be a (3×3)

homography matrix representing an element of SFP i.e., an FP-Warp. We have to find the parameters δ of

an RP-Warp (23) such that:

Ȟq̃ ∼
(
ḠF P̃> + ǧFδ>

)
E>λ `q.

Using property (6), the first term reduces to ḠF q̃. Choosing δ such that δ>E>λ = (0 π), the second term

reduces to ǧFπ>q̃, giving:

Ȟq̃ ∼
(
ḠF + ǧFπ>

)
q̃,
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which is the general form of a plane-induced FP-Warp. Note that choosing δ = 0 also does the trick.

Replacing the (perspective) fundamental matrix F by an affine one A in the above, and keeping only the

first two rows of the equation gives:

Bq̃ ∼
(
S̄A + sAπ>

)
q̃,

where the (2 × 3) matrix B represents an FA-Warp, and the right hand side of the equation is the general

form of such warps.

C.2 (SFP r SFA) ∩ SDA = ∅

We prove that the set of DA-Warps does not contain any flat, purely perspective warp i.e., an FP-Warp

which would not also be an FA-Warp. Let Ȟ be a (3 × 3) homography matrix representing an element of

SFP. Equating with a DA-Warp in homogeneous coordinates (16) gives:

Ȟq̃ ∼ P̃′>E>λ `q ∀q ∈ R2,

that we rewrite, thanks to property (7) as:

Ȟq̃ ∼

P′>E>λ `q

1

 ∀q ∈ R2,

from which, defining H̄ as the first two rows and r> as the last row of Ȟ:

H̄q̃ =
(
r>q̃

)
P′
>E>λ `q ∀q ∈ R2,

which holds if and only if r> ∼ (0 0 1), implying that Ȟ is an FA-Warp represented by the (2× 3) matrix

B = 1
H33

H̄.

C.3 SRA = SDA ∩ SRP

We prove that the warps which lie in both the set of DA-Warps and the set of RP-Warps lie in the set

of RA-Warps. The converse is straightforward by definition. We begin by equating a DA-Warp and an

RP-Warp in homogeneous coordinates, respectively (16) and (23):

M̃DA`q ∼ M̌RP`q ∀q ∈ R2.
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This implies M̃DA ∼ M̌RP and thus:

EλP̃′ ∼ Eλ

(
P̃ δ

)
Ǧ>F .

Since Eλ is a full column rank, portait matrix, this implies:

P̃′ ∼
(
P̌ δ

)
Ǧ>F .

This equation holds if and only if ǦF is an affine camera matrix i.e., if and only if F = A, meaning that the

warp is actually an RA-Warp, as is seen by inspecting its homogeneous definition (20).

D The 3D Coordinate Frame for Rigid Warps

We show that the 3D coordinate frame fixed by choosing a particular canonical projection matrix in §3.3 has

no effect on the RA-Warp and the RP-Warp. We demonstrate it for the RP-Warp. Specializing the result to

the case of the RA-Warp is straightforward. We assume that a different projection matrix
(
ḠF + ǧFπ> νǧF

)
was used instead of GF . The RP-Warp matrix (23) with parameters δ′ is rewritten as:

(
ḠF + ǧFπ> νǧF

)P̃>

δ′>

 E>λ .
Expanding and factorizing this equation gives:

(
ḠF P̃> + ǧF

(
π>P̃> + νδ′>

))
E>λ ,

that we identify with our RP-Warp as:

WRP (q; δ,F , λ) with δ = P̃π + νδ′.

Consequently, whatever the chosen target canonical projection matrix and warp parameters δ′ in the coor-

dinate frame it induces, we can find a strictly equivalent RP-Warp in another canonical coordinate frame.


