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Abstract

We present a new formulation to the well known problem
of shape-from-texture from a single image by casting the
task as a multi-plane based camera pose estimation prob-
lem. Our first contribution is methodological: we show that
by using a piecewise affine model, instead of a perspective
one, we can avoid the numerical instabilities in the estima-
tion of the surface pose compared with the full-perspective
model, yet retaining high accuracy. Our second contribu-
tion is to show that the information provided by a smooth
textured surface makes it possible to perform shape-from-
texture and camera focal length calibration jointly. This ad-
vances state-of-the-art where a calibrated camera is nearly
always assumed in order to compute 3D shape from a single
image. We validate both these contributions on simulated
and real image data.

1. Introduction

In this paper we focus on the open problem of comput-
ing the 3D shape of a surface using the Shape-From-Texture
(SFT) cue. In the classical SFT setting the following as-
sumptions are made:

• A single view of the surface is provided on which mul-
tiple occurrences of one or more patterns are printed
in distinct, but not necessarily regularly arranged posi-
tions (Fig.1).

• The fronto-parallel appearance of the pattern (i.e. a
template) is knowna priori.

• The pattern issmall enoughsuch that each occurrence
can be approximated by a planar patch.

Of course, the informative cue is the warp induced by the
projection onto the image plane. The image of a patch is
called atexton.

Figure 1. The investigated problem: Is it possible to compute the
3D shape of a textured surface from such a single view using an
uncalibrated camera?

This problem is clearly equivalent to multi-plane based
camera pose estimation [16, 19]. According to Poncelet’s
theorem, given the image of a single texton in some Eu-
clidean representation (i.e., under the assumption of square
pixels), estimating the camera pose is ill-posed, as the lo-
cus of possible camera centres is a circle orthogonal to the
image plane1. The intersection of the circle’s supporting
plane and the image plane is a straight line known as the
center linesuch that for every point along it there exist a fo-
cal length and a camera pose which are consistent with this
texton. It is well known that transformation from a planar
scene to the image plane is a homography of the projec-
tive plane. It has been shown in [6] that the center line can
be estimated from such a homography. As a result, using
several textons will make the estimation of the camera pa-
rameters possible since different center lines may cross, and
thus determine the location of the principal point (and con-
sequently the focal length and the camera pose.) Accord-

1A movie which illustrates Poncelet’s theorem is available at
www.irit.fr/∼Pierre.Gurdjos/ECCV2002/



ing to this intuition, it seems that uncalibrated SFT is well-
posed. However, this is not true when the textons are small,
which is precisely a SFT assumption, because the estima-
tion of a homography using a small texton isill-conditioned
[11].

As a remedy to this, we exploit the well known fact
that the perspective projection model can be locally ap-
proximated by the scaled orthographic projection model.
This provides good approximation to the imaging process
with increasing accuracy for distant scene samples pro-
jected closer to the principal point. These assumptions are
often satisfied in practice and permits the estimation of the
associated affine transformation that is far more stable man-
ner than the local homography (as exploited in other com-
puter vision problems [10]).

The first contribution of our work is to provide a stable
estimation of the depth and of the normal at each texton us-
ing an explicit piecewise planar affine model. A closed form
solution is presented where, for both the calibrated and un-
calibrated cases, orientation is given up to a two-fold am-
biguity. Depth by contrast is recovered uniquely (where in
the uncalibrated case it is known up to a scale factor).

Our second contribution extends the above process to
joint 3D reconstruction and focal length estimation. The re-
covery of both the depth, which depends on the focal length,
and of the normal (up to a two-fold ambiguity) at each patch
is a redundancy which we exploit in order to estimate the fo-
cal length, and then by extension to recover the orientation
and depth of the surface at each patch. Both these contribu-
tions are validated by experiments performed on synthetic
and real images.

The structure of this paper is as follows. In Section 2
relevant works from the SFT literature are outlined. In Sec-
tion 3 we discuss our method for computing the 3D shape
of a textured surface from a single view given that the fo-
cal length of the camera is known. A generalization of
this contribution to the case of an uncalibrated camera is
done in Section 4, making an explicit estimation of the fo-
cal length in conjunction with shape. In Section 5 our work
is summarised with reference to some possible future devel-
opments.

2. State of the Art

In the following section we briefly discuss papers from
the SFT literature. To our knowledge however no up-to-date
survey covering SFT is available at present.

Texture is known to be a strong cue for the perception
of depth, and has been studied for a considerable time [5].
SFT is a classical 3D reconstruction process which essen-
tially requires only a single image view. Two different ap-
proaches have arisen. When the texture is considered ‘natu-
ral’, statistical methods and descriptors are often used [18].
When the texture has been ‘artificially’ created, the fact that

it is often repeating in nature suggests geometric approaches
may be preferable [4]. The statistical methods rely often on
a variety of densities estimators [1], whereas the geometric
ones aim at estimating 2D transformations, which are ho-
mographies for perspective planar textures [8], but affinities
have also been considered in some cases [14]. As with other
3D reconstruction techniques such as Shape-From-Shading
or photometric stereo, SFT usually produces a normal field,
and not 3D depth (which contrasts with our method). An
additional step is then needed to recover shape, known as
normal integration[9].

Recently a number of new SFT approaches have ap-
peared. In [11], Lobay and Forsyth propose an automatic
technique for textons detection and fronto-parallel appear-
ance estimation. This work is fairly close to ours, except
that they use orthographic cameras. In [12], Loh and Hart-
ley’s work does not require the texton pattern to be imaged
in advance. This is very promising even if few results are
shown. In [17], the combination of texture and shading is
shown to be enough to avoid, in most cases, the ambiguity
on the normal field estimation. We are interested in artificial
textures, but unlike most of the previous works, we consider
SFT as a multi-plane based camera pose estimation [16, 19].

3. Piecewise Planar Scaled Orthography

3.1. Camera Model

The imaging process we consider involves aprojective
camera, whose focal lengthf is the sole unknown (other
intrinsics have canonical valuese.g., the principal point is
at the origin). In the special case where the world frame co-
incides with the camera frame, its projection matrix writes:

P = diag(f, f, 1) [I3×3 | 03] . (1)

With regard tosmall objects at a distance, it is known that
local affine approximations ofP may provide more stable
numerical solutions to the problem of computing the object
pose.

In the immediate neighbourhood of any texton, the local
affine approximation of the projective cameraP acts like a
scaled orthographic camerawith projection matrix:

Pso
j =





αj 0 0
0 αj 0
0 0 1









e>1
e>2
e>4



 , (2)

whereαj = f/dj is thescale factor, j is the index of the
particular texton,dj is the depth at the patch’s centroidpj

andek denotes thekth column ofI4×4. The model (2) is
essentially a first-order approximation of (1), see [15, 7].

3.2. The Problem of Recovering the Pose of a Patch

The pose of patchj is given byTj , the 3D rigid trans-
formation mapping a local world frame attached to its sup-



porting plane to the camera frame:

Tj =

[

Rj tj
0>
3 1

]

whereRj andtj represent the rotation and translation com-
ponents.

As we treat patches assmall objects at a distance, the
patch-to-texton 2D-transformation, denotedAj , mapping
the patchj to its image can be well approximated by the
scaled orthographic camera (2). Without loss of generality,
take the supporting plane of patchj to be defined atz = 0
w.r.t. the local world frame and the patch’s centroid at the
origin. As a result the patch-to-texton transformAj is affine
and decomposed as

Aj =

[

αjR̂j αj t̂j
0>
3 1

]

whereR̂j denotes the top left2 × 2 submatrix ofRj =
[rkl](k,l)∈[1,3]2 , andt̂j denotes the top2× 1 elements oftj .
GivenAj = [akl](k,l)∈[1,3]2 , it can be shown that atwo-fold
solutioncan be directly obtained for both the pose(Rj , tj)
and the scale factorαj . We achieve this as follows. Intro-
ducing two unknown variablesβ = αjr13 andγ = αjr23,
we can solve forβ andγ as the solution to the following
2nd order polynomial system:

{

a211 + a212 + β2 −
(

a221 + a222 + γ2
)

= 0,

[a11, a12, β] [a21, a22, γ]
>
= 0.

This leads to two real solution pairs forβ andγ (β, γ) =
± (b, c) for some real(b, c), and from this the patch pose is
easily recovered:

Rj =
1

αj





u>

v>

1/αj(u× v)>



 , tj = α−1
j (a13, a23, f)

T

(3)
whereu = [a11, a12, β]

>, v = [a21, a22, γ]
>, andαj =

‖u‖
−1. Notice that rotation componentRj and scale factor

αj are recoverable without knowingf , showing that planar
orientation can be recovered with the scaled orthographic
approximationin the uncalibrated setting. The two solu-
tions forβ andγ lead to a two-fold ambiguity inRj , but
a single solution forαj andtj . Now if πj denotes the 4-
vector of dual coordinates of the supporting plane of patch
j, then it can be seen that

πj =

[

n>
j

−t>j nj

]

(4)

wherenj = [β/αj , γ/αj , det R̂j ]
> denotes the normal in

the camera’s reference frame. Due to the ambiguity men-
tioned above, a two-fold solution clearly exists forπj .

3.3. Calibrated Orientation Disambiguation

Although we have a two-fold orientation ambiguity, the
additional per-patch depths clearly provides us with redun-
dant information to resolve this. Recall that most of the
existing SFT techniques only compute the normals, which
then requires a normal integration step. In our frame-
work disambiguating the normals can be done far more
easily. We make the assumption that neighbouring patch
centroidspk approximately sample the tangent plane at
patch j (which is valid if the patch spatial separation is
low). Thus, for a reconstructed patch the normalnu

j is
selected with maximal depth/normal agreement given by

Sk

(

nu
j

)

=
∣

∣

∣
(pk − pj)

>
nu
j

∣

∣

∣
. In the presence of noise, the

redundancy from multiple neighbours can be used to ro-
bustly disambiguate orientation (e.g. taking the normal with
maximal votes these. One could further include2nd order
agreement over the normal field, although compared with
this local approach it has proven unnecessary. As explained,
violations may occur, for example due to surface disconti-
nuities. These are not treated in this paper, but should be
handled by integrating additional discontinuity cues.

3.4. Reconstruction Experiments

In this section we show some simple reconstruction ex-
periments conducted to validate or SFT method in the cali-
brated setting.

3.4.1 Synthetic Setup

Empirical synthetic studies to assess reconstruction quality
in the presence of noise and differing scene conditions are
now presented. A simple synthetic scene was constructed
involving a cylinder quantised into regular squared grids of
varying size to simulate the effect of varying texton densi-
ties. Three surfaces are shown in Fig.2 a-c. We compute
the images of these surfaces using a constant focal length
(we usef = 500 with distances expressed in pixels), axis
aligned with the camera’s y axis, radius set to a constant
r = 500. The surfaces are positioned at varying values of
d̄, denoting themean depthof the scene; thus degree of per-
spective distortion is strong at short range, but disappears at
long range.

The quality of the reconstructed patch orientations was
evaluated with the RMS angular error (in degrees) in surface
normals. Fig.4 shows the trend of RMSE w.r.t. the number
N of textons, for different values of̄d. For a fixed value of
d̄, the error decreases forN , with confirms the assumption
that the approximation improves with smaller patches. On
the other hand, for a given numberN of textons, RMSE de-
creases with̄d, confirming the scaled orthographic approxi-
mation is better justified at longer distances.



(a) (b) (c)

(d) (e) (f)

Figure 2. Test cylinders quantised into grids of (a) 10× 10, (b) 20× 20 and (c) 30× 30 squared patterns. (d) Surface and normals
recovered at short range (d̄/f = 2.5) with no noise. (e,f) Reconstructions with measurement noises (additive Gaussian with standard
deviationsσ = 0.1 andσ = 0.2) respectively

To test the stability of reconstruction w.r.t. measure-
ment errors, varying amounts of zero-mean Gaussian noise
was added to each vertex’s image location (from which the
plane-to-view transforms are computed.) The three results
shown in Fig.2 correspond to zero noise,σ = 0.02 % (Fig.
2-b) andσ = 0.04 % (Fig. 2-c) of the image size, i.e., re-
spectivelyσ = 0.1 andσ = 0.2 for a 512 × 512 image.
In spite of noise, the surface’s shape is recovered well. A
detailed evaluation is presented in Fig.3. Fig. 3-a and b
denotes the depth (relative to the scene’s depth range) and
patch orientation error as a function ofd̄, performed at mul-
tiple noise levels. We can see here that there is trade-off
between further distances (supporting the scaled orthogra-
phy assumption) and shorter distances that reduce the influ-
ence of noise. We contrast this with recovering orientations
based on texton homography decomposition [19] in Fig. 3-
c. In the noise-free case, that method is clearly superior,
however as noise is introduced and at further distances, we
see our method is more successful.
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Figure 4. RMS angular error with respect to ground truth normals
with varying texton density and mean depth.

3.4.2 Real Setup

A second experiment we present was performed on a simple
real scene depicting a surface with circular (non-regularly)
printed textons (see Fig.5-a). These are easily detected
automatically (within a bounding region of interest man-
ually specified) and the local transforms were refined us-
ing standard gradient-based image registration. The texton
neighbourhood system was constructed with the edges of a
simple Delaunay triangulation at the texton centres (as in all
examples we present). More sophisticated strategies may of
course be needed to develop better neighbourhood systems
to handle, for example surface discontinuities and occlu-
sions but this is left for now to future work.

The patch poses are estimated and shown in Fig.5-b,
displayed as orientated quad patches. The depths and nor-
mals appear very consistent, except for a clear outlier. A
dense reconstruction was then performed using a robust in-
terpolation strategy. For this we use the thin plate spline
(TPS) with control points defined at the patch centres and a
re-rendering showing the surface from another viewpoint is
shown in Fig.5-c. Ground truth depths were obtained with
hand labeled stereo correspondences at the texton centres,
resulting in an RMS depth error of 3.5% w.r.t. the depth of
the enclosing volume.

4. SFT with Uncalibrated Cameras

In this section we now generalise the methodology pre-
sented in Section 3 to the case where the camera is uncal-
ibrated (with the focal length as the only unknown intrin-
sic). We propose two methods for calibratingf . The first
is to estimatef using a criterion based on the normal in-
tegrability. After discussing its merits, we propose an al-
ternative method which is considerably more reliable under
near-affine viewing conditions. We also show how the nor-
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Figure 3. Synthetic reconstruction results. (a) Depth and (b) orientation error as a function of mean scene depth. (c) Comparison to
orientation reconstruction by homography decomposition

(a) Input image. (b) Recovered surface. (c) Resynthesized view.

Figure 5. (a) Image of a surface non-regularly printed with textons. (b) Recovered texton depths and normals (the patches are represented
by oriented squares). (c) Re-rendered view of the reconstructed surface.

mal field can be disambiguated in the uncalibrated setting.

4.1. Focal Length by Integrability of Normal Field

Suppose first the normals have already been disam-
biguated. Integrating a normal field is a classical com-
puter vision problem. The equation of normal integra-
tion expresses that the variation in depth along any closed
loop in the image is equal to zero (the depth gradient
field must be a zero-curl field), a property which has
been used for many other purposes than for normal in-
tegration [12]. Let us first use as a measure of consis-
tency between the depth fieldd(x, y) and the normal field
n(x, y) = [nx(x, y), ny(x, y), nz(x, y)]

> the following
equality, which holds under perspective projection [2]:

∇δ = [r, s]>, (5)

whereδ = ln |d| and:











r = −
nx

xnx + y ny + f nz

,

s = −
ny

xnx + y ny + f nz

.

The definitions ofr ands explicitly depend onf . Therefore,
it seems that the following criterion is sensitive tof :

C1(f) =
∑

j

∥

∥∇δ(qj)− [rj , sj ]
>
∥

∥

2
, (6)

whereqj designates the centroid of textonj, and the sum is
carried out on all the textons. Anything is known in (6), ex-
ceptf and the values∇δ(qj), which can be estimated using
Taylor expansions:δ(qk) = δ(qj) + (qk − qj)

>
∇δ(qj).

We tested the criterionC1 on images with very low per-
spective distortion, and surprisingly, it seems to fail.C1 is
quasi-insensitive tof and, therefore, the estimation off is
ill-conditioned. Using, once again, the scaled orthographic
model, Equation (5) reduces to the following [9, 2]:

∇d = −
1

α

[

nx

nz

,
ny

nz

]>

. (7)

An approximate version ofC1 is then:

C2(f) =
∑

j

∥

∥

∥

∥

∥

∇d(qj) +
1

αj

[

nx,j

nz,j

,
ny,j

nz,j

]>
∥

∥

∥

∥

∥

2

. (8)

Anything is known in (8), exceptf and the values∇d(qj),



which can be estimated from the following linear systems:

dk = dj + (qk − qj)
>
∇d(qj), (9a)

dl = dj + (ql − qj)
>
∇d(qj), (9b)

wherek and l are indices for two neighbouring textons of
textonj. Since the depthd = f/α is proportional tof , C2
can be rewritten:

C2(f) =
∑

j

∥

∥

∥

∥

∥

f [λj , µj ]
> +

1

αj

[

nx,j

nz,j

,
ny,j

nz,j

]>
∥

∥

∥

∥

∥

2

. (10)

where theλj andµj are obtained from (9a)-(9b), which is a
Cramer system as soon asqj = [xj , yj ]

>, qk = [xk, yk]
>

andql = [xl, yl]
> are non-colinear:

λj =
(yl − yj)(1/αk − 1/αj)− (yk − yj)(1/αl − 1/αj)

(xk − xj)(yl − yj)− (yk − yj)(xl − xj)
,

(11a)

µj =
(xk − xj)(1/αl − 1/αj)− (xl − xj)(1/αk − 1/αj)

(xk − xj)(yl − yj)− (yk − yj)(xl − xj)
.

(11b)

From (10), we can easily express the optimal valuef∗ of f :

f∗ = −
1

∑

j λ
2
j + µ2

j

∑

j

λjnx,j + µjny,j

αjnz,j

. (12)

We see in (11a) and (11b) that the coefficientsλj andµj

tend towards zero when the global perspective effect van-
ishes, since all the scale factorsαj tend to the same value.
Obviously, this now makes the estimation (12) of f∗ ill-
conditioned.

4.2. Uncalibrated Orientation Disambiguation

We now show how the normals can be disambiguated.
For a given patchj, we know from Section3.2 that there
are two normal solutionsn1

j = 1/αj [b, c, h]
> andn2

j =

1/αj [−b,−c, h]> for some knownb, c andh. Using the
scaled orthographic model, Equation (7) then reads:

∇d(qj) = ±
1

αj

[

b

h
,
c

h

]>

. (13)

Recall that from the linear system (9a)-(9b), we can deduce
∇d(qj) = f [λj , µj ]

> as soon as texton centroidsqj , qk

andql are non-colinear. Equation (13) can thus be rewrit-
ten:

f v = ±w, (14)

where the two vectorsv andw are known and do not de-
pend onf , which nevertheless is involved in Equation (14).
Since the estimation off supposes that the disambiguation
of the normals is already carried out, as seen in Section4.1,

the problem of disambiguatingnj , which is that of finding
the right sign in (14), looks like a vicious circle. But, know-
ing thatf > 0, it is reasonable to computes = sign

(

v
>
w

)

and to conclude:

nj =
1

αj

[−sb,−sc, h]>.

4.3. Focal Length by Maximising Continuity

The second approach we propose for calibratingf is to
find the focal length which maximises the continuity of the
depth field. Consider two adjacent patchesj andk in 3D
space. To recover the focal length, first assume we have at
our disposal the homogeneous pixel coordinatesq ∈ R

3 of
a point lying on the image of the intersection of the two
corresponding supporting planes. The 3D lineLq back-
projected fromq under the projective cameraP in (1) may
be written as a dual Plücker4× 4-matrix

L∗ = P> [q]
×
P,

where[q]
×

denotes the usual skew-symmetric matrix ofq.
The 3D pointXj at whichLq meets the supporting plane

of patchj is
Xj = Lπj (15)

whereL is the primal Pl̈ucker4× 4-matrix (i.e.dual toL∗)
andπj the 4-vector (4) of dual coordinates of the support-
ing plane of patchj. A similar equation to (15) holds for
the supporting plane of patchk, which meetsLq in Xk.
The question now remains of how to recoverf . As Lq

intersectsπj andπk at the same 3D point, any Cartesian
(i.e., normalised) coordinate ofXj andXk must be equal.
Hence, using this constraint, we can easily derive a degree-2
polynomial equation inf denoted byc2f2 + c1f + c0 = 0,
whose coefficients have the form











c2 = (αk − αj) g2,

c1 = αjαk g1jk + αjg1j + αkg1k,

c0 = αjαk g0,

whereg∗ = g∗(nj ,nk, t̂j , t̂k) denote functions not depend-
ing onαj or αk. If we assume thatdj ≈ dk, thenαj ≈ αk

and, even this is not strictly true, we can understand, look-
ing atc1 andc2, why in practice|c2| � |c1|. Hence, a first
root of the quadratic equation isf1 ≈ −c0/c1. Knowing
that f1 f2 = c0/c2, we can conclude that the other solu-
tion is f2 ≈ −c1/c2. Sincef1 + f2 = −c1/c2, we notice
that |f1| � |f2|. Thus we can recover a single solution
to be the smallest of the two roots. We have arrived at a
minimal solution forf requiring two adjacent textons. By
exploiting all texture information we can now proceed to
find the single optimal focal length. Currently we adopt a
simple robust strategy: we first reject the focal lengths from



any texton pairs whose normals are at an angle greater than
20 degrees. These occurrences are either caused by surface
discontinuities or erroneous normals from either patch, and
should be discarded. Then we robustly compute the optimal
focal length as the median of all remaining focal lengths.

4.4. Experiments

We have evaluated our second focal length estimation
method using some real world examples and these are now
presented. Fig.6-a illustrates one case. The image is 1200
× 1600 pixels with a focal length of 1274 pixels compris-
ing an 8× 7 lattice of square textons. The patch-to-texton
mappings were achieved by hand labeling. Superimposed
are the recovered normals (red) and ground truths (green)
obtained from planes fitted to triangulated stereo correspon-
dences. The accuracy here is clear; the RMS angular error
is 2.3 degrees. To assess the effect of measurement noise on
both focal length estimation and reconstruction, the corner
positions were perturbed with Gaussian noise and Fig.6-
b plots the relative error in focal length against correspon-
dence noise. In the noise-free case we have a relative er-
ror of 9.1% and as one can see, the focal estimate accu-
racy degrades gracefully with increased noise, suggesting
the method is stable in real conditions. We also notice that
with increased noise the recovered focal length (and con-
sequently the mean depth of the surface) becomes under-
estimated. This makes sense; since with increased noise
the normal estimates tend towards random, and the continu-
ity criterion becomes best satisfied when samples lie at the
planez = 0. The corresponding errors in orientation and
depth are presented in Fig.6-c.

A second example is presented in Fig.7-a where we
have an image of a textured deformed shirt. The textons
were marked by hand, the focal length is 1425 pixels and
ground truth data was acquired with manual stereo triangu-
lation. A smooth TPS surface interpolates these points to
serve as ground truth depth and orientation data. Fig.7-
b shows the orientation and depth reconstruction accuracy.
The range of errors here is fairly broad, chiefly due to the lo-
cal nonrigidity of the cloth and noise from manual labeling.
Even so, we still obtain a focal length of 1749 (a 22% rela-
tive error). Shape appears to have been recovered well. Fig.
7-c shows a smooth surface reconstructed from the texton
centres with lines indicating the texton normals. Fig.7-d
shows the ground truth surface with texton centres marked.

5. Conclusion and Perspectives

In this paper we have revisited the SFT problem using a
single view to reconstruct surfaces using instances of pro-
jected textons. Our first contribution is to show that when
the camera’s intrinsics are known, the 3D shape of the sur-
face can be computedwithout normal integration, by ap-

proximating global perspective by local scaled orthography.
This is suitable when the textons are small where there is
insufficient local perspective to resolve the per-texton ho-
mographies. Our second contribution is to generalize this
result to the uncalibrated setting using the redundancy be-
tween depths and normals. Our method makes this possible
because only the depths, rather than orientation depend on
the focal length.

One strong possible application of our work is to undis-
tort the camera images of curled documents [13]. Since the
automatic detection of characters in an image may provide
a rather dense estimation of the 3D shape, it will be pos-
sible to flatten the document (for restoration or improving
readability) without needing strong geometric assumptions.
Furthermore, with the ubiquity of text in many images, the
ability to calibrate a camera from groupings of characters
within a single image is an appealing prospect. In future we
aim to handle surfaces with discontinuities and include au-
tomatic texton registration. Another possibility is to handle
the two-fold ambiguity on the normal using programming
heuristics such as those described in [3], rather than using
the redundancy between depths and normals. Finally, we
aim to generalize the theory of our work to the more dif-
ficult, but more realistic and applicable situation when the
frontoparallel pattern appearances are unknown s[12].
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