
Bi-Objective Bundle Adjustment
With Application to Multi-Sensor SLAM

Julien Michot1

julien.michot.fr@gmail.com

Adrien Bartoli2

adrien.bartoli@gmail.com

François Gaspard1

françois.gaspard@cea.fr

1CEA, LIST, Vision and Content Engineering Lab,
Point Courrier 94, Gif-sur-Yvette, F-91191 France;

2Clermont Université
Clermont-Ferrand, France

Abstract

We consider multi-sensor data fusion problem in a Si-
multaneous Localization And Mapping (SLAM) applica-
tion. More precisely, we tackle the integration of inertial
information in Bundle Adjustment. The BA cost function
is composed of two weighted objectives, one from each of
the sensor, and interest the problem of finding an efficient
weight that relies the two sensors errors.

An investigation of three fully automatic methods for de-
termining the weight in an extended Bundle Adjustment is
presented. The methods are real-time and can be employed
with any generic least squares constraint (on the orienta-
tion, the position etc.). We present and compare the three
weighting methods with two multi-sensors SLAM, with an
odometer or a gyroscope. Results show that the inertial in-
tegration with an automatic weighting method decreases the
drift on the final localization.Best results are obtained with
the L-Curve weighting technique.

1. Introduction

Real-time Simultaneous Localization And Mapping
(SLAM) has been an active research field in robotics for
decades. It has been introduced more recently in computer
vision with the emergence of embedded camera devices.
The aim of real-time SLAM is to provide fast and robust
localization (up to a scale) of a system in a unknown rigid
environment. One of the main benefits of camera sensors
is their ability to provide redundant informations on the ob-
served scene and on the system displacement. Recent re-
sults show that with only one camera, one can localize a
system for multiple applications such as autonomous vehi-
cles, augmented reality mobility, etc. [6, 16, 11].

However, monocular Visual SLAM is not a robust solu-
tion to localize a system in all circumstances (poor lighting
conditions, blur, etc.). For VSLAM based on incremental
Structure-from-Motion (SfM) techniques, there also exist

critical motions (for instance, a pure rotation) that are not
well managed by SfM algorithms and lead to an undeter-
mined or untrusted localization. Besides, image noise and
model approximation are sources of an error accumulation
that leads to a growing error on the final localization, known
as the drift (on position, orientation and scale).

These drawbacks can be reduced using external infor-
mation, from heterogeneous sources. Many systems now
embed multiple sensors, depending on the applications and
system characteristics. For outdoor systems, the Global Po-
sitioning System (GPS) is generally employed [1] since it
has the great advantage to provide absolute information,
with a low frequency. Vehicles can also embed odometers
on wheels [3, 5, 1]. For indoor environments, inertial sen-
sors such as gyrometers and accelerometers, usually inte-
grated in a Inertial Measurement Unit (IMU) [10, 19, 9, 17]
can be employed. One can also use heterogeneous devices
that sense the world, such as laser range-finders and sonars.

These redundant information are gathered to recover the
system localization that statistically best explains all mea-
surements. In order to achieve this inverse problem, it is
usually expressed in a Bayesian Filtering framework. Mea-
surements and system state are considered as random vari-
ables for which we want to estimate their probability density
function (pdf ). When Gaussian pdf are assumed, the prob-
lem is then reduced to a nonlinear least squares optimization
issue. Classical Bayesian Filters are the Extended Kalman
Filter (EKF)[6, 19, 15, 4] and the Particle Filter (PF)[14].
More recently, Bundle Adjustment (BA)[20] has demon-
strated its efficiency on localizing a camera-based system
on different configurations (hand-held, vehicles...). BA is
a nonlinear least squares refinement based on a damped
Gauss-Newton optimization, such as Levenberg-Marquardt.
It is known that BA is slower than EKF but has better results
and runs in real-time.

Visual SLAM are usually either based on Kalman filter
(and its variants) or Bundle Adjustement. The robotic com-
munity has been very productive in Kalman based multi-

1



sensor SLAM. One can for instance see Strelow et al. [19]
and the state-of the art therein. Kalman-based visual SLAM
has the great advantage to handle easily measurement co-
variances, but they are less accurate than BA-based SLAM
for large-scale environments. Therefore, we interest the
BA-based SLAM and tackle the problem of inertial data in-
tegration in Bundle Adjustment. In a related work, Kono-
lige et al. [12] describe a precise and real-time visual odom-
etry system with integration of inertial data. They perform
a visual BA-based SLAM based (with a Local Bundle Ad-
justement) and do visual and IMU fusion with an EKF.
Strelow et al. [19] a batch (off-line) Accelerometers (grav-
ity) and gyroscopes data are used to filter the system orien-
tation. Cumani et al. [5] also propose a monocular SLAM
with an odometer. The odometer is used to estimate the ini-
tial scale factor of the trajectory and to correct the SLAM
scale factor drift. The method correct the scale a poste-
riori and not directly in the Bundle Adjustement like we
propose. Strelow et al. [19] is the closest work to this pa-
per. They present a batch algorithm based on Levenberg-
Marquart and an online IEKF in order to fuse visual and
inertial data. Here we propose an online visual and inertial
SLAM based on Levenberg-Marquart.

The previous methods rely on the fact that measurement
covariances are known a priori. But in the case that covari-
ances are not available (no a priori on the noise), are fixed (a
priori given by the manufacturer, or user defined) or are not
accurate enough (only upper bound), the state-of-art meth-
ods (Local BA or EKF) will not handle that properly. It is
also known that sensor covariances may change over time.

Recent work [18] proposes a method that fuse multi-
sensor image data. They estimate the measurement noise
for each group of sensor measurements using the Variance
Component Estimation, and then perform BA to recover
3D object coordinates. They did not mention whether the
method is real-time or not. Lavely et al. [13] proposes a
multi-sensor fusion algorithm using BA for image regis-
tration and target recognition. It considers priors on mea-
surement noise and estimates the system state covariance
in a (joint) inverse problem with multiple camera sensors.
In this paper we do not consider measurement noise to be
known a priori. Estimating the noise variance ratio between
the sensors is one of our goals.

We present a new generic approach to perform multi-
sensor fusion within a BA based framework, that we call
Bi-Objective BA, and show its application in SLAM. The
problem is presented as a bi-objective least squares prob-
lem with a compound objective function, composed of two
weighted error terms (from each of the two sensors). Since
we consider no priors on measurement noises (at least for
one sensor), it remains the problem of estimating the weight
(or the ratio) between each objective. We investigate three
distinct methods based on either trade-off criteria or ma-

chine learning to dynamically select an efficient weight, in
real time. The methods can be used with any least squares
constraints and not only in a multi-sensor fusion problem
(for instance camera smoothing, etc).

Paper organization. Section 2 introduces SLAM and
sensor fusion problems. We describe our new approach, a
bi-objective BA based SLAM in section 3 and the Weight-
ing Selection methods in section 4. Finally, the last section
reports experimental results on two different multi-sensor
fusion: with an odometer and a gyroscope.

Notation. Scalars are in italics (e.g. x), vectors in bold
(e.g. p), and matrices in sans-serif and calligraphic fonts
(e.g. Σ, P). I is the identity matrix. Homogeneous vector

are written with a tilde (e.g. x = Ψ(x̃) = 1
x̃3

[
x̃1

x̃2

]
). We

define the vector that stacks two vectors x and y, by [xy] =
[x>y>]>.

2. Background
2.1. Simultaneous Localization And Mapping

The Simultaneous Localization and Mapping (SLAM)
problem aims at recovering simultaneously the system lo-
cation (pose) and the scene structure. The state vector
x = [ps] is thus composed of two elements: the system
dynamics p and the sparse and static environment map s.

The measurements delivered by sensors are affected by
noise with (usually) unknown characteristics. It leads to
corrupted system state estimates. To overcome this diffi-
culty, we have to increase the number and the variety of
sensors and properly merge all the measurements.

2.1.1 Inverse Problem

The sensor fusion problem can be formulated as an inverse
problem, discretized in the time domain. The observation
process performed by a sensor k is defined by:

zkt = Hk
t (xt) + nkt , (1)

where Hk
t is a projection function performed by sensor k

at discrete time t. It relates a real object or information xt
(here, system location and environment map) to its obser-
vation vector zkt . Hk

t includes the coordinate frame change
from the world coordinate frame in which we express our
system location and map, into the local sensor reference
frame in which measurements are expressed. This can be
estimated by a calibration procedure.

The error vector nkt is usually assumed to be zero mean
normally distributed random variables and models the inac-
curacy introduced during the measurement phases.

The aim of inverse problem is to recover the unknown
real vector xt from multiple observations.

2



For a dynamic system, we model its movement by

xt = Ft(xt−1) + wt. (2)

Ft relates the previous system state to the new one and wt is
the error vector of the modeling process. Its entries consist
of Gaussians with zero mean. Static systems are written
without the t subscript , e.g. x.

2.1.2 Recursive Bayesian Estimation

Statistic filtering consist of estimating the state of a dynamic
system that best validates the uncertain measures and a pri-
ori, knowing that measurements can be noisy. We consider
that the system state (like for all sensor measurements) is a
random variables vector for which we want to find its pdf.

A recursive Bayesian estimator aims at finding the pdf,
minimizing the posterior expected value of a cost function.
The most common cost function is the Mean Squares Er-
ror (MSE), for which we want to minimize the square error
between an estimator and its observations.

For a general sensor k, we define the MSE as

ε2k(xt, zkt ) =
1
nkt

∆k>
t (Σkt )−1 ∆k

t (3)

with ∆k
t is the innovation or measurement residual vector

and nkt its length, such as

∆k
t = zkt −Hk

t (xt). (4)

When all measurements are considered as independent,
with covariance Σkt = σkt I, Equation 3 becomes

ε2k(xt, zkt ) =
1
nkt

1
(σkt )2

‖zkt −Hk
t (xt)‖2. (5)

Sensor fusion problem aims at minimizing all sensor
MSE. An example of recursive Bayesian estimator is Bun-
dle Adjustment.

2.2. Bundle Adjustment

Bundle Adjustment (BA) is an optimization technique
based on non-linear least squares[20]. The objective func-
tion E to minimize is generally an image-based MSE: the
reprojection error E(xt, zct) = ε2c(xt, z

c
t), which is the sum

of the squared distances between 2D observations zct and
reprojections (see section 2.2.1).

Bundle Adjustment can be employed for different pur-
poses, depending on the input variables we want to opti-
mize. Usual BA are: pose refinement pt , scene structure-
only st, both scene and motion adjustment [ptst], or even
for self-calibration where we refine some of the intrinsic
camera parameters (focal, principal point, ...). For instance,
in order to refine both scene structure and camera motion,
we seek

x∗t = argmin
xt

E(xt, zct). (6)

This is a non-linear least squares problem (because of
the Ψ function, Equation 7), which can be solved using
a damped Gauss-Newton technique, such as Levenberg-
Marquardt[20].

2.2.1 Camera Projections

The camera sensor c performs a projection of a subset of
the scene s (in the field of view). With the pinhole camera
model, the projection of a 3D feature j (located at sjt ) on
image It is defined by

yjt ∼ Hc
t ([pts

j
t ]) = Ψ

(
Pts̃jt

)
(7)

where Pt is the projection matrix. This matrix can be
decomposed in some metric coordinate frame as Pt =
Kt(Rt|tt), where s̃jt is the homogeneous 3D observed fea-
ture and (Rt, tt) represents the orientation and position of
the camera in a world coordinate frame. Intrinsic matrices
Ki are considered equal, constant and known. For concise-
ness, we omit other distortions (radial etc.) in Equation (7).

For monocular BA-based SLAM, the system pose is only
represented by its orientation (normalized quaternion qt =
R(Rt)) and position tt: pt = [qttt].

Since all 2D measurements of an image It come from
the same frame time t, we can make a global camera mea-
surement vector by stacking all 2D features in one vector (
zct = [∀yjt ]) and do the same for the reprojections Hc

t (xt).
Bundle Adjustment aims at refining the camera pose and

scene structure, minimizing Equation 3, with k = c.

3. Bi-Objective BA-based SLAM
Since BA is known to be more precise than Kalman fil-

tering, our idea is use BA as a multi-sensor fusion tech-
nique. Problems arise when no a priori on the measure-
ment noise are introduced since without covariance weight-
ing, each of the sensor MSE does not share the same unit
neither the same significance. We here propose a way to
estimated this weight.

To be able to do fusion with BA, we write the cost func-
tion as a multi-objective least squares, within a compound
cost function. The second sensor is used to make a con-
straint on the system displacement in a incremental SLAM
of [16]. Thus, the cost function is composed of the classi-
cal reprojection errors (from camera sensor) and the sensor
constraint. The weight of the constraint is automatically es-
timated using one of the three proposed methods. Instead
of classical fusion algorithms, our technique (including the
weight estimation) is periodically achieved and synchro-
nized with the camera keyframe framerate.

3.1. System Overview

We resume our multi-sensor SLAM technique within the
following steps, where (*) means a new step or a major

3



change from the original Visual SLAM of [16].

Localization. (Resection)

1. Perform 2D/3D tracking of known features (points) at
image It

2. Estimate a robust camera pose pct from the tracking
results (3-points algorithm+RANSAC,...).

3. (*) Predict the system pose p̂kt from the second sensor
measurements and compute the associated constraint
εk (described in Section 3.3)

4. (*) Compute the constraint weight λk using one of the
three selection methods (Section 4)

5. (*) Refine the current pose pt with the sensor predicted
pose constraint and selected weight, using the vision-
based pose estimate pct as initial solution (Section 3.4)

Map building. (Intersection & Refinement)

1. Perform a triangulation on all new features to recover
their 3D position and add them into the current scene
estimate st.

2. (*) Perform a Constrained Local Bundle Adjustment
with all weighted constraint previously computed
(LBA) (Section 3.5)

3.2. Aggregate Objective Function

The multi-sensor fusion problem can be viewed as a
multi-objective optimization: we want to find a solution that
answer best to each of the objective requirements. The so-
lutions space for which every objectives are optimal is not a
unique point but is a hyper-surface called the Pareto Fron-
tier. An easy way to be in the Pareto frontier is to write
the problem as a weighted compound function with all the
objectives, called the Aggregate Objective Function.

We start formulating the global MSE for a two sensors
fusion, when all uncertainties are considered Gaussian and
variables independent:

E(xt,Zt) =
1

(σc
t )

2nc
t

‖zc
t−Hc

t (xt)‖2+
1

(σk
t )2nk

t

‖zk
t−Hk

t (xt)‖2,

(8)
which can be rewritten as

E(xt,Zt) =
1
nct
‖zct −Hc

t (xt)‖2 + λ2
t

1
nkt
‖zkt −Hk

t (xt)‖2.

(9)
with λt = σc

t

σk
t

.

When at least one of the variances σkt is unknown or un-
trusted, arise the problem of finding a good weight λt. We
propose different solutions to solve this weighting selection
problem in section 4.

3.2.1 Solving the Compound BA

After estimating the constraint weight λt, we simply per-
form the classical Levenberg-Marquardt algorithm to solve
the appropriate problem:

min
xt

E(xt,Zt) =
1
2
∆>t Σ−1

t ∆t (10)

where ∆ = [∆c
t

nc
t

∆k
t

nk
t

] and Σt = I.
Obviously, if a variance/covariance matrix for one of the

sensor is known, we advice to replace the identity matrix by
the variance/covariance matrix.

3.3. Sensor Prediction and Constraint

The second sensor constraint is formulated as a least
squares cost. Since the sensors measurements are not syn-
chronized, we need to predict the system pose (or a part of
it) at the camera frame time t from the second sensor mea-
surements zkt = zkt′∈]t−1,t]. Then we build the constraint
from this prediction.

3.3.1 Pose Prediction from Second Sensor

We assume we have a prediction model (Equation 2) of the
system dynamic, for instance, a random walk with constant
translation and rotational speeds. Since our BA does not
optimize velocities, these quantities have to be either back-
estimated, or came directly from the second sensor. We
also suppose to have the inverse observation model H−1

t

which provide an estimate of the system state xkt′ at time
t′ ≤ t, corresponding to the last measurement zkt′ of sen-
sor k. Thus, with the system prediction model, at time t we
have the following predicted pose:

p̂kt = Ft(H−1
t′ (zkt′ − nkt′)) + wt. (11)

The model estimates a prediction p̂kt of the system state
at the time of keyframe t, from the second sensor measure-
ments zkt and the previous system state xt−1. Here the error
vectors nkt and wt are supposed to be null. This prediction
is then used to make a constraint on the system displace-
ment.

3.3.2 Sensor Constraint

The constraint type is based on the nature of the sensor mea-
surements. As an example, we propose some constraints for
sensors that sense the system dynamic.

Position: εtk(xt, zkt ) = 1√
3
‖t̂kt − tt‖.

Orientation: εRk (xt, zkt ) = 1√
9
‖R̂ktR>t − I3‖.

Scale (relative translation norm): εsk(xt, zkt ) =∥∥‖t̂kt − tt−1‖ − ‖tt − tt−1‖
∥∥.

4



Each constraint will have a different impact on the sys-
tem localization and will tend to correct the corresponding
drift. Our method is generic, so the user defined constraint
can be any least squares error term that constrains the opti-
mized variables in BA.

3.4. Bi-Objective Pose Refinement

In the tracking process of an incremental SfM, when a
new keyframe is detected a refinement is performed over
the camera location.

We thus want to recover the current system pose pt that
best explain the sensors measurements Zt =

[
zctz

k
t

]
. We

build the aggregate cost function with the standard visual
errors term ε2c , plus the selected constraint ε2k based on
the predicted pose given by sensor k. The second term is
weighted with the previously selected λt (see section 4).
Hence, the global MSE is

Ep(xt,Zt) = ε2c(xt, z
c
t) + λ2

t ε
2
k(xt, zkt ) (12)

The current pose in then optimized using the Levenberg-
Marquardt algorithm with the compound cost function
Ep(xt,Zt), to solve:

p∗t = argmin
pt

Ep(xt,Zt) (13)

3.5. Constrained Local Bundle Adjustment

Periodically, a refinement is operated on both scene
structure and system location to reduce the cumulated er-
rors of the incremental SLAM. Good results can be obtained
with a local optimization. As in [16], we choose to opti-
mize the three last camera poses (keyframes) and reproject
the scene observed in the last N = 9 cameras poses.

We need to constrain each of the optimized cameras. A
simple way to do is to inject the previous constraints in the
LBA cost function. We define Xt = [pt−9 . . .ptst], a vec-
tor comprising fixed poses (pt−9, . . . ,pt−3), free camera
poses (pt−2,pt−1,pt) and the current scene estimate (st).

The Local Bundle Adjustment cost function with con-
straints becomes:

EBA(Xt,Zt) =
t−3∑

t′=t−9

ε2c([pt′st], z
c
t′)+

t∑
t′=t−2

Ep([pt′st],Zt)

(14)
The first part of Equation 14 is the camera-fixed repro-

jection errors. There is no need to constrain fixed cameras
here, so we take the original reprojection errors. The second
part is composed of the cameras-constrained error functions
for the three most recent camera poses, from Equation 12.

We then optimize the system location and scene structure
using the Levenberg-Marquardt algorithm, and solve

[pt−2pt−1ptst]∗ = argmin
[pt−2pt−1ptst]

EBA(Xt,Zt). (15)

It is important to note that for relative constraints (be-
tween two camera poses), the pose predicted by the second
sensor has to be updated at each iteration of the LM, with
Equations 11.

4. Weight Selection
Here we investigate different solutions to solve the prob-

lem of determinating the weighting parameter λ of Equation
9. We propose three methods that inspect the behaviour of
each of the two error parts. Our propositions are based on
either trade-off criteria or a learning method.

4.1. Trade-off Criteria

L-Curve. The L-Curve is a criterion originally employed
in regularization of ill-posed problems, known as Tikhonov
regularization (see [8]). The original aim was to find au-
tomatically a good regularisation parameter. The method
has also been used in multi-objective Least Squares opti-
mization. In this case, we want to find a good compromise
between multiple objectives, separated with one weighting
parameter λ as in Equation 9.

Figure 1. L-Curve criterion

The L-Curve criterion represents the trade-off be-
tween the two cost functions, in a log-log plot (ρ̂ =
log εc(xt, zct), ν̂ = log εk(xt, zkt )) as shown in Figure 1.
The trade-off usually has an L-shape, where a ’corner’ sep-
arates the flat and vertical parts of the curve, where the so-
lution of the multiple optimization is dominated by the first
or the second error. The curvature κ(λ) of the L-Curve can
be used to find the corner

κ(λ) = 2
ρ̂′ν̂′′ − ρ̂′′ν̂′

(ρ̂′2 + ν̂′2)
3
2

(16)

where ′ and ′′ denotes the first and second derivatives with
respect to λ. The good weighting parameter is located in
the corner, where the curvature is at maximum, hence

λ∗LCurve = argmax
λ∈[0,1[

κ(λ) (17)

5



The method has some limitations. It sometimes appears
(but rare in our case) multiple corners or ‘smooth corner’,
where all solutions on the pareto frontier are quite equiva-
lent. Moreover, second derivatives can be subject to insta-
bilities.

L-Tangent Norm. Brunet et al. propose in [2] a different
and empirical criterion based on the tangent information of
the L-Curve. Instead of finding the corner of the L-Curve,
the LTN propose to find the best weight for which a small
variant of its value has the lowest impact in the trade-off
between each of the two errors. The LTN optimal weight
solution is

λ∗LTN = argmin
λ∈[0,1[

L(λ) (18)

where
L(λ) = ‖(ρ̄λ′, ν̄λ′)‖

2
2 (19)

and ρ̄λ and ν̄λ are normalized errors.
This variant is cheaper to compute than the classical L-

Curve corner and more stable (first derivatives only).

Computing L-Curve based criteria. These two criteria
assume that we are able to compute multiple (nλ) couples
(εc, εk) for differents values of λ. This means that for each
value of λwe need to do a few iterations of a Gauss-Newton
based algorithm on Ep(xt,Zt). Since we target real-time
data fusion, we nedd to choose a small value of nλ, say
nλ < 100.

4.2. Learning Method

Cross Validation. The Cross Validation is a popular ma-
chine learning tool based on statistical considerations. An
adequate model (here the weight) should predict well miss-
ing data values. More precisely, if we remove a few mea-
surements from the data set and do the optimization (train-
ing phase), then the corresponding solution should predict
well the missing observations (test phase).

It exists differents variants of Cross Validation, mainly
depending on the training and test sets managment. In our
case, the limited number of camera observations (∼ 40 in-
liers among 200-300 points) enforce us to use a recycling
variant, the Leave-one-out method. In this case, we build
the test set using only one observation and recycle it in the
next learning phases.

The CVloo(λ) score reflects the prediction error for a
weight λ. It represents the mean difference between the
real observation yjt of a point j and its predicted value
Hc
t ([p[j]

t sjt ]), where the pose p[j]
t is learned without the

point j.

CVloo(λ) =
1
n

n∑
j=1

Hc
t ([p[j]

t sjt ])− yjt (20)

with p[j]
t is the solution of argmin

pt

Ep(xt,Z
[j]
t ), from

Equation 13.
The aim of Cross Validation is then to maximize the pre-

diction quality of the weighting parameter, and so minimize
its prediction errors:

λ∗CV = argmin
λ

CVloo(λ) (21)

In a related work [7], an approximation of the Cross Val-
idation is used to smooth the camera trajectory in a monoc-
ular SLAM. Here we propose to use this criterion to find an
efficient weight in a multi-sensor fusion context, and pro-
pose a way to constrain the Local Bundle Adjustment.

5. Experimental Results
We have validated our propositions with two real

datasets integrating two distinct types of sensors, odometers
and gyroscope, to highlight the genericity of the method.

5.1. Vision with Odometer

The first experiment is a system composed of a cam-
era and an odometer embedded in a vehicle. The vehicle
sequence cover roughly 400m in a real traffic conditions
(∼2500 images). The odometer sensor, positioned on one
wheel, delivers the instant translational speed (m/s).

(a) (b) (c)

Figure 2. Images from the vehicle sequence.

The fusion was performed over reprojection errors (cam-
era) and the scale factor sensed by the odometer (εsk). Ta-
ble 5.1 presents a comparison between the different meth-
ods for computing the weight. We present results where
the choice of the keyframes was fixed or free (KF. Fixed).
Each localization is compared to the ground truth, obtained
with a high precision Inertial Navigation System (INS+GPS
RTK). The mean distance of the localized cameras with the
ground truth (Mean 3D RMS) is presented to validate our
techniques.

A top view of the final localization is shown in Figure
5.1. The Ground truth (violet) was obtained with a Trajec-
tometer (IMU+GPS RTK). The yellow result is the localiza-
tion with the monocular only SLAM, one can observe a drift
on the scale factor appearing around the middle of the se-
quence. The red result is the trajectory constrained with the
odometer scale prediction. We see that the drift decreases
as expected .

6



Selection Method KF. Fixed Mean 3D RMS (m)
Without fusion[16] no 3.6704

L-Curve no 1.7884
LTN no 3.2723

Cross Validation no 2.3963
L-Curve yes 1.792

LTN yes 2.9505
Cross Validation yes 2.6207

Table 1. Statistics for the vehicle sequence (400m) with a scale
factor constrained BA.

Figure 3. Top view of the localization of the 400m trajectory: (vi-
olet: ground truth, red: SLAM Trajectory with odometer and L-
Curve, yellow: Visual only SLAM)

Figure 4, shows the 3D RMS of the position with the
ground truth (after a global best fit), for different weight
selection methods (vehicle sequence with L-Curve, LTN,
CV) and without data fusion (red). The L-Curve method
seems again to bring the best improvement.

Figure 4. RMS 3D errors (ground truth) for the vehicle sequence,
with different weight selection methods (blue: L-Curve, cyan:
LTN, green: CV), and the monocular SLAM (red)

5.2. Vision with Gyroscope

We also test our BA based SLAM with a gyroscope in-
tegrated in a Inertial Measurement Unit (IMU). The hand-
held system was carried by a pedestrian and the sequence is

composed of 1400 images (640x480 px, figure 5) shot in an
indoor environment with an 8m smooth trajectory1. Ground
truth was acquired with a high precision laser tracker sys-
tem.

(a) (b) (c)

Figure 5. Images from the indoor sequence.

We constrain the visual SLAM with the orientation given
by the gyroscope (εRk ) and compare our localization results
with a ground truth obtained with the laser tracker. We com-
pare our methods with the kalman based SLAM of [12].

Figure 6. RMS 3D errors (ground truth) for the indoor sequence,
with different weight selection methods (red: no, blue: L-Curve,
cyan: LTN, green: CV, black : EKF)

Figure 6. In this sequence, the visual only SLAM [16]
(red) yet reach an interesting accuracy on the localization
(but up to a scale) thanks to the very good lightnings condi-
tions and scene structure. After a global best fit, the means
RMS 3D with the ground truth is 3.15cm. With an orienta-
tion constraint, we are able to increase slightly the local-
ization accuracy (to 2.96cm with the L-Curve technique:
gain of 6%). This improvement can be explained by the
local error correction at the beginning of the sequence (red
peacks). We also see that the weight selection methods are
quite equivalent. We also see that EKF SLAM[12] is less
accurate than other methods, even the visual only SLAM.
We suggest that this result is mainly due to the approxima-
tive covariances estimated from the Local Bundle Adjuste-
ment.

1The dataset come from the GYROVIZ project.

7



6. Conclusion
This paper introduces a new technique for multi-sensor

fusion based on an extended bundle adjustment. The
method relies on previous work on data fusion with a
weighting term, adapted by a learning method applied to
bundle adjustment. This technique can also be applied for
common experimental cases where one can not relies on
covariances given by the sensors to perform classical data
fusion e.g. GPS and Kalman filtering for instance.

Experimental results are presented in two different kind
of applications. First, the classical bundle adjustment is
considered for vehicle localization. Naturally, odometers
presents on the car are considered for the fusion and the re-
sults show a significant improvement on the classical BA.
Then, in order to highlight the genericity of the method,
we have validated our method with a hand-held camera in-
cluding an IMU. Even with a low cost MEMS IMU and an
orientation only constraint, the fusion between the bundle
adjustment and the orientations given by the IMU brings a
slight improvement of the results.

These two experiments also show that the L-Curve based
weighting method is more efficient than the other tech-
niques and seems to be well adapted in this context.

Future work will address a generalization of this fusion
problem for integrating multiple sensors.

References
[1] M. Agrawal and K. Konolige. Real-time localization in out-

door environments using stereo vision and inexpensive GPS.
In ICPR, August 2006. 1

[2] F. Brunet, A. Bartoli, R. Malgouyres, and N. Navab. L-
Tangent Norm: A Low Computational Cost Criterion for
Choosing Regularization Weights and its Use for Range Sur-
face Reconstruction. 6

[3] F. Chenavier and J. L. Crowley. Position estimation for a mo-
bile robot using vision and odometry. In IEEE International
Conference on Robotics and Automation, 1992. 1

[4] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel.
1-Point RANSAC for EKF-based Structure from Motion. In
IROS, 2009. 1

[5] A. Cumani, S. Denasi, A. Guiducci, and G. Quaglia. Inte-
grating monocular vision and odometry for SLAM. pages
625–30, 2003. 1, 2

[6] A. J. Davison. Real-time simultaneous localisation and map-
ping with a single camera. In ICCV ’03: Proceedings of the
Ninth IEEE International Conference on Computer Vision,
page 1403, Washington, DC, USA, 2003. IEEE Computer
Society. 1

[7] M. Farenzena, A. Bartoli, and Y. Mezouar. Efficient cam-
era smoothing in sequential structure-from-motion using ap-
proximate cross-validation. In ECCV (3), pages 196–209,
2008. 6

[8] P. C. Hansen. The L-curve and its use in the numerical
treatment of inverse problems. In Computational Inverse

Problems in Electrocardiology, number 5 in Advances in
Computational Bioengineering, pages 119–142. WIT Press,
Southampton, 2001. 5

[9] J. Hol, T. Schon, F. Gustafsson, and P. Slycke. Sensor fu-
sion for augmented reality. In Information Fusion, 2006 9th
International Conference on, pages 1–6, July 2006. 1

[10] A. Huster. Relative position sensing by fusing monocular
vision and inertial rate sensors. PhD thesis, Stanford, CA,
USA, 2003. Adviser-Rock, Stephen M. 1

[11] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In Proc. Sixth IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR’07), Nara, Japan, November 2007. 1

[12] K. Konolige, M. Agrawal, and J. Solà. Large scale visual
odometry for rough terrain. In In Proc. International Sympo-
sium on Robotics Research, 2007. 2, 7

[13] E. M. Lavely, M. Barmin, V. Kaufman, and E. Blasch.
Model-based, multi-sensor fusion and bundle adjustment
for image registration and target recognition. In Society
of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, 2006. 2

[14] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fast-
slam 2.0: An improved particle filtering algorithm for simul-
taneous localization and mapping that provably converges.
In In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI,
pages 1151–1156, 2003. 1

[15] J. Montiel, J. Civera, and A. Davison. Unified inverse
depth parametrization for monocular slam. In Proceedings
of Robotics: Science and Systems, Philadelphia, USA, Au-
gust 2006. 1

[16] E. Mouragnon, M. Lhuiller, M. Dhome, F. Dekeyser, and
P. Sayd. Real time localization and 3d reconstruction. In
CVPR, June 2006. 1, 3, 4, 5, 7

[17] T. Oskiper, Z. Zhu, S. Samarasekera, and R. Kumar. Visual
odometry system using multiple stereo cameras and inertial
measurement unit. Computer Vision and Pattern Recogni-
tion, IEEE Computer Society Conference on, 2007. 1

[18] D. Schneider and H.-G. Maas. Integrated bundle adjustment
with variance component estimation – fusion of terrestrial
laser scanner data, panoramic and central perspective image
data. In ISPRS Workshop on Laser Scanning, 2007. 2

[19] D. W. Strelow and S. Singh. Motion estimation from im-
age and inertial measurements. The International Journal of
Robotique Research, 2004. 1, 2

[20] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-
bon. Bundle adjustment - a modern synthesis. In ICCV ’99:
Proceedings of the International Workshop on Vision Algo-
rithms, pages 298–372, London, UK, 2000. 1, 3

8


