
Feature-Driven Direct Non-Rigid Image Registration

Florent Brunet∗ Vincent Gay-Bellile† Adrien Bartoli‡ Nassir Navab§ Rémy Malgouyres¶

Accepted: November 2010

Abstract

The direct registration problem for images of a deforming sur-

face has been well studied. Parametric flexible warps based, for

instance, on the Free-Form Deformation or a Radial Basis Func-

tion such as the Thin-Plate Spline, are often estimated using

additive Gauss-Newton-like algorithms. The recently proposed

compositional framework has been shown to be more efficient,

but cannot be directly applied to such non-groupwise warps.

Our main contribution in this paper is the Feature-Driven

framework. It makes possible the use of compositional algo-

rithms for most parametric warps such as those above men-

tioned. Two algorithms are proposed to demonstrate the rel-

evance of our Feature-Driven framework: the Feature-Driven

Inverse Compositional and the Feature-Driven Learning-based

algorithms. As another contribution, a detailed derivation of

the Feature-Driven warp parameterization is given for the Thin-

Plate Spline and the Free-Form Deformation. We experimen-

tally show that these two types of warps have a similar repre-

sentational power. Experimental results show that our Feature-

Driven registration algorithms are more efficient in terms of

computational cost, without loss of accuracy, compared to ex-

isting methods.

Keywords. Direct registration inverse compositional image

alignment deformable model.

1 Introduction

Registering images of a deforming surface is important for tasks

such as video augmentation by texture editing, deformation cap-

ture and non-rigid Structure-from-Motion. This is a difficult

problem since the appearance of imaged surfaces varies due

to several phenomena such as camera pose, surface deforma-

tion, lighting and motion blur. Recovering a 3D surface, its

deformations and the camera pose from a monocular video se-

quence is intrinsically ill-posed. While prior information can

be used to disambiguate the problem, see e.g. (Bregler et al,

2000; Gay-Bellile et al, 2006; Pilet et al, 2005), it is common

to avoid a full 3D model by using image-based deformation

models, e.g. (Bartoli and Zisserman, 2004; Bookstein, 1989;

Cootes et al, 2004; Lim and Yang, 2005). The Thin-Plate Spline

warps (TPS) is one possible deformation model, proposed in a

∗ISIT / Université d’Auvergne – Clermont-Ferrand, France // CAMPAR –

TUM – München, Germany
†CEA LIST, Embedded Vision Systems Laboratory, Point Courrier 94, Gif-

sur-Yvette, F-91191 France
‡ISIT / Université d’Auvergne – Clermont-Ferrand, France
§CAMPAR – TUM – München, Germany
¶LIMOS, UMR 6158 – Clermont-Ferrand, France

seminal paper by (Bookstein, 1989), that has been shown to ef-

fectively model a wide variety of image deformations in dif-

ferent contexts. Recent work shows that the TPS warp can be

estimated not only with the traditional landmark based method,

but also with direct methods, i.e. by minimizing the intensity

discrepancy between registered images (Bartoli and Zisserman,

2004; Lim and Yang, 2005). Other non-rigid warps include Ra-

dial Basis Functions (with e.g. multiquadrics (Little et al, 1997)

or Wendland’s (Fornefett et al, 1999) as kernel function) and

Free-Form Deformations (Rueckert et al, 1999).

The Gauss-Newton algorithm with additive update of the pa-

rameters is usually used for conducting the minimization. Its

main drawback is that the Hessian matrix must be recomputed

and inverted at each iteration. More efficient solutions have

been proposed by (Baker and Matthews, 2004) based on com-

positional updating of the parameters. They might lead to a

constant Hessian matrix. Most non-rigid warps do not form

groups, preventing the use of compositional algorithms which

require one to compose and possibly invert the warps. Despite

several attempts to relax the groupwise assumption by various

approximations (Gay-Bellile et al, 2006; Matthews and Baker,

2004; Romdhani and Vetter, 2003), there is no simple solution

in the literature.

This paper is an extended version of an earlier conference

version (Gay-Bellile et al, 2007). With respect to the literature,

it brings several contributions:

• The main contribution of this paper is the Feature-Driven

registration concept. It allows one to devise compositional

algorithms while relaxing the strict groupwise warp re-

quirement, and is thus applicable to most non-rigid para-

metric warps. The main idea is to parameterize the warp by

a set of driving features instead of the usual control points

or coefficients, and to act on these features directly.

• Two operations, reversion and threading, are defined using

the Feature-Driven parameterization. They respectively

approximate inversion and composition when those are not

guaranteed to exist or cannot be easily computed.

• Using our Feature-Driven framework, we extend the In-

verse Compositional algorithm to non-rigid warps. Our

framework also allows us to propose a forward Learning-

based algorithm for non-rigid warps. Besides, we improve

the classical linear learning algorithm using a new piece-

wise linear relationship.

• We give a detailed derivation of the Feature-Driven param-

eterization for the TPS and FFD warps. In particular, we

present an extrapolation method for the FFD warp, required

for the Feature-Driven framework. We also show that the

TPS and FFD warps have a similar representational power.

1

We experimentally show that Feature-Driven algorithms are

clearly more efficient without loss of accuracy compared to pre-

vious state-of-the-art methods. The combination of the Feature-

Driven framework with Learning-based local registration out-

performs other algorithms for most experimental setups.

Roadmap. Previous work is reviewed in §2. In particular, pre-

vious attempts to extending compositional algorithms to non-

groupwise warps are presented in §2.2. The Feature-Driven

framework and the associated operations are explained in §3.

Registration with the Feature-Driven Inverse Compositional and

the Feature-Driven Learning-based algorithms are described

in §4. The Feature-Driven parameterization of the TPS and of

the FFD warps are detailed in §5. Experimental results on sim-

ulated and real data are reported in §6. Conclusions and further

work are discussed in §7. Details on the piecewise linear rela-

tionship we used for the Learning-based local registration step

are given in appendix A.

Notation. Scalars are in italics (x), vectors in bold (v), ma-

trices in sans-serif (M) and sets (or collections) in fraktur (C).

Vectors are always considered as column vectors. The inverse

of a matrix M is written M−1, the pseudo-inverse M† and the

transpose MT. The symbol R denotes the set of the real num-

bers. The identity matrix of size n is denoted In. The nota-

tion 0m×n and 1m×n corresponds to the matrices of size m×n

filled with zeros and ones respectively. The operator that vec-

torizes a matrix is denoted ν, i.e. ν(M) =
(

mT

1 . . . mT

l

)T

where the vectors {mi}
l
i=1 are the columns of M. Conversely,

the operator ζp builds a matrix of size R
q×p from a vector

of size R
pq , i.e. ζp(v) = (v1 . . . vp) ∈ R

q×p where v =
(

vT

1 . . . vT

l

)T
∈ R

pq . The notation ζ is used to abbreviate ζ2.

We denote rms(v) the Root Mean of Squares (RMS) of the m-

vector v, i.e. rms(v) =
√

1
m

∑m
i=1 v

2
i ∝ ‖v‖, with ‖ • ‖ the

two-norm.

Images are considered as R
2 → R functions1 and are de-

noted using calligraphic fonts (A). If C is a collection of pixels

then ξC(I) is the vector in which are stacked the values of I for

all the pixels indicated in C. More precisely, if C = {qi}
|C|
i=1

then ξC(I) =
(

I(q1) . . . I(q|C|)
)T
∈ R

|C| where |C| is the

cardinal of the set C.

The images to be registered are written Ii with i = 1, . . . , n.

The texture image, e.g. the region of interest in the first image, is

denoted I0. The set of pixels of interest, i.e. the subset of pixels

of the image I0 actually used to estimate a warp, is denoted R.

A generic parametric warp is written W . It depends on a pa-

rameter vector ui for image Ii and maps a point q0 from the

texture image to the corresponding point qi in the i-th image:

qi =W(q0;ui). The notationW(q; •) designates the warp as

a function of its parameters, i.e. an R
l × R

2 function where l is

the size of the parameter vector, instead of as a function of the

pixels.

1In practice, images are R2 → R
c functions where c is the number of chan-

nels. For the sake of simplicity and without loss of generality, we consider

that c = 1 in all the derivations of this article.

2 Problem Statement and Previous

Work

The registration of images of deformable surfaces has received

a growing attention over the past decade. Usually, for purely

twodimensional registration, as is the case in this paper, smooth-

ness constraints are used to filter out the noise and ‘fill-in’ the

optical flow in untextured image areas. These soft constraints

are either implicitly incorporated in a parameterized warp or

enforced through regularization. In this paper, we focus on di-

rect as opposed to feature-based methods, e.g. (Pilet et al, 2005;

Torr and Zisserman, 1999). In the feature-based methods, the

warp parameters are estimated from features, such as points,

which have first been extracted and matched in the images to

register (Szeliski, 2006). Note that there exist methods that

mix both the feature-based and the direct approaches to image

registration. See for instance, (Johnson and Christensen, 2002;

Georgel et al, 2008).

Direct registration consists in minimizing the pixel value dis-

crepancy. Registration of an image sequence is posed as a

set of nonlinear optimization problems, each of which estimat-

ing ui using the registration ui−1 of the previous frame as an

initial solution. The discrepancy function C is usually cho-

sen as the two-norm of the difference D between the texture

image and the current one, warped towards the texture image,

i.e. D(q;ui) = I0(q)− Ii(W(q;ui)), giving:

C(ui) =
∑

q∈R

‖D(q;ui)‖
2
. (1)

Other choices are possible for the cost function, such as the

Mutual Information, see e.g. (Pluim et al, 2003; Meyer et al,

1997), or a criterion based on the gradient of images,

see (Haber and Modersitzki, 2006).

Several algorithms have been proposed to minimize C. We

classify them in two groups: the Forward Additive algorithms

and the Inverse Compositional ones.

2.1 Forward Additive Algorithms

Forward Additive Gauss-Newton (FA-GN). Using an addi-

tive update of the parameter vector, i.e. ui ← ui + δ, Gauss-

Newton can be used in a straightforward manner for minimiz-

ing (1) or in conjunction with complexity tuning schemes as

in (Bartoli and Zisserman, 2004; Lim and Yang, 2005) for the

TPS warp. The local Gauss-Newton approximation to C is given

by the first order Taylor expansion in δ of each squared term

in (1):

C(ui + δ) ≈
∑

q∈R

‖D(q;ui) + g(q;ui)
Tδ‖2. (2)

The gradient vector g is the product of the image gradient vector

and of the Jacobian matrix K of the warp, i.e. g = ∇ITi K. The

Gauss-Newton approximation induces a Linear Least Squares

minimization problem in δ. Defining J as the Jacobian matrix

of the error, obtained by stacking the gradient vectors g(q;ui)
T

for all the pixels q in R, and d = ξR(D(• ;ui)) the residual

error vector, the solution is obtained through the normal equa-

tions:

Hδ = −b with H = JTJ and b = JTd. (3)

2

The matrix H is the Gauss-Newton approximation to the Hes-

sian matrix. Note that J, H and d depend on ui. The Jacobian

matrix J must be recomputed at each iteration, implying that H

must be recomputed and inverted as well.

Forward Additive ESM (FA-ESM). A second order ap-

proximation of C called ESM (Efficient Second-order Mini-

mization), theoretically better than the Gauss-Newton one, is

proposed in (Benhimane and Malis, 2004). Combined with an

additive update of the parameters, it gives:

C(ui + δ) ≈
∑

q∈R

∥

∥

∥
D(q;ui) +

1
2 (g(q;ui) + g(q;u0))

T
δ
∥

∥

∥

2

.

(4)

The ESM approximation has been shown to improve the con-

vergence rate, compared to Gauss-Newton, without increasing

the computation time per iteration since the gradient vectors

g(q;u0) are constant.

2.2 Inverse Compositional Algorithms

The major drawback of the two above-presented methods is

that the image gradient vector for each pixel in R must be

recomputed at each iteration. This is the most expensive

step of the process. A major improvement was proposed

by (Baker and Matthews, 2004) with the Inverse Compositional

algorithm. The first key idea consists in switching the roles of

the texture and of the current images:

min
ũ

∑

q∈R

‖I0 (W(q; ũ))− Ii (W(q;ui))‖ . (5)

The second idea is to update the current warp by composition:

W(• ;ui)←W(• ;ui) ◦W
−1(• ; ũ). (6)

Using Gauss-Newton for local registration leads to a constant

Jacobian matrix and a constant Hessian matrix whose inverse is

thus pre-computed. Of course, the inverted warp W−1 exists

only if the considered set of warps is a group. For instance, ho-

mographic warps are used in the original Inverse Compositional

algorithm (Baker and Matthews, 2004). In this case, inversion is

obtained by inverting the associated 3× 3 matrix and composi-

tion by multiplying those matrices. Several attempts have been

made to relax the groupwise requirement for flexible models.

As proposed in (Gay-Bellile et al, 2006;

Matthews and Baker, 2004; Romdhani and Vetter, 2003),

these attempts usually consist in finding the best approximating

warp for the pixels of interest in R:

ui ← argmin
u′

i

∑

q∈R

‖W(W(q;u);ui)−W(q;u′
i)‖

2. (7)

In (Matthews and Baker, 2004; Romdhani and Vetter, 2003),

the warp is induced by a triangular mesh whose deformations

are guided by a parameter vector. This minimization problem

is usually solved in two steps. First the vertices in the cur-

rent image are computed using the assumption of local rigid-

ity. They usually are not in accordance with a model instance in

e.g. the case of 3D Morphable Model (Gay-Bellile et al, 2006;

Romdhani and Vetter, 2003). Second, the parameter update is

recovered by minimizing a prediction error, i.e. the distance be-

tween the updated vertices and those induced by the param-

eters. This last step may be time consuming since nonlinear

optimization is required. Warp inversion is approximated with

first order Taylor expansion in (Matthews and Baker, 2004),

while (Romdhani and Vetter, 2003) draws on triangular meshes

to avoid linearization. By comparison, our method reverts and

threads warps in closed-form: it does not require optimization.

Other methods have been proposed to obviate the short-

comings induced by non-groupwise warps. For instance,

one may force the solution space to contain diffeomorphic

warps (Joshi and Miller, 2000; Johnson and Christensen, 2002;

Charpiat et al, 2005). The solution space thus constitutes a

group. Requiring the warps to be diffeomorphisms may be

an overly strong requirement. This is especially true when

the deformations are not too important. Indeed, as noted in

(Johnson and Christensen, 2002), with such deformations the

estimated warps may be diffeomorphisms even though the so-

lution space contains non-diffeomorphic warps. Besides, such

approaches make the use of standard deformation models such

as the TPS and the FFD generally impossible. This is one inter-

esting point of the proposed approach in this paper: it proposes

an efficient method which is built on top of the most common

deformation models for image registration. Finally, enforcing

the estimated warps to be diffeomorphisms is often achieved by

adding supplementary constraints to an initial forward estima-

tion algorithm. These constraints are generally impractical to

design a fast inverse-compositional estimation algorithm.

3 Feature-Driven Registration

In this section, we present our principal contribution: the

Feature-Driven framework. This framework, in which one di-

rectly acts on warp driving features, has two main advantages.

First, it often is better balanced to tune feature positions, ex-

pressed in pixels, than coefficient vectors that may be difficult to

interpret, as for the TPS or the FFD warps. Second, it allows one

to use the efficient compositional framework in a straightfor-

ward manner. Indeed, warp composition and inversion cannot

be directly done for non-groupwise warps. We propose empir-

ical means for approximating warp composition and inversion

through their driving features, called threading and reversion

respectively. Our Feature-Driven framework is generic in the

sense that it can be applied to almost any parametric warps such

as the TPS or the FFD warps, as shown in §5.

3.1 Feature-Driven Warp Parameterization

Ignoring the set of parameters, a warp is an R
2 → R

2 func-

tion usually parameterized by a set of n control points pi =
(pxi p

y
i)

T ∈ R
2 for i = 1, . . . , n. These control points are

grouped in a vector p = ν(P) ∈ R
2n where P ∈ R

n×2 is the

matrix defined by PT = (p1 . . . pn). We write ω the warp

in its natural parameterization. The warp ω is said to be lin-

ear when it can be defined as a linear combination of its control

points:

ω(q;p) = ℓTqP, (8)

where ℓq ∈ R
n is a vector that depends on the point q and on

the type of warp being considered. Note that the dependency

3

on q of ℓq is usually non linear even if the warp is linear. The

control points are usually not interpolated. They just act as ‘at-

tractors’ to the warp. It thus makes their interpretation difficult.

The Feature-Driven concept is in fact a change of parameteri-

zation. The control points are replaced by a set of features that

are interpolated by the warp. We call them the driving features

and denote them u0 in the texture image and v in the current

one (see figure 1). We denoteW the Feature-Driven parameter-

ization of the warp ω. Loosely speaking, matching the driving

features between two images is equivalent to defining a warp

since the warp can be used to transfer the driving features from

one image to the other, while conversely, the warp can be com-

puted from the driving features. Indeed, if the warp is linear

with respect to its control points then it is always possible to

find a matrix E such that:

W(q;v) = ℓTqEV, (9)

with V = ζ(v), i.e. V equals to v reshaped on two columns.

Matrix E can be pre-computed. Details on how the matrix E is

obtained for the TPS and the FFD warps are given in sections §5.1

and §5.2 respectively. If we write µq = ETℓq then the Feature-

Driven parameterization of the warpW is given by:

W(q;v) = µT

qV. (10)

Figure 1: Illustration of the Feature-Driven parameterization.

The vector u0 contains the features in the texture image (the

centers). ω(• ;p) andW(• ;v) are two different representations

of the same warp. The first one is parameterized with the ‘natu-

ral’ control points p while the second one is parameterized with

the driving features v.

Identity Warp. If we denote u0 the features in the texture

image then W(• ;u0) is the identity warp2, i.e. the warp that

leaves the location of the features u0 unchanged.

3.2 Threading Warps

Given two sets of driving features, v = ν
(

(v1 . . . vl)
T
)

and v′ = ν
(

(v′
1 . . . v′

l)
T
)

, we want to find a third set v′′ =

ν
(

(v′′
1 . . . v′′

l)
T
)

defined such that threading the warps in-

duced by v and v′ results in the warp induced by v′′, as shown

in figure 2. We propose a simple and computationally cheap

2Actually, it can also be a very close approximation, depending on how the

matrix E is defined.

way to do it, as opposed to previous work. This is possible

thanks to the Feature-Driven parameterization. Our idea for

threading warps is very simple: we apply the v′ induced warp

to the features v; the resulting set of features is v′′. We thus

define the warp threading operator, denoted �, as:

W(• ;v) �W(• ;v′)
def
= W(• ;v′′) with v′′ =W(v;v′),

(11)

whereW(v;v′) is meant to be applied to each feature in v.

Figure 2: The Feature-Driven warp threading process: v′′ is

defined by v′′ =W(v;v′).

Examples of our warp threading process are shown in fig-

ure 3. We synthesized two sets of driving features v and v′

by randomly disturbing a 3 × 3 regular grid from its rest po-

sition u0. As expected, threading a warp W(• ;v) with the

identity W(• ;u0) returns the original warp i.e. W(• ;v) =
W(• ;v) �W(• ;u0) andW(• ;v) =W(• ;u0) �W(• ;v).

Figure 3: Examples for the warp threading process.

3.3 Reverting Warps

Given a set v of driving features, we want to determine the fea-

tures v′ such that the warp they induce is the reversion of the

one induced by v. This is illustrated in figure 4. As for the

threading, our Feature-Driven framework yields a very simple

4

solution. The idea is that applying the v′ induced warp to v

should give u0 i.e., the fixed driving features in the texture im-

age. We thus introduce the reversion operator ⋄ as:

W(• ;v)⋄
def
= W(• ;v′) withW(v;v′) = u0, (12)

This amounts to solving an exactly determined linear system,

the size of which is the number of driving features. Using equa-

tion (10), we obtain:

MV′ = U0, (13)

where M ∈ R
l×l is the matrix defined by MT =

(

µv1
. . . µvl

)

, V′ = ζ(v′) and U0 = ζ(u0). The driving fea-

tures v′ of the reverted warp are thus given by:

v′ = ν
(

M−1U0

)

. (14)

Figure 4: The Feature-Driven warp reversion process: v′ is de-

fined such thatW(v;v′) = u0.

Examples of the reverting process are shown in figure 5. We

synthesized driving features v by randomly disturbing a 3 × 3
regular grid from its rest position u0. The driving features v′ re-

sult from reverting the warpW(•;v). Threading warpsW(•;v)
andW(• ;v′) introduce a new set of driving features v′′. As ex-

pected, the features v′′ are similar to the original grid u0 with

an average residual error of 10−13 pixels.

Figure 5: Illustration of the warp reversion process on three ex-

amples.

3.4 Compositional Feature-Driven Registration

Relying on the Feature-Driven parameterization properties, we

extend compositional algorithms to non-groupwise warps. The

following three steps are repeated until convergence, as shown

in figure 6:

• Step 1: Warping. The current driving features ui are used

to warp the input image Ii, thereby globally registering it

to the texture image by creating the warped image IW :

IW (q)
def
= Ii(W(q;ui)). (15)

• Step 2: Local registration. The driving features u are

estimated in the warped image IW . Several algorithms can

be used. They are described in §4.1 and §4.2. Note that

for the Inverse Compositional algorithm, warp reversion is

done at this step, based on equation (12).

• Step 3: Updating. The current driving features ui and

those in the warped image u are combined by threading the

warps using equation (11), to update the driving features ui

in the current image.

Note that in previous work (Gay-Bellile et al, 2006;

Matthews and Baker, 2004; Romdhani and Vetter, 2003) a

preliminary step is required before applying the update rule,

as reviewed in §2.2. In comparison, our Feature-Driven

framework makes it naturally included into the third step.

Illumination changes are handled by globally normalizing the

pixel values in the texture and the warped images at each itera-

tion. Another approach could be used such as the light-invariant

approach of (Pizarro and Bartoli, 2007).

Figure 6: The three steps of the Compositional Feature-Driven

registration.

4 Local Registration Algorithms

In the literature, there are two ways for estimating

local registration: the Forward and the Inverse ap-

proaches (Baker and Matthews, 2004). The former evaluates

directly the warp which aligns the texture image I0 with the

warped image IW . The latter computes the warp which aligns

5

the warped with the texture image and then inverts the warp.

They are both compatible with approximations of the cost

function such as Gauss-Newton, ESM, learning-based, etc. We

describe in details the Inverse Gauss-Newton and the Forward

Learning-based local registration steps.

4.1 Local Registration with Gauss-Newton

Combining an Inverse local registration with a Gauss-Newton

approximation of the cost function is efficient since this combi-

nation makes invariant the approximated Hessian matrix used in

the normal equations to be solved at each iteration. We cast this

approach in the Feature-Driven framework, making it possible

to extend Inverse Compositional registration to the TPS and the

FFD warps.

In the Inverse Compositional framework, local registration is

achieved by minimizing the local discrepancy error:

Cl(ũ) =
∑

q∈R

‖I0(W(q; ũ))− IW (q)‖2. (16)

Using Gauss-Newton as local registration engine, the gradi-

ent vector is the product of the texture image gradient vector and

of the constant Jacobian matrix K of the warp: g = ∇IT0 K. Ma-

trix K is given in §5. The Jacobian matrix of this least squares

cost is thus constant. The Hessian matrix H and its inverse are

computed off-line. However, the driving features ũ are located

on the reference image I0. They must be located on the warped

image IW for being used in the update. We use our warp re-

version process for finding the driving features u on the warped

image i.e., u such thatW(ũ;u) = u0. An overview of Feature-

Driven Inverse Gauss-Newton registration is shown in table 1.

Off-line

• Evaluate the gradient ∇I0 of the reference image

• Evaluate the constant Jacobian K of the warp

• Compute the Jacobian matrix J of the cost function

• Compute the pseudo Hessian H = JTJ and its inverse

H−1

On-line

• Compute the error vector d = ξR(I0 − IW)

• Compute b = JTd

• Estimate ũ = u0 − H−1b

• Find the driving features u such thatW(ũ;u) = u0

• Update by threading:W(•;ui)←W(•;ui) �W(•;u)

Table 1: Overview of our Feature-Driven Inverse Compositional

Gauss-Newton registration.

4.2 Learning-Based Local Registration

Learning-based methods model the relationship between the lo-

cal increment δ and the intensity discrepancy d with an interac-

tion function f :

δ = f(d). (17)

The interaction function is often approximated using a linear

model, i.e. f(d) = Fd where F is called the interaction ma-

trix. This relationship is valid locally around the texture im-

age parameters u0. Compositional algorithms are thus required,

as in (Jurie and Dhome, 2002) for homographic warps. The

Feature-Driven framework naturally extends this approach to

non-groupwise warps. However in (Cootes et al, 1998) the as-

sumption is made that the domain where the linear relationship

is valid covers the whole set of registrations. They thus apply

their interaction function around the current parameters, avoid-

ing the warping and the composition steps. This does not appear

to be a valid choice in practice.

The interaction function is learned from artificially perturbed

texture images Aj . They are obtained through random per-

turbations of the reference parameter u0. In the literature,

linear and non linear interaction functions are used. They

are learned with different regression algorithms such as Least

Squares (LS) (Cootes et al, 1998; Jurie and Dhome, 2002), Sup-

port Vector Machines (SVM) or Relevance Vector Machines

(RVM) (Agarwal and Triggs, 2006). Details are given below for

a linear interaction function, i.e. an interaction matrix, learned

through Least Squares regression. Table 2 summarizes the steps

of learning-based local registration.

Off-line

• Learn the interaction function f

On-line

• Compute the error vector d = ξR(I0 − IW)

• Compute u = u0 + f(d)

• Update by threading:W(•;ui)←W(•;ui) �W(•;u)

Table 2: Overview of our Learning-based registration.

Generating training data with a Feature-Driven Warp.

The driving features in the texture image are disturbed from

their rest position u0 with randomly chosen directions θj and

magnitudes rj :

uj = u0 + δj with δj =

(

rj ⊙ cos(θj)
rj ⊙ sin(θj)

)

, (18)

where cos(θj) and sin(θj) are meant to be applied to all the

elements of θj and ⊙ denotes the element-wise product. The

magnitude is clamped between a lower and an upper bound,

determining the area of validity of the interaction matrix to be

learned. For a Feature-Driven warp, fixing this magnitude is

straightforward since the driving features are expressed in pix-

els. It can be much more complex when the parameters are

difficult to interpret such as the usual coefficients of the TPS and

the FFD warps. There are two ways to synthesize images:

Aj(q)← I0(W(q;uj)
⋄) (19)

or

Aj(q)← I0(argminq ‖W(q;uj)− q‖). (20)

6

The former requires warp inversion whereas the latter requires

a cost optimization, per-pixel. In our experiments, we use equa-

tion (19). Our Feature-Driven warp reversion process is thus

used to warp the texture image. Training data generation with a

Feature-Driven warp is illustrated in figure 7.

Figure 7: Generating training data with a Feature-Driven warp.

Learning. The residual vector is computed for the pixels of

interest in R:

dj = ξR (I0 −Aj) . (21)

The training data are gathered in matrices D = (δ1 . . . δm) ∈
R

|R|×m and L = (d1 . . . dm) ∈ R
|R|×m. The interaction

matrix F ∈ R
|R|×|R| is computed by minimizing a Linear Least

Squares error in the image space, expressed in pixel value unit,

giving:

F =
(

LDT(DDT)−1
)†

. (22)

This is one of the two possibilities for learning the interaction

matrix. The other possibility is dual. It minimizes an error in the

parameter space, i.e. expressed in pixels. The two approaches

have been experimentally compared. Learning the interaction

matrix in the image space give the best results. Thereafter, we

use this option.

A piecewise linear interaction function. Experiments show

that a linear approximation of the relationship between the local

increment δ and the intensity discrepancy d, though computa-

tionally efficient, does not always give satisfying results. The

drawback is that if the interaction matrix covers a large domain

of deformation magnitudes, the registration accuracy is spoiled.

On the other hand, if the matrix is learned for small deforma-

tions only, the convergence basin is dramatically reduced. Using

a nonlinear interaction function learned through RVM or SVM

partially solves this issue. We use a simple piecewise linear re-

lationship as interaction function. It means that we learn not

only one but a series F1, . . . ,Fκ of interaction matrices, each

of them covering a different range of displacement magnitudes.

The interaction function is thus of the form f(d) =
∑κ

i=1 aiFi.

More details are given in appendix A.

5 Feature-Driven Warps

In this section, we specialize the generic Feature-Driven param-

eterization presented in §3.1 for two types of warps: the TPS and

the FFD warps. Since the representational power of the TPS warp

and of the FFD warp are equivalent (see experiments in §6.1),

we focused our experiments on the TPS warp. However, it is

important to show how the FFD warp can actually be used in

the Feature-Driven framework. In particular, we show how the

standard FFD model can be extended in order to be compatible

with the warp reversion operation.

5.1 The Feature-Driven Thin-Plate Spline Warp

5.1.1 Definition

Ignoring the parameters, a TPS ω̄T is an R
2 → R function. It is

the Radial Basis Function that minimizes the integral bending

energy. In its natural parameterization, a TPS is driven by a

set of l + 3 weights p̄k ∈ R. These weights are grouped in a

vector of parameters p̄ ∈ R
l+3. The evaluation of a TPS at the

point qT = (x y) is given by:

ω̄T(q; p̄) =

l
∑

i=1

p̄iρ
(

d2(q, ci)
)

+ p̄l+1x+ p̄l+2y+ p̄l+3. (23)

The l 2D points ck are called the centers. They are also the

driving features in the texture image. They can be located at

any place but, in practice, we place them on a regular grid. The

function d2 gives the squared euclidean distance between its two

arguments. The function ρ is the TPS basis function and is de-

fined by ρ(r) = r2 log(r) for r > 0 and ρ(0) = 0. In matrix

form, equation (23) is equivalent to:

ω̄T(q; p̄) = ℓTqp̄, (24)

with

ℓTq =
(

ρ(d2(q, c1)) · · · ρ(d2(q, cl)) qT 1
)

∈ R
l+3.

Standard R
2 → R

2
TPS warps are obtained by replacing the

scalar weights p̄i by the control points pk = (pxk p
y
k) ∈ R

2. The

control points are grouped in a single matrix of parameters P ∈
R

(l+3)×2 defined by PT = (p1 . . . pl+3). The TPS warp is

thus defined by:

ωT(q;p) = ℓTqP, with p = ν(P). (25)

5.1.2 Feature-Driven Parameterization

The Feature-Driven parameterization of the TPS warp consists

in replacing the control points by some features (i.e. points) in

the current image. A point aTk = (axk a
y
k) ∈ R

2 is assigned to

each center ck defined in the texture image. The features ak are

grouped in a single matrix A ∈ R
l×2. Similarly, the centers ck

are grouped in a matrix C ∈ R
l×2. Following (Bookstein,

1989), the control points of a TPS can be determined from the

correspondences ck ↔ ak:

ωT(ck;p) = ak ∀k ∈ {1, . . . , l}, (26)

7

while enforcing the 3 ‘side-conditions’ ensuring that the TPS has

square integrable second derivatives (more details can be found

in (Wahba, 1990)):

l
∑

i=1

xipi = 02×1,

l
∑

i=1

yipi = 02×1,

l
∑

i=1

pi = 12×1.

(27)

Combining these l + 3 conditions in a single matrix gives the

following exactly determined linear system:

MλP =

(

A

03×1

)

, (28)

with Mλ ∈ R
(l+3)×(l+3) the matrix defined by:

Mλ =

(

Nλ Q

QT 03×3

)

, (29)

with Nλ = N + λIl, NT =
(

ℓTc1
· · · ℓTcl

)

and Q =
(

C 1l×1

)

∈ R
l×3. Adding λIl to N acts as a regularizer. Deter-

mining the control points P from the equation (28) can be done

in a straightforward manner as the solution of an exactly de-

termined linear system. The resulting matrix of control points,

denoted Pλ, is a nonlinear function of the regularization param-

eter λ and a linear function of the features A:

Pλ = M
−1
λ

(

A

03×1

)

. (30)

Pλ is a linear ‘back-projection’ of the feature matrix A. It can

be computed efficiently using the blockwise matrix inversion

formulas:

Pλ = EλA (31)

with:

Eλ =

(

N
−1
λ

(

Il − Q
(

QTN
−1
λ Q

)

QTN
−1
λ

)

(

QTN
−1
λ Q

)−1
QTN

−1
λ

)

. (32)

This expression has the advantages of separating λ and A and

introduces units: while Pλ has no obvious unit, A in general has

(e.g. pixels, meters). Finally, if we replace the natural param-

eters p in the definition of the TPS warp ωT (equation (25)) by

their expression given in the equation (32), we get the Feature-

Driven parameterization of the TPS warp, denotedWT:

WT(q;a, λ) = ℓTqEλA, with a = ν(A). (33)

We use the notation WT(q;a) for WT(q;a, 10
−4). We choose

λ = 10−4 to ensure good numerical conditioning of the ma-

trix Nλ.

Jacobian matrix of the warp. The Jacobian matrix of the

warp is needed by the Gauss-Newton based algorithms for local

registration (see e.g., §2.1 or §4.1). We denote KT the Jacobian

matrix of the TPS warp evaluated at the point q. It is defined

by KT = ∂WT

∂a
(q;a) ∈ R

2×2(l+3) and is given by:

KT =

(

∂Wx
T

∂a
(q;a)

∂Wy

T

∂a
(q;a)

)

=

(

∂Wx
T

∂ax (q;a) 01×(l+3)

01×(l+3)
∂Wy

T

∂ay (q;a)

)

=

(

ℓTqEλ 01×(l+3)

01×(l+3) ℓTqEλ

)

, (34)

where Wx
T

and Wy
T are the first and the second coordinates of

the warpWT and A = (ax ay).

5.2 The Feature-Driven Free-Form Deformation

Tensor-product B-Splines are a particular model of Free-Form

Deformations. They are a general model of polynomial func-

tions which have been proved to be useful for image registra-

tion (Rueckert et al, 1999). Even if there is a wide variety of

B-Splines (with various degrees for the polynomial basis or by

choosing exotic knot sequences), we limit our study to the case

of the Uniform Cubic B-Splines since it best matches the needs

of image registration. For the sake of simplicity, we will abbre-

viate it FFD.

5.2.1 Definition

Monodimensional case. Ignoring the parameters, a monodi-

mensional FFD ω̄F is an R→ R function defined as a linear com-

bination of the basis functions Ni weighted by the scalars p̄k
called the weights:

ω̄F(x; p̄) =
m
∑

i=1

p̄iNi(x), (35)

where p̄ ∈ R
m is the vector that contains all the weights p̄k.

The basis functions are defined using a knot sequence, i.e. a

non-decreasing sequence k1 < . . . < km+4. The FFD is said

to be uniform when the knot sequence is uniform, i.e. all the

knot intervals [ki, ki+1] have the same length s. In this case,

the basis functions Ni are defined by using four polynomials

of degree three, the blending functions (see figure 8(a) for an

illustration):

Ni(x) =























































b1(x) =
1
6 x̂

3

if x ∈ [ki, ki+1]
b2(x) =

1
6

(

−3x̂3 + 3x̂2 + 3x̂+ 1
)

if x ∈ [ki+1, ki+2]
b3(x) =

1
6

(

3x̂3 − 6x̂2 + 4
)

if x ∈ [ki+2, ki+3]
b4(x) =

1
6

(

−x̂3 + 3x̂2 − 3x̂+ 1
)

if x ∈ [ki+3, ki+4]
0 otherwise

(36)

where x̂ is the normalized abscissa of x defined as x̂ = x−kI

s

for x ∈ [kI , kI+1].

Domain. We can see from equation (35) that an FFD is non-

zero only over the interval [k1, km+4]. However, it is common

practice to reduce the domain to [k4, km+1]. By doing so, there

are always exactly 4 non-zero basis functions on each knot in-

terval, as figure 8(b) illustrates.

FFD warp. The standard R
2 → R

2
FFD warp is obtained as

the two-way tensor-product of monodimensional FFDs. Using

its natural parameterization, the evaluation of the FFD warp ωF

at the point q = (x y)
T

is given by:

ωF(q;p) =
n
∑

j=1

m
∑

i=1

pkNi(x)Nj(y), with k = (j − 1)m+ i.

(37)

The mn control points pk are grouped in the vector p ∈ R
2mn

that is defined as p = ν(P) where P ∈ R
mn×2 is the matrix

given by PT = (p1 . . . pmn). The control points of an FFD

8

(a)

(b)

Figure 8: (a) The basis functions of an FFD are bell-shaped

curves with bounded support. They are defined using 4 poly-

nomial pieces of degree three: b1, b2, b3 and b4. (b) The usual

(or natural) definition domain of an FFD is represented by the

non-grayed part.

warp are not more meaningful than the ones of a TPS warp. They

are not interpolated: they just act as ‘attractors’ to the warp.

Equation (37) can be rewritten in matrix form:

ωF(q;p) = ℓTqP, (38)

where ℓq ∈ R
mn is the vector defined by:

ℓTq = (N1(x)N1(y) . . . Nm(x)N1(y) . . . Nm(x)Nn(y)) .
(39)

5.2.2 Feature-Driven Parameterization

The Feature-Driven parameterization of the FFD warp is similar

to the one of the TPS warp in the sense that it makes the warp

driven by features expressed in pixels in both the texture and

the current images. The centers of the TPS warp were used as

features in the texture image. Such centers do not exist for FFD

warps. We thus introduce a set of points ck that will be used

as features in the texture image. We call these points centers

for consistency with the TPS warps. We use l = mn centers

located on a regular grid. A feature ak in the current image is

associated to every center ck. The control points p of the FFD

warp can be determined from the correspondences ck ↔ ak by

enforcing the following constraints:

ωF(ck;p) = ak, ∀k ∈ {1, . . . , l}. (40)

Since the number of features is equal to the number of degrees

of freedom of the FFD warp, the determination of the parameters

from the features can be carried out with an exactly determined

linear system:

MP = A, (41)

with MT =
(

ℓc1
. . . ℓcl

)

∈ R
l×l, P = ζ(p) ∈ R

l×2

and AT = (a1 . . . amn) ∈ R
2×l. The solution of the linear sys-

tem (41) can be written P = EA where E = M−1. The existence

of the matrix E is guaranteed if the Schoenberg-Whitney condi-

tions are satisfied (see (De Boor, 2001)) as it is the case when

the centers are located on a regular grid. Note that the matrix E

can be pre-computed. Finally, the Feature-Driven parameteri-

zation of the FFD warp, denoted WF, is given by replacing the

natural parameters p in equation (38) with their expression in

function of the features a = ν(A) ∈ R
2l:

WF(q;a) = ℓTqEA. (42)

Jacobian matrix of the warp. The Jacobian matrix KF ∈
R

2×2l for FFD warps can be computed following exactly the

same reasoning as for the TPS warp:

KF =

(

∂Wx
F

∂a
(q;a)

∂Wy

F

∂a
(q;a)

)

=

(

∂Wx
F

∂ax (q;a) 01×l

01×l
∂Wy

F

∂ay (q;a)

)

=

(

ℓTqE 01×l

01×l ℓTqE

)

. (43)

5.2.3 Extrapolation

The computations involved in the warp reversion operation (see

section §3.3) can lead to evaluate a warp outside of its natural

definition domain. More precisely, in equation (11), nothing en-

sures that the features of the vector v lies in the domain of the

warp. While this is not a problem with the TPS warp whose do-

main is infinite, extra work need to be done with the FFD warp.

Indeed, with the previous definition, it is possible to evaluate

an FFD warp outside of its natural domain but it is meaningless

since it collapses to 0. In this section, we propose a new method

to extrapolate an FFD warp outside of its domain making it vir-

tually infinite.

The principle of the method is simple: a linear extension is

added to the basis that crosses the boundaries of the domain

(with some extra conditions of continuity and differentiability).

While this seems almost trivial in the monodimensional case, it

is less simple in two dimensions, i.e. for warps. Our strategy

consists in defining the extension in 1D and, then, propagate it

to the 2D case using the usual tensor-product.

We present the extrapolation approach in the monodimen-

sional case and for the leftmost boundary of the domain (i.e.,

the knot k4). The four non-zero bases that cross this boundary

are N1, N2, N3 and N4. Our idea is to drop the part of these

bases that are outside the domain and to replace them with a

linear extension. We call Ne
1 , Ne

2 , Ne
3 and Ne

4 the bases result-

ing from this process. In addition to be linear, we enforce the

following constraints in order to preserve continuity and differ-

entiability:

Ne
i (k4) = Ni(k4)

∂Ne
i

∂x
(k4) =

∂Ni

∂x
(k4)

}

∀i ∈ 1, . . . , 4. (44)

For the sake of simplicity and without loss of generality, we

consider that the leftmost boundary coincides with zero (k4 =
0) and that the length of the knot intervals is consistently one

9

(s = 1). Under all these constraints, it follows that:

Ne
1 (x) =







−
x

2
+

1

6
if x ∈ (−∞, 0]

N1(x) otherwise

Ne
2 (x) =







2

3
if x ∈ (−∞, 0]

N2(x) otherwise

Ne
3 (x) =







x

2
+

1

6
if x ∈ (−∞, 0]

N3(x) otherwise

Ne
4 (x) =

{

0 if x ∈ (−∞, 0]

N4(x) otherwise

The extended basis for the rightmost boundary are obtained

by symmetry. Figure 9 illustrates the resulting extended ba-

sis functions. The twodimensional counterparts of these newly

defined extended basis functions are obtained using the tensor-

product.

The proposed extension gives a remarkably good behavior to

the extrapolating functions. See figures 10 and 11 for an illus-

tration in 1D and 2D respectively. Besides, the fact that the basis

functions form a partition of unity remains true (
∑4

i=1 N
e
i (x) =

1, ∀x ∈ (−∞, 0]).

Figure 10: Examples of our extrapolating FFD in the monodi-

mensional case. The extrapolating parts are represented with

dashed lines.

6 Experimental Results

6.1 Representational Similarity of the TPS and

FFD Warps

This first set of experiments is designed to compare the TPS and

the FFD warp. In the light of these experiments, we believe that

a fair conclusion is that the TPS and the FFD warp have the same

order of representational power. This motivates our choice to

only consider the TPS warp in the other experiments of this arti-

cle.

Fitting error from point correspondences. The experimen-

tal setup is as follows. We synthesize a set of point correspon-

dences qk ↔ ak. The points qk in the first image are taken

as the nodes of a regular grid of size 11 × 11 over the domain

[−1, 1]× [−1, 1]. These points are randomly and independently

Figure 11: Examples of our extrapolating FFD warp. The dark

part of the meshes represents the warp over its initial domain

while the light part is extrapolated.

10

(a) (b)

Figure 9: (a) Standard basis functions. (b) Extended basis functions that allow one to extrapolate outside the natural do-

main [k4, km+1].

moved (with a given average magnitude γ) in order to build the

corresponding points ak in the second image. A TPS and an

FFD warp are then estimated from the point correspondences.

The initial data points ak and the warped ones are compared

using the fitting error defined by:

1

n

n
∑

i=1

d (ai,W(qi)) , (45)

whereW represents the estimated warp (either TPS or FFD) and

d the euclidean distance. Note that the fitting error is expressed

in the same unit as the points of the second image. The results

are shown in figure 12 for different displacement magnitudes.

The reported values are obtained as the average over 500 tri-

als. The fitting errors and the displacement magnitudes are ex-

pressed in percentage of the domain size. We can see that the

curves in figure 12 are almost identical. It means that none of

the two considered warps prevails the other one ; they can model

equally the point correspondences. Note also that the fitting er-

ror collapses to zero when the number of centers is the same as

the number of point correspondences.

Direct comparison of the warps. This second experiment

differs from the first one in the sense that the point correspon-

dences are not generated randomly. First, a TPS warp is gener-

ated with randomly determined driving features vT. The cen-

ters of this TPS warp are taken on an n × n regular grid over

the domain Ω = [−1, 1] × [−1, 1]. The generated driving fea-

tures vT are produced by moving the centers around their ini-

tial location with an average magnitude γ. Second, a set of

point correspondences is synthesized by sampling the TPS warp:

qk ↔ ak =WT(qk;vT). Third, the features vF of an FFD warp

are determined from the previously generated point correspon-

dences. Finally, the TPS and the FFD warps are compared using

the following measure:

∫∫

Ω

‖WT(q;vT)−WF(q;vF)‖dq. (46)

The unit of this error measure is the same as the one of the points

in the second image. The results are presented in figure 13.

Figure 14 are the results obtained with the same experimental

setup except that the roles of the TPS and the FFD warps have

been switched. The reported errors are computed by averaging

over 200 trials. These errors are expressed in percentage of the

domain size.

Figure 13 tells us that given a TPS warp, it is possible to

closely approximate the same deformations with an FFD warp.

Conversely, the deformations induced by an FFD warp can also

be closely approximated by a TPS warp (figure 14).

Comparison of the TPS and FFD warps induced by the same

driving features. Since the parameters in the Feature-Driven

framework are meaningful to the warp (i.e. they are interpolated

by the warps), we can compare the TPS and the FFD warps with

the same set of driving features. In this experiment, we ran-

domly generate some driving features with their associated cen-

ters. We then compare the TPS and the FFD warps resulting from

these features using the same measure as in the previous exper-

iment. Figure 15 shows the results for different magnitude of

transformation. The reported numbers are obtained as the aver-

age over 200 trials.

The values of the errors and the displacement magnitudes in

figure 15 are expressed in percentage of the domain size. We

can see from figure 15 that TPS and FFD warps induced from the

same set of features are close to each other.

6.2 Comparison of Registration Algorithms

In this second set of experiments, we compare four algorithms

in terms of convergence frequency, accuracy and convergence

rate:

• Two classical algorithms:

– FA-GN : the Forward Additive Gauss-Newton

approach used by (Bartoli and Zisserman, 2004;

Lim and Yang, 2005) and described in §2.1.

– FA-ESM : the Efficient Second-order ap-

proximation of the cost function proposed

by (Benhimane and Malis, 2004) and reviewed

in §2.1 with an additive update of the parameters3.

• Two algorithms we propose:

– IC-GN : the Feature-Driven Inverse Compositional

registration of §3 with Gauss-Newton as local regis-

tration engine as described in §4.1.

3The original ESM algorithm uses a compositional update. The Feature-

Driven framework naturally extends it to non-rigid warps.

11

(a) γ = 10% (b) γ = 20% (c) γ = 30%

Figure 12: Fitting error between the synthesized data points and the points warped with the estimated TPS and FFD warps (γ is the

average displacement magnitude.)

(a) γ = 10% (b) γ = 20% (c) γ = 30%

Figure 13: Error between the FFD and the TPS warps. The FFD warp is estimated from point correspondences that comes from the

TPS warp (γ is the displacement magnitude).

(a) γ = 10% (b) γ = 20% (c) γ = 30%

Figure 14: Error between the TPS and the FFD warps. The TPS warp is estimated from point correspondences that come from the

FFD warp (γ is the displacement magnitude).

12

(a) γ = 10% (b) γ = 20% (c) γ = 30%

Figure 15: Comparison of the TPS and of the FFD warps resulting from a common set of driving features (γ is the displacement

magnitude).

– FC-LE : the Feature-Driven Forward Compositional

registration of §3, with local registration achieved

through learning as described in §4.2.

6.2.1 Simulated Data

In order to assess algorithms in different controlled conditions,

we synthesized images from a texture image. The driving fea-

tures are placed on a 3×3 grid, randomly perturbed with magni-

tude r. We add Gaussian noise, with variance σ% of the maxi-

mum greylevel value, to the warped image. An example of such

generated data is shown in figure 16. We vary each of these

parameters independently, using the following default values:

r = 2 pixels and σ = 1%. The estimated warps are scored by

the mean Euclidean distance between the driving features which

generated the warped image, and the estimated ones. Conver-

gence to the right solution is declared if this score is lower than

one pixel. The characteristics we measured are:

• Convergence frequency. This is the percentage of conver-

gence to the right solution.

• Accuracy. This is the mean residual error over the trials

for which an algorithm converged.

• Convergence rate. This is defined by the number of itera-

tions required to converge.

The results are averages over 500 trials. Note that, in this sec-

tion, the elements in the legend of each figure are ordered ac-

cording to their performance (from best to worst).

(a) (b)

Figure 16: An example of simulated data. (a) The texture image.

(b) The warped image with gaussian noise added (using σ = 5%
and r = 8 pixels).

Convergence frequency. The results are shown in figure 17.

FC-LE has the largest convergence basin closely followed by

FA-ESM. IC-GN has the smallest convergence basin. At a dis-

placement magnitude of 8 pixels, the convergence frequency of

FC-LE is around 75% whereas it is near only 40% for FA-GN

and IC-GN. FA-GN has the worst performances against noise.

The other algorithms are almost unaffected by noise.

(a)

(b)

Figure 17: Comparison of the four algorithms in terms of con-

vergence frequency against displacement magnitude (a) and

noise amplitude (b).

Accuracy. The results are shown in figure 18. The four al-

gorithms are equivalent against the displacement magnitude.

Concerning the amplitude of the noise, IC-GN and FC-LE are

equivalent while FA-ESM is slightly worse and FA-GN clearly

worse. For example, at 6% noise, the registration errors of IC-

GN and FC-LE are around 0.2 pixels, FA-ESM is at about

0.25 pixels and FA-GN at 0.35 pixels.

13

(a)

(b)

Figure 18: Comparison of the four algorithms in terms of ac-

curacy against displacement magnitude (a) and noise amplitude

(b).

Convergence rate. The results are shown in figure 19. The

convergence rate of FC-LE and FA-ESM are almost constant

against both displacement and noise amplitude. However FC-

LE does better, with a convergence rate kept below 10 iterations.

FA-GN and IC-GN are efficient for small displacements, i.e.

below 5 pixels. The convergence rate increases dramatically be-

yond this value for both of them. FA-GN is also inefficient for

noise amplitude over 4%. This is explained by the fact that the

FA-GN Jacobian matrix depends mainly on the current image

gradient, onto which the noise is added.

Discussion. This set of experiments on synthetic data shows

that the proposed algorithms, i.e. FC-LE and IC-GN, are al-

ways the best ones in the presence of noise. FC-LE also ob-

tains the best performances against the displacement magnitude.

However, the standard algorithms, i.e. FA-ESM and FA-GN,

performs better than IC-GN for important displacement magni-

tudes.

6.2.2 Real Data

The four above described algorithms have been compared on

several image sequences. We show results for four such videos4.

We measured the average and maximum intensity RMS along

the sequence, the total number of iterations and the computa-

tional time (expressed in seconds). The RMS is expressed in

pixel value unit. Note that the RMS is computed on the pixels

of interest, i.e. the pixels actually used in the registration al-

gorithms themselves. All algorithms have been implemented in

Matlab. In order to illustrate the registration, we defined a mesh

on the texture image and transferred it to all the other frames.

4These videos can be downloaded at

http://laic.u-clermont1.fr/˜brunet/ijcv.

(a)

(b)

Figure 19: Comparison of the four algorithms in terms of con-

vergence rate against displacement magnitude (a) and noise am-

plitude (b).

Note that these meshes are different from the estimated driving

features. The registration differences between the four algo-

rithms are generally visually indistinguishable when they con-

verge.

The first T-shirt sequence. This sequence has 400 frames.

The displacement magnitude between the frames may be im-

portant. The driving features of the warp are placed on a 3 × 3
grid. Results are given in table 3 and registration for the FC-

LE algorithm shown in figure 20. FC-LE performs well on this

sequence. It is the fastest and the most accurate. FA-GN, FA-

ESM and IC-GN are quite equivalent in terms of alignment

accuracy. FA-GN needs a lot of iterations, making it 5 times

slower than FC-LE.

The paper sequence. This sequence has 350 frames. The

driving features of the warp are placed on a 4 × 4 grid. The

results are given in table 4 and registration for the FC-LE algo-

rithm shown in figure 21. IC-GN diverges when the deforma-

tion seems to be the most important. The other algorithms have

similar alignment performances, FA-GN being slightly better.

FC-LE is however 3 times faster than the other algorithms.

The rug sequence. This short sequence has 42 frames. The

displacement magnitude is high. The driving features of the

warp are placed on a 5× 5 grid. The results are given in table 5

and registration for the FC-LE algorithm shown in figure 22.

As for the paper sequence, IC-GN diverges. FA-GN and FA-

ESM give the most accurate alignment, FC-LE being slightly

worse. On the other hand it is 7 times faster.

The second T-shirt sequence. This sequence has 623 frames.

Deformations are moderate, but there are strong global illumi-

14

Figure 20: Registration results for FC-LE on the first T-shirt sequence.

Figure 21: First row: the paper sequence. Second row: registration results for FC-LE. Third row: surface augmentation with the

Walt Disney character Stitch. Fourth row: deformations are captured and applied on a poster of the Walt Disney movie Cars.

Figure 22: Registration results for FC-LE on the rug sequence.

15

Mean/max RMS # Iteration Total/mean time

FA-GN 8.70/13.67 9057 2083/5.2

FA-ESM 9.23/14.77 3658 877/2.2

IC-GN 9.69/15.82 6231 436/1.1

FC-LE 6.66/12.87 3309 380/0.95

Table 3: Results for the first T-shirt sequence. Bold indicates best performances.

Mean/max RMS # Iteration Total/mean time

FA-GN 8.98/17.57 2422 532/1.5

FA-ESM 10.22/20.49 2473 560/1.6

FC-LE 9.44/19.4 1330 176/0.5

Table 4: Results for the paper sequence. The IC-GN algorithm diverges on this sequence. Bold indicates best performances.

nation variations along the sequence. The driving features of

the warp are placed on a 3 × 3 grid. The results are given in

table 6 and registration results for the FC-LE algorithm shown

in figure 23. The registration is well achieved by the four algo-

rithms. The small residual error shows that the global illumina-

tion changes are correctly compensated. FC-LE and IC-GN are

respectively 4 and 2 times faster than the classical algorithms.

Discussion. FA-GN is the most accurate algorithm. It is how-

ever inefficient, especially for important displacements. FA-

ESM has almost similar performances compared to the FA-

GN while being slightly more efficient. IC-GN is efficient, but

looses effectiveness for high displacements. As for the exper-

iments with synthetic data, FC-LE has the best behavior: it is

similar to FA-GN for accuracy while being 5 times faster on

average and is equivalent or better than IC-GN and FA-ESM

in terms of alignment accuracy, computational cost and has a

larger convergence basin.

7 Conclusions

We addressed an important issue for the problem of non-rigid

registration. We proposed the Feature-Driven framework, relax-

ing the groupwise requirement for using efficient compositional

algorithms such Inverse Compositional and Learning-Based al-

gorithms. We also explained in details the Feature-Driven pa-

rameterization for the TPS and the FFD warps. Experiments

show that Feature-Driven algorithms are more efficient com-

pared to classical ones with additive update of the parameters.

Overall, the best algorithm is the combination of the Feature-

Driven framework, the Forward Compositional update of the

parameters and the local registration based on Learning. The

proposed algorithms make foreseeable accurate real-time sur-

face registration.

Acknowledgements. We would like to thank Selim Benhi-

mane for his useful advice, in particular for proposing the Gaus-

sian Mixture Model in order to select the weights of the interac-

tion matrices in the piecewise linear model used in the learning-

based local registration.

References

Agarwal A, Triggs B (2006) Recovering 3D human pose from

monocular images. IEEE Transactions on Pattern Analysis

and Machine Intelligence 28(1)

Baker S, Matthews I (2004) Lucas-Kanade 20 years on: A uni-

fying framework. International Journal of Computer Vision

56(3):221–255

Bartoli A, Zisserman A (2004) Direct estimation of non-rigid

registrations. In: Proceedings of the British Machine Vision

Conference

Benhimane S, Malis E (2004) Real-time image-based track-

ing of planes using efficient second-order minimization. In:

Proceedings of the International Conference on Intelligent

Robots and Systems

Bookstein FL (1989) Principal warps: Thin-plate splines and

the decomposition of deformations. IEEE Transactions on

Pattern Analysis and Machine Intelligence 11(6):567–585

Bregler C, Hertzmann A, Biermann H (2000) Recovering non-

rigid 3D shape from image streams. In: Proceedings of the

International Conference on Computer Vision and Pattern

Recognition

Charpiat G, Faugeras O, Keriven R (2005) Image statistics

based on diffeomorphic matching. In: Proceedings of the In-

ternational Conference on Computer Vision

Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance

models. In: Proceedings of the European Conference on

Computer Vision

Cootes TF, Marsland S, Twining CJ, Smith K, Taylor CJ (2004)

Groupwise diffeomorphic non-rigid registration for auto-

matic model building. In: Proceedings of the European Con-

ference on Computer Vision

De Boor C (2001) A Practical Guide to Splines (Revised Edi-

tion). Springer

Fornefett M, Rohr K, Stiehl H (1999) Elastic registration of

medical images using radial basis functions with compact

support. In: Proceedings of the International Conference on

Computer Vision and Pattern Recognition

16

Mean/max RMS # Iteration Total/mean time

FA-GN 5.64/8.21 538 118/2.8

FA-ESM 5.79/8.63 477 109/2.6

FC-LE 6.45/9.80 149 17.13/0.4

Table 5: Results for the rug sequence. The IC-GN algorithm diverges on this sequence. Bold indicates best performances.

Mean/max RMS # Iteration Total/mean time

FA-GN 4.51/7.42 3408 785/1.25

FA-ESM 4.53/7.49 3268 788/1.25

IC-GN 4.87/7.61 4407 381/0.61

FC-LE 4.61/7.70 1757 247/0.39

Table 6: Results for the second T-shirt sequence. Bold indicates best performances.

Gay-Bellile V, Perriollat M, Bartoli A, Sayd P (2006) Image

registration by combining thin-plate splines with a 3D mor-

phable model. In: Proceedings of the International Confer-

ence on Image Processing

Gay-Bellile V, Bartoli A, Sayd P (2007) Feature-driven direct

non-rigid image registration. In: Proceedings of the British

Machine Vision Conference

Georgel P, Benhimane S, Nassir N (2008) A unified approach

combining photometric and geometric information for pose

estimation. In: Proceedings of the British Machine Vision

Conference

Haber E, Modersitzki J (2006) Intensity gradient based regis-

tration and fusion of multi-modal images. In: Berlin S (ed)

Proceedings of the Medical Image Computing and Computer-

Assisted Intervention, Lecture Notes in Computer Science,

vol 4191, pp 726–733

Johnson HJ, Christensen GE (2002) Consistent landmark and

intensity-based image registration. IEEE Transactions on

Medical Imaging 21(5):450–461

Joshi S, Miller MI (2000) Landmark matching via large defor-

mation diffeomorphisms. IEEE Transactions on Image Pro-

cessing 9:1357–1370

Jurie F, Dhome M (2002) Hyperplane approximation for tem-

plate matching. IEEE Transactions on Pattern Analysis and

Machine Intelligence 24(7):996–1000

Lim J, Yang MH (2005) A direct method for non-rigid motion

with thin-plate spline. In: Proceedings of the International

Conference on Computer Vision and Pattern Recognition

Little JA, Hill DLG, Hawkes DJ (1997) Deformations incorpo-

rating rigid structures. Computer Vision and Image Under-

standing 66(2):223–232

Matthews I, Baker S (2004) Active appearance models revisited.

International Journal of Computer Vision 60(2):135–164

Meyer CR, Boes JL, Kim B, Bland PH, Zasadny KR, Kison PV,

Koral K, Frey KA, Wahl RL (1997) Demonstration of accu-

racy and clinical versatility of mutual information for auto-

matic multimodality image fusion using affine and thin-plate

spline warped geometric deformations. Medical Image Anal-

ysis 1(3):195–206

Pilet J, Lepetit V, Fua P (2005) Real-time non-rigid surface de-

tection. In: Proceedings of the International Conference on

Computer Vision and Pattern Recognition

Pizarro D, Bartoli A (2007) Shadow resistant direct image reg-

istration. In: Proceedings of the Scandinavian Conference on

Image Analysis, pp 928–937

Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-

information-based registration of medical images: a survey.

IEEE Transactions on Medical Imaging 22:986–1004

Romdhani S, Vetter T (2003) Efficient, robust and accurate fit-

ting of a 3D morphable model. In: Proceedings of the Inter-

national Conference on Computer Vision

Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes

DJ (1999) Nonrigid registration using free-form deforma-

tions: application to breast MR images. IEEE Transactions

on Medical Imaging 18(8):712–721

Szeliski R (2006) Image alignment and stitching: A tutorial.

Foundations and Trends in Computer Graphics and Vision

2:1–104

Torr PHS, Zisserman A (1999) Feature based methods for struc-

ture and motion estimation. In: Workshop on Vision Algo-

rithms: Theory and Practice

Wahba G (1990) Spline models for observational data, CBMS-

NSF Regional Conference Series in Applied Mathematics,

vol 59. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA

A Learning-based Registration with a

Piecewise Linear Model

A.1 Framework

Learning-based registration algorithms such as (Cootes et al,

1998; Jurie and Dhome, 2002) use a linear model i.e. a single

interaction matrix. It has several drawbacks: if this interaction

matrix covers a large domain of deformation magnitudes, reg-

istration accuracy is spoiled. On the other hand, if the matrix

is learned for small deformations only, the convergence basin is

dramatically reduced. We propose to learn a series F1, . . . ,Fκ

17

Figure 23: Registration results for FC-LE on the second T-shirt sequence.

of interaction matrices, each of them covering a different range

of displacement magnitudes. This forms a piecewise linear ap-

proximation to the true relationship. Experiments show that us-

ing a piecewise linear relationship solves these issues. We pro-

pose several ways to combine the interaction matrices {Fi}
κ
i=1,

that yield different piecewise linear relationships.

Trivial combination. One possibility is to apply all the matri-

ces in turn (algorithm LOOP). The interaction matrix F1 is first

applied until convergence. Then, the other matrices {Fi}
κ
i=2

are used one after the other. The last matrix Fκ, learned on the

smallest displacement, ensures accuracy. The drawback is that

all the matrices are used even for small displacements. It yields

a dramatically high number of iterations to converge. Another

approach is to try all the linear relationships at each iteration.

The one resulting in the smallest residual error is kept (algo-

rithm BEST). These piecewise linear relationships appear not

to be the most discerning choice since they are not efficient.

In fact, LOOP implies a large convergence rate whereas BEST

yields high computational cost per iteration. They are less effi-

cient when the number of interaction matrices κ increases.

Statistical map selection. Our goal is to select the most ap-

propriate interaction matrix at each iteration (algorithm PROB).

Each of those indeed has a specific domain of validity in the

displacement magnitude. This can unfortunately not be deter-

mined prior to image registration. We thus propose to learn a

relationship between the intensity error magnitude and displace-

ment magnitude intervals. We express this relationship in terms

of probabilities. The intensity error magnitude for a residual

vector d is defined as its RMS: e(d) = rms(d). Experimen-

tally, we observed that P (Fi|e(d)) closely follows a Gaussian

distribution, see figure 24.

Given the current intensity error e(d), finding the most ap-

propriate interaction matrix Fs is simply achieved by solving:

s = argmax
t

P (Ft|e(d)). (47)

Mixture models. We use an interaction matrix given by:

F←

κ
∑

i=1

aiFi with

κ
∑

i=1

ai = 1, (48)

where {ai}
κ
i=1 are the mixture proportions.

We compare two mixture models with different probability

distributions:

• a Gaussian Mixture Model (GMM): ai =
P (Fi|e(d))∑

κ
k=1

P (Fk|e(d))
,

where P (Fi|e(d)) follows a Gaussian distribution;

(a)

(b)

Figure 24: Distribution of the intensity error magnitude for two

different perturbation intervals: (a) [2 . . . 5] and (b) [7 . . . 13]
pixels, respectively.

18

• a Constant Mixture Model (CMM): ai =
1
κ

.

For all the piecewise linear relationships described above5,

the interaction matrix Fκ is applied for the last two iterations.

This additional step ensures accuracy.

A.2 Experimental Results

We use a simple homographic warp to guarantee a fair compar-

ison6 between the five piecewise linear relationships. The setup

described in §6.2.1 is used.

Convergence frequency. The results are shown in figure 25.

The five piecewise linear relationships have similar conver-

gence basins. Their convergence frequency are over 95%
and around 65% at a displacement magnitude of 20 pixels

and 25 pixels respectively. CMM seems to have a slightly thiner

convergence basin. GMM and PROB are quite sensitive to noise.

It corrupts the probability distributions learned off-line. GMM is

slightly better than PROB: at a noise magnitude of 7% the con-

vergence frequency of PROB is only 80% whereas GMM always

converges. CMM, BEST and LOOP are insensitive to noise.

(a)

(b)

Figure 25: Comparison of the five piecewise linear relationships

in terms of convergence frequency against displacement magni-

tude (a) and noise amplitude (b). On graph (b), CMM and LOOP

are indistinguishable.

Accuracy. The results against displacement magnitude are

similar for the five piecewise linear relationships. The asso-

ciated graph is thus not shown. The residual error is around

5Except LOOP which naturally includes this additional step.
6The compositional update of the warp is not approximated since an homog-

raphy belongs to a group.

0.025 pixels for all tested magnitudes. GMM and PROB are less

accurate against noise beyond an amplitude of 7% and 9% re-

spectively than the other piecewise linear relationships. This

is illustrated in figure 26(b). Their residual errors are approxi-

mately 0.7 pixels against 0.3 pixels for CMM, BEST and LOOP

(i.e., a 2.5 ratio).

(a)

(b)

Figure 26: (a) Comparison of the five piecewise linear relation-

ships in terms of convergence rate against displacement magni-

tude. (b) Comparison of the five piecewise linear relationships

in terms of accuracy against noise amplitude.

Convergence rate. The results are shown in figure 26(a).

BEST and LOOP are clearly not efficient against displacement

magnitude: LOOP needs at least 30 iterations to converge

while BEST requires 10 iterations with high computational cost.

CMM, GMM and PROB do better with a convergence rate kept

below 10. Convergence rates for the five piecewise linear rela-

tionships are similar against noise magnitude. The associated

graph is thus not shown.

Discussion. Overall, CMM is the best piecewise relationship.

It is much more efficient than LOOP and BEST and unaffected

by noise contrary to CMM and PROB. Its convergence basin

is only slightly smaller than those induced by the other rela-

tionships. We use the CMM piecewise linear relationship in the

experiments of §6.2.

19

