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Abstract

Image registration and 3D reconstruction are fundamen-
tal computer vision and medical imaging problems. They
are particularly challenging when the input data are images
of a deforming body obtained by a single moving camera.
We propose a new modelling framework, the multiview 3D
warps. Existing models are twofold: they estimate inter-
image warps which are often inconsistent between the dif-
ferent images and do not model the underlying 3D struc-
ture, or reconstruct just a sparse set of points. In contrast,
our multiview 3D warps combine the advantages of both;
they have an explicit 3D component and a set of 3D defor-
mations combined with projection to 2D. They thus capture
the dense deforming body’s time-varying shape and camera
pose. The advantages over the classical solutions are nu-
merous: thanks to our feature-based estimation method for
the multiview 3D warps, one can not only augment the orig-
inal images but also retarget or clone the observed body’s
3D deformations by changing the pose. Experimental re-
sults on simulated and real data are reported, confirming
the advantages of our framework over existing methods.

1. Introduction
Image registration and visual 3D reconstruction have be-

come major research topics over the last few decades, for
they lie at the heart of a large body of applications. While
(multimodal) medical image registration is an older field,
monocular 3D reconstruction of deforming bodies has only
recently been investigated in computer vision (see for in-
stance [3, 16].) In both cases, the problem of relating a
set of images showing the same body under different pose
and deformation quickly became major in the field. Despite
significant achievements, it is still an open problem. Many
approaches are based on estimating so-called warps. Warps
are image deformation functions that relate corresponding
points across the input images. Among them, the Thin-Plate
Spline (TPS) warp is well-known and extensively used [2].

Existing parametric image warps in the literature such as
the TPS warp map point coordinates to point coordinates.

Registering n ≥ 2 images thus entails one to estimate n−1
warps at least, so that by ‘chaining’ warps, every pair of
images in the image set can be related and compared. This
approach has several drawbacks. First, many warps such as
the TPS warp are not part of a group – they can thus not be
easily ‘chained’ since warp composition and inversion are
not properly defined [11]. Second, it is difficult with this
model to use all the available image information at the warp
estimation phase (if images 1 and 2 get registered, as well
as images 2 and 3, the coupling between images 3 and 1
is ignored.) It is worth of note that some work address the
particular problem of finding groupwise registration of an
image set [6, 19] but do not use a 3D modelling.

In this paper, we propose a novel framework to the para-
metric modelling of image warps for n ≥ 2 images. Our
framework is fundamentally different from the literature in
that it takes into account by construction the fact that multi-
ple images must be modelled. In essence, an image results
of a formation process (whether it is an optical image or
an MRI slice for instance.) Our framework is generative:
we propose the multiview 3D warps that model a set of im-
ages of a deforming body. Inspired by the geometric image
formation process, it has two major components: (i) a 3D
component acting as an abstraction of the body observed
in the images and (ii) a set of 3D to 2D deformation func-
tions that each combine a 3D deformation and a projection
to 2D, thereby encapsulating the body’s deformation and
pose for every image. This provides a clear advantage over
previous 2D warps which were encapsulating pose, camera
projection and deformation in a single function [1]. Differ-
ently, by placing the warp directly in a metric 3D space, we
detach the 3D deformations from the actual camera projec-
tion and pose variations. Thus, the learned warp may be
reused in other imaging scenarios and with viewpoints dif-
ferent from the original ones. Despite the modelling details
that must be solved to implement our framework, we tackle
several other issues it raises: the estimation and the inter-
image point transfer problems.

Figure 1 schematically summarises the multiview 3D
warps and their features in a general image modelling sce-
nario. The first problem is to, given a set of keypoints or
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Figure 1. Our multiview 3d warps in a few figures. The first row
shows an image sequence with green dots representing the image
tracks and red circles the missing data. The second row shows the
warping formation and augmentation in three stages: 1) From the
point tracks we extract a mean 3D shape using SfM, 2) we place a
set of control points around the 3D shape (black dots) and we learn
the 3D warping functions given the image data, 3) we augment the
3D shape with a dense surface obtained by simple interpolation.
The last row shows the reprojection of the dense surface warped
to model the image deformations.

anatomical landmarks matched across multiple images, in-
fer the parameters of our 3D warp (both the 3D component
and the set of 3D to 2D deformation functions); the sec-
ond problem is to be able to transfer points from one to
another image of the set given the 3D warp parameters. No-
tice that, differently from the classical 2D case, the warp’s
control points are not manually placed in a reference frame
but automatically computed in 3D space with a general pur-
pose Structure-from-Motion (SfM) algorithm. We give gen-
eral solutions to these problems. Our generic warp will be
implemented in the framework of Radial Basis Functions
(RBF). Notice that we use a multiquadric kernel but any
other kernel could be used instead.

2. State of the Art

Most of the literature on image registration and monocu-
lar 3D reconstruction of a deforming body uses inter-image
warps, that will map a point from one image to a point in
another image. Given a set of n ≥ 2 images, existing regis-
tration approaches simply estimate n− 1 warps.

The literature on inter-image warps is dense. Based on

Duchon’s Thin-Plate Spline (TPS) [9], Bookstein proposed
the famous TPS warp [2] for the registration of anatomical
landmarks. It was later extended in a number of ways. A
work related to ours is the Generalized TPS (GTPS) warps
of Bartoli et al. [1]. While it is shown that the TPS warp
implements the affine projection of some deforming sur-
face, 3D warps were derived that implement the perspec-
tive projection of rigid and deforming surfaces between two
images. Other popular warps found in the literature are
Free-Form Deformations (FFD) warps. They use the tensor
product of two 1D smooth functions, typically the cubic B-
spline [15]. A 3D modelling based on the FFD has recently
been shown to lead to the so-called NURBS warp [4]. It is
also possible to model a warp by a triangular mesh; this is a
common choice in deformable surface tracking [14] and 3D
reconstruction [16]. The approach of [16] differs from ours
mainly in that it uses a model whereby a 3D surface is de-
formed and projected to the images into two distinct steps,
whereas we aggregate those two steps into a single one.

Finally, there exist work in medical image processing on
groupwise image registration that addresses the multi-view
problem, but since the medical data are fundamentally dif-
ferent from the data in computer vision, they do not use a
full 3D modelling of the imaged body [6, 19]. The literature
thus contains some works on 3D warps, but limited to image
pairs, or multi-image warp models, but which are not based
on a real 3D modelling. The major difference with our work
is that we do not split the image set to be modeled in image
pairs, but rather estimate a single 3D warp that covers the
relationship between all images in the set.

Another stream of research aims to reconstruct sparse
3D point sets of deformable objects. This is the Non-
Rigid Structure-from-Motion problem [3] where the cam-
era projection matrices and the underlying deformations of
the shape are learned solely from 2D image trajectories.
They are based on the Low-Rank Shape Model (LRSM)
that represents the 3D body shape as a combination of de-
formation modes. The literature is vast and most recent
methods provides reasonable results for smooth deforma-
tions [18, 7, 13, 8]. More recently, approaches considering
objects as piecewise rigid deal with a wider range of defor-
mations [17, 10]. Differently from warps, the deformation
modelling is restricted to a sparse set of points and does not
directly generalize to surfaces. In our framework, we re-
cover a dense mapping (and not just sparse 3D points); the
LRSM can be used to constrain the 3D recovered shape.

3. The Multiview 3D Warp
The gist of the approach is to consider the warping func-

tion embedded directly in the metric 3D space and not onto
the image plane like classical image warps. Learning such
a warp solely from the image data results in an ill-posed
problem especially if deformations are involved, therefore



priors on the 3D warp are required. In the following, we
first derive our multiview 3D warp model and then review
several priors that are used within our framework.

3.1. Derivation

For the sake of simplicity, we have chosen to implement
our general warp using an RBF. The warp is driven by a set
of 3D centres ck with k = 1 . . . l. A 3D point x is mapped
to its projection in one of the images by undergoing a 3D
transform followed by a projection. We assume for now that
the warp’s parameterisation – the centres and 3D points for
each observed image point – is known; we provide a way
to estimate these parameters from the image data in Sec.
4.2. The 3D transform is applied for forming the following
vector that contains the distance of point x to the centres:

lx =


ρ
(
d2(x, c1)

)
...

ρ
(
d2(x, cl)

)
x

 , (1)

where ρ is the kernel function of a given distance measure.
We use the Euclidean distance and a multiquadric RBF:
ρ(d) =

√
d+ β where β ∈ ℜ. Given a set of 3D points

xj with j = 1 . . . p we can form the p× (l+3) warp trans-
fer matrix L which contains all the point-to-centre distances
and take the l 3D centres in an l × 3 matrix P:

L =

 l⊤1
...
l⊤p

 and P =

 c⊤1
...
c⊤l

 . (2)

Following the standard feature-based estimation of an RBF
(see for instance [2, 1]) we apply the warp to the l centres
and form matrix Kλ (with λ some small internal smoothing
coefficient) as:

Km,n =

{
λ m = n
ρ
(
d2(cm, cn)

)
otherwise. (3)

Solving for the warp coefficients is then done in closed-
form using matrix Eλ of size (l + 3)× l:

Eλ =

(
K−1
λ (I− P(P⊤K−1

λ P)−1P⊤K−1
λ )

(P⊤K−1
λ P)−1P⊤K−1

λ

)
. (4)

Matrix Eλ maps the warp centres’ coordinates to the ‘natu-
ral’ RBF parameters. Given a set of f images and a set of p
points matched between images, we can write the optimisa-
tion problem for the 3D warp at frame i as:

min
Pi,Mi

∥LEλPiMi − Qi∥2 , (5)

where Qi is a p × 2 matrix containing the image points and
Mi is the 3 × 2 affine camera matrix at frame i. In this

work we consider the simplest orthographic camera model
(i.e. M⊤i Mi = I2 where I2 is a 2× 2 identity matrix.) Notice
that the image coordinates stored in Qi are registered to the
image centroid at each frame i.

To obtain the most compact formulation, we can stack
together the varying 2D coordinates at each frame:

LEλ
[
P1 . . . Pf

]︸ ︷︷ ︸
P

 M1 . . . 0
...

. . .
...

0 . . . Mf


︸ ︷︷ ︸

M

=
[
Q1 . . . Qf

]︸ ︷︷ ︸
Q

(6)
Notice here that matrices L and Eλ are fixed at each frame.

Deformations and shape motion are instead described by
the time-varying components in the overall camera matrix
M and the varying control points P. It is also important to
stress that we do not have an explicit Euclidean localisa-
tion of the deforming 3D points in time. The deformation
of the control points P solely describe the 2D image de-
formations of the object. This is in contrast with previous
approaches in SfM where the 3D deforming body was esti-
mated explicitly. Differently with our 3D warps we define a
deformation field by estimating a specific warping function
at each frame. Moreover, this deformation field as defined
in Equation (6) models the whole multi-view warping func-
tions in contrast to previous approaches evaluating pairwise
transformations between image frames.

3.2. Multiview 3D Warp priors

Equation (5) is under-constrained: there are more
than one deformation that minimize the reprojection error.
Choosing an arbitrary solution would not allow the multi-
view 3D warp to accurately capture the 3D body’s average
shape and deformations, and camera pose. So as to select a
sensible solution, it is clear that priors must be introduced.
Below, we review a set of priors that can be easily used
within our framework. They are grouped into two classes:
physical priors and statistical priors. The priors are ex-
pressed as penalties to be used when estimating the warp.

Physical priors. We identified three types of physical pri-
ors for our multiview 3D warps:
• The 3D deformation cannot deform the initialised control
points position P0 arbitrarily. We can thus penalize the devi-
ation from the initial configuration using χc

i = ∥P0 − Pi∥2.
• The warp’s deformation energy is likely to be low.1 It is
expressed by χq

i = trace(P⊤i K̄λPi) = ∥ZPi∥2 where matrix
K̄λ is given by removing the last three rows of Eλ and Z is
any square root of Eλ obtained using Cholesky factoriza-
tion, for instance.

1This deformation energy depends on the warps’ implementation. For
instance, in the case of a TPS, it is the integral bending energy.



• For video data, temporal smoothness can be favored using
χt
i = ∥Pi+i − Pi∥2.

Statistical priors. The warp deforms the body’s shape but
not in an unconstrained manner. The assumption that a de-
formation may be described by a set of deformation bases
can be used in order to constrain the degrees of freedom
of the warp. Such a prior has been successfully used in the
Non-Rigid Structure-from-Motion (NRSfM) framework [3]
to obtain a compact multi-view formulation of 3D deforma-
tions. Readapting this notion to our problem, we can con-
strain the body’s 3D deformation using a set of warp de-
formation bases Bd which identifies D modes of variations.
Each 3D control point configuration is then expressed as:

Pi =
D∑

d=1

ridBd with Bd ∈ ℜl×3, rid ∈ ℜ (7)

where rid ∈ ℜ are scalar weights that perform a linear com-
bination of the basis Bd. As opposed to the three physical
priors, this statistical prior introduces several latent vari-
ables. Details on how we use these priors are given in
Sec. 4.3 where we selected the mentioned statistical prior
as the more suitable one for our modelling problem.

4. Estimation of the Multiview 3D Warp

We present a computational algorithm for estimating the
3D warps solely from a set of feature points extracted from
a generic image sequence. We do not assume having com-
plete matches for each image (the matrix of 2D measure-
ments Q may have some missing entries.) Schematically we
can summarise the algorithm in three steps:
1. Initial 3D feature points computation. Given 2D image
matches, estimate a mean position of the 3D points xj in
metric space by running standard rigid SfM approach with
missing data such as [12].
2. 3D warp placement. Given the mean position xj find a
bounding box enclosing the shape and evenly place the 3D
control points ck. Compute L and Eλ given the xj and the
location of the warp’s control points.
3. 3D warp optimisation. Optimise the multiview cost in
Equation (5) given the control points and priors.

4.1. Initial 3D feature points computation

This stage is necessary to define the position of the con-
trol points and the warp kernel given a mean shape. Starting
from a set of 2D matches in the images, we collect 2D im-
age trajectories in the matrix Q. Notice that missing point
are a common occurrence, especially when the shape is de-
forming. Thus, we define the 2f×p mask matrix D defining
a known entry with a 1 and the missing coordinate with a 0.

The optimisation problem is the following:2

min
R,S,t

∥∥D⊙ (Q⊤ − R S+ t 1⊤
p )

∥∥2 (8)

where R is a 2f×3 matrix containing the orthographic cam-
era matrices, S is a 3×p matrix containing the 3D metric co-
ordinates for each feature point xj (i.e. S = [x1, . . . ,xp]), t
is a 2f -vector of the 2D image centroid for the set of points
and 1p is a vector of p ones. This problem is classical SfM
with missing data; it can be solved with several approaches
[5]. The method of Marques and Costeira [12] obtains the
highest resilience to missing data; this is the method we
have chosen in our implementation.

4.2. 3D warp initialisation

Given the set of mean 3D points, we can find an ini-
tial placement for the control points. We first find an ap-
proximate convex hull by fitting an ellipsoid to the cloud
of 3D points. This initial envelope is used as a first guess
for the whole shape reconstructed by the previous SfM ap-
proach. A volumetric grid is then placed to contain the
ellipse and each edge of the grid is sampled with a fixed
number of control points. For the minimal configuration we
have l = 8 points, for most of the experimental tests a num-
ber of l = 27 control points were sufficient. Thus, given
this procedure we obtain an initial configuration stored in a
matrix P0 of size l × 3. Other sampling strategies may be
adopted but results were satisfactory with this regular sam-
pling. Figure 2 shows a graphical example using the data
shown in Figure 1. Given the location of the control points

a) b) c)
Figure 2. The red points represent the mean 3D shape extracted
from a rigid SfM algorithm. a) we compute the minimum volume
ellipse containing these points. b) it is then possible to fit effi-
ciently a bounding box containing the ellipsoid. c) control points
are inserted by evenly sampling the volume of the box.

ck, we can construct the matrix L and Eλ as in Eqs. (2) and
(4) respectively.

4.3. 3D warp optimisation

After initialising the warp, we last need to find the dis-
placement of the control points given the 2D deformations

2The symbol ⊙ denotes the element-wise Hadamard matrix product.



and the camera matrices which relate the 3D warping func-
tion to the image plane. From Eq. (6) we have that LEλPM =
Q with the bilinear factor G = PM denoting the projection of
the 3D warp to the image plane. The warp projection matrix
G of size l × 2f can be estimated by solving:

min
G

∥∥Q⊤ − L Eλ G
∥∥2 + ∥p(G)∥2 (9)

where the term ∥p(G)∥2 represents additional linear prior
terms as presented in Section 3.2. This regularized problem
can be solved with standard linear least squares by adding
the additional quadratic cost given by the priors.

After this first step, we have to enforce the fact that the
warp projection matrix G is a bilinear factor of the 3D de-
forming control points P and the camera projection matrix
Mi. Now, in order to factorise G in the two components, we
have to satisfy the non-linear constraints arising from the
specific camera model. In this work we assume the sim-
plest orthographic camera model (i.e. M⊤i Mi = I2) but other
types of camera can be easily adapted to this framework.
The problem becomes the optimisation of the cost function:

min
M,P

∥G− PM∥2 subject to M⊤i Mi = I2 (10)

Generally, in the presence of smooth deformations, the ma-
trix G is rank constrained i.e. rank(G) ≪ max{2f, p} thus
we need again a set of priors in order to solve such an ill-
posed problem. The most pertinent prior for such a problem
is the statistical prior of considering the control points mod-
elled by a set of basis shapes.

The optimisation using a set of basis shapes can be
solved with one of the iterative solvers in the literature such
as the BALM [8]. As an initialisation for the camera pa-
rameters we used the previously computed motion matrices
R for the 3D control points placement (see Sec. 4.1.). We
also fix the first basis B1 in Eq. (7) to be equal to P0. In
such way we impose the time-varying control point posi-
tions Pi to be centered at the rest position P0 placed during
the 3D warp initialisation stage (see Sec. 4.2).

5. Augmenting the Warp with New Points
The multiview 3D warps bring a novel procedure for im-

age augmentation. Not only 3D warps allow for planar re-
texturing and augmentation as with standard 2D warps but
they also permit to augment an image sequence by placing
directly a new surface in the 3D metric space. Moreover,
notice that by estimating the control points in 3D we de-
tach the warping function from the camera projection. This
implies that we can also arbitrarily modify the camera view-
point and reproject the deforming surface. This results in a
novel view synthesis of the deforming surface. In the next
section we will present both algorithms for augmenting the
warps in 2D and the novel concept of 3D augmentation.

5.1. Augmenting the warp in 2D

In general, if the control points are representative of the
whole deformations, we may augment the estimated de-
forming shape with new samples. If we choose the first im-
age frame, we consider a set of new points Q̃1 of size p̃× 2.
This new set of points are lying on the imaged surface. Thus
the new 2D image measurement are given by:

Q̃ =
[
[Q1 Q̃1] . . . [Qf Q̃f ]

]
of size (p+ p̃)×2f . Given the known warp transfer matrix
L, Eλ, and P, now the problem is to find the estimate of the
new point trajectories which gives the missing entries of L
which we call L̃. Thus by including L̃ we have that:

Q̃ =

[
L

L̃

]
Eλ

[
P1 . . . Pf

]  M1 . . . 0
...

. . .
...

0 . . . Mf

 (11)

The problem is now to estimate the distance of the new 3D
points from the control point centers. Such distances are
stored in the unknown matrix L̃ given by:

L̃ =


ρ
(
d2(x̃1, c1)

)
· · · ρ

(
d2(x̃p̃, c1)

)
...

. . .
...

ρ
(
d2(x̃1, cl)

)
· · · ρ

(
d2(x̃p̃, cl)

)
x̃1 · · · x̃p̃

 , (12)

where x̃i for i = 1 . . . p̃ are the unknown 3D entries given
the added set of points. Instead of estimating the x̃i, we
align the 3D points to the first frame giving xi and yi with
x̃i = (xi yi zi)

⊤. We can write the cost function to optimise
as a function of the unknown depth zi:

Γ(z1, . . . , zp̃) =
∥∥Q̃1 − L̃(z1, · · · , zp̃)EλP1M1

∥∥2
2

A single frame is not enough to obtain a reliable estimate of
the points depth; thus we need at least more than 2 sets of
matches for each new point. If we define the missing data
mask D as in Eq. (8) we can solve for:

Γ(z1, . . . , zp̃) =
∥∥D⊙ (Q̃− L̃(z1, · · · , zp̃)EλG)

∥∥2
2

This optimisation can be performed with standard non-
linear least squares. Initialisation for the depths z1, . . . , zp
is obtained by averaging the depth of the b closest points to
each new samples (b was fixed to 5.) Notice that this same
optimisation of the warp transfer matrix L̃ can be applied
as well to the original L to obtain a global refinement of
the warp matrices. Remember that the warp construction
is based on an initialisation using rigid SfM. This further
refinement may improve the whole estimate of the defor-
mation in the case of unreliable initialisation of the warp.



5.2. Augmenting the warp in 3D

Given the known initial mean 3D shape S and control
points displacements, we may directly augment the warp
matrix L by inserting 3D points or even meshes belong-
ing to complex 3D surfaces. Augmentation in 3D avoids
to search for new feature correspondences in the image se-
quence. Also, the non-linear optimisation stage in Sec. 5.1
is not necessary since, by providing directly the set of points
[x̃1, . . . , x̃p̃], we can directly build the new L̃ as in Eq. (12)
and compute the new image point location Q̃. Most interest-
ingly is the fitting of a surface mesh using the mean points
computed from the rigid SfM stage. Giving the set of points
[x1, . . . ,xp] we can fit a 3D surface and reproject it back
into the image plane as shown in the experimental section
(Fig. 6). This augmentation is available regardless of the
visibility of the surface at a given frame. In the 2D case, in
order to augment the warp, it is compulsory to have a visi-
ble part of the projected shape where to match image points.
Differently, by inserting the surface in 3D we may augment
invisible parts (or highly occluded) and model their defor-
mation using the learned 3D warp functions.

6. Experiments

6.1. Synthetic data

Our synthetic evaluation has the purpose to verify two
different aspects of the proposed multiview 3D warp. First
its deformation representative power is compared to classi-
cal NRSfM algorithms that are standard 3D reconstruction
algorithms for sparse point sets. Then we show the algo-
rithm resilience to increasing amount of missing data in the
measurements. Notice that we can only do a sparse point
evaluation since not all the standard methods for 3D mod-
elling from images model directly dense deformation fields.

In order to understand the representative power of the
warp we present two synthetic sequences with complex de-
formations. The flag sequence [10] is a motion captured
cloth moving freely and displaying erratic and unsteady
motion. We compare the results of our algorithm with
Torresani et al.’s algorithm [18] (EM-PPCA), Bundle Ad-
justment (BA) [7], the BALM method [8] and two piece-
wise modelling approaches: Taylor et al.’s approach [17]
using locally rigid motion (L-RIGID) and the piecewise
quadratic method of Fayad et al. [10] (P-QUAD). The
standard NRSfM approaches EM-PPCA, BA, and BALM
achieved a 2D error of 19.02%, 16.01%, and 6.65% respec-
tively3. Our approach does far better, 3.03%, almost reach-
ing the best results of 1.50% and 2.04% provided by the
piecewise SfM P-QUAD and L-RIGID respectively. The
MOCAP cylinder instead presents a cylindrical shape show-

3The 2D error was defined as the Frobenius norm of the difference
between the recovered 2D trajectories Q and the ground truth QGT .

ing strongly non-linear deformations. Our approach suc-
ceeds to obtain a 0.76% 2D error against the 0.55% error
given by P-QUAD. In this test, given the sparseness of the
points and the strong bending motion of the cylinder, it was
not possible to apply successfully L-RIGID.

Figure 3. A selected frame from the flag and MOCAP cylinder
sequences [10]. Black dots represent the 2D point ground truth
while red circles shows the estimated points with the 3D warps.

A further test aims to compare our multiview 3D warp
against increasing missing data with ground truth. The
3D warps are compared against standard algorithms for
NRSfM since the available piecewise implementations P-
QUAD and L-RIGID do not allow for missing data in the
trajectories. For this test we used a 3D motion capture se-
quence of a real deforming face captured using a VICON
system tracking and 37 points in 3D were then projected
synthetically onto an image sequence of 74 frames using an
orthographic camera model. Overall, we ran 100 tests for
each configuration of missing data up to a 70% ratio.

In Fig. 4 we compare the results of our algorithm with
Torresani et al.’s algorithm [18] (EM-PPCA), the BALM
method [8] and Bundle Adjustment (BA) [7]. Our multi-
view 3D warps’ behaved fairly well; the 2D error curve lies
inbetween BA and EMPPCA/MP. The 2D error never goes
over 5% and it shows a remarkable regularity at increasing
levels of missing data.
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Figure 4. Synthetic test results showing a comparison between our
multiview 3D warps and NRSfM methods.

6.2. Real data
We further test the 3D warps using two real image se-

quences. The first test was previewed in Fig. 1 and it



Frame 1 Frame 15

Frame 29 Frame 44
Figure 5. The four figures show the 27 control point displacement
with red dots. The green dots shows the estimated 2D coordinates
given the warp function.

presents a moving (rotation and translation) cushion with
bending deformations. A set of 90 image tracks were ex-
tracted and missing data were created synthetically with
random sampling up to a 40% ratio. After the warp initiali-
sation with 27 control points, we determine the variation in
time of the control points and their relative camera projec-
tion matrices as presented in Fig. 5.

These frames were chosen with a purpose. Notice that in
Frame 1 the grid is not perfectly regular as in Fig. 2 which
shows the grid’s initial configuration. This is because the
mean shape which constructs the warp is computed from the
whole sequence. Thus, already in the beginning of the se-
quence, the warp has to adapt to the configuration of the ob-
served points. Frame 15 shows that when the shape moves
almost rigidly the warp is projected and translated correctly
by the estimated motion matrix M. Frame 29 shows a config-
uration of the control points which is almost perfectly regu-
lar. In this frame, the mean 3D shape is very similar to the
observed image data thus the algorithm does not need to de-
form much the control points. Frame 44 shows the strongest
deformation in the sequence, notice how the control points
are stretched to mimic the deformation. The average RMS
2D error given the known coordinates is 0.08 pixels.

6.3. Augmentation, cloning and retexturing

The capabilities of the multiview 3D warp is not only
restricted to modelling performance. In the following we
show three tasks that can be readily available only by using
the learned 3D warp using the proposed framework.
Shape augmentation. We tested a further real sequence
to present shape and image augmentation. The sequence is
105 frames long and it shows a paper bending and rotat-

3D mean shape Dense 3D surface

Surface augmentation

Figure 6. In the top left figure, we first show the sparse point stored
in S obtained by rigid SfM. The top right figure shows an interpo-
lated surface given the reconstructed 3D points. The bottom rows
show two frames of the paper sequence. Notice here how the 3D
mesh (in red) is correctly projected and bent into the image plane.

ing. The warp was learned using 280 image points from
which we reconstructed a 3D mean shape (top left image
of Fig. 6.) Notably, we observed that the sparse 3D shape
being bent and not at a resting position (i.e. flat) is not af-
fecting negatively the whole algorithm performance. Given
the sparse pattern, we augment the shape by surface inter-
polation obtaining a dense 3D mesh. The figures in the last
row shows the reprojection of the deforming mesh into the
image plane. Notice how the surface bending accurately
describes the real image motion.
Deformation cloning. The learned deformation field is in-
dependent of the imaging conditions (i.e. the camera pose)
and the shape motion. Thus the learned dense warp in
the metric space can be easily reused to augment a new
sequence or to transform the existing one. This was ob-
tained by choosing an arbitrary 3 × 3 matrix T̂ such that
LEλPiT̂Mi − Q̂i. The transformation T̂ is at the user discre-
tion. In Fig. 7 we have chosen to scale the deformation by
2 and rotate it by α = 15, β = 15, and γ = 45 degrees.
Image retexturing. Fig. 8 shows the retexturing of the pa-
per image sequence where a synthetic texture is added to
the bending paper. Notice that the augmentation is made by
first projecting the dense mesh in Fig. 6 and then by retar-
geting the texture to augment the video with a logo.

7. Conclusion
We have proposed the multiview 3D warps. This new

model improves state of the art in several ways. It is the
first model to explicitly parameterize images of a deform-
ing body by an average dense 3D shape and a set of 3D de-
formations combined with projection to 2D. Existing warps



Figure 7. Cloning the learned warp from the previous sequence
(left image.) On the right we show the original surface in blue
projected into the image frame. The smaller red mesh is cloned
from the original but resized by two and rotated.

Figure 8. Automatic retexturing of the paper sequence.

map points from an image directly into another, and do not
allow one to easily access the body’s 3D shape and defor-
mations, and camera pose, while NRSfM uses only sparse
point matches and thus does not capture the deformation
field for the whole 3D body. Our warps are templateless:
they do not use specific priors on the observed body’s shape.
We have proposed a feature-based method that, from point
matches between multiple images, estimates our multiview
3D warps’ parameters. Thanks to our warps, points can
be transferred from one image to another, and the captured
body’s deformations can be reused to augment the original
images, to retarget the deformations or to alter the view-
point. The reported experimental results on simulated and
real data showed how image augmentation and retexturing
could be performed. These results show that our warps’
image modelling power is comparable or better to classical
NRSfM methods. More importantly, we have experimen-
tally demonstrated deformation cloning which was yet not
possible using state of the art methods. We believe that our
multiview 3D warps may open new research directions. In
particular, the placement of the 3D control points and the es-
timation of the weights given to the various 3D shape priors
are topics for which further research is especially important.
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