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Abstract

Most of the previous work on template-based deformable
3D surface reconstruction using a single view is feature-
based. We propose a pixel-based formulation in a varia-
tional framework; the unknown is the surface function. The
color discrepancy between the template and the deformed
images is formalized as a functional of the surface func-
tion. The main difficulty in such a formulation arises when
the surface self-occludes which induces discontinuities in
the discrepancy measure at the self-occlusion boundary.
Based on previous work on 3D rigid surface reconstruc-
tion, we rigorously formalize the visibility as a continuous
functional of the surface function. It is derived in the tem-
plate for visible/self-occluded regions in the deformed im-
age. The gradient of the color discrepancy is computed with
respect to the surface function. The minimization smoothly
updates the surface function to fit the self-occlusion bound-
ary. Gradient descent is initialized from feature-based 3D
reconstruction.

Our experimental results on simulated and real data
show that during the minimization of the color discrep-
ancy, the self-occlusion boundary of the reconstructed sur-
face moves to its correct location in the image. We show
quantitatively that in the template image, the accuracy of
visible/self-occluded areas is improved to a significant ex-
tent.

1. Introduction
Monocular 3D reconstruction of non-rigid surfaces is an

important task for many applications such as augmented re-
ality. This is a difficult problem since the appearance of
an imaged surfaces varies due to several phenomena such
as camera pose, surface deformation, lighting, motion blur
and self-occlusions. During the past few years, feature-
based reconstruction methods have been proven efficient to
recover the 3D shape of deformable surfaces [3, 12]. How-
ever, since these methods rely on sparse feature matches
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Figure 1. (a) Template surface. (b) Deformed surface. Second
row is for feature-based method [3]. Third row is for our pixel-
based method. In (c) and (e) self-occluded area in black. The
arrow (2) in (f) shows that the self-occlusion boundary is better
fitted with the proposed pixel-based method than with a feature-
based method as is pointed out by arrow (1) in (d). Thanks to
the proposed method, the missed self-occluded area illustrated in
dotted red in (c) is recovered as shown in (e).

to reconstruct the deformed surface they may provide a
rough reconstruction when data are missing in some crit-
ical regions of the deformation. For instance, in case of
a self-occlusion, the 3D reconstruction may be inaccurate
around the self-occlusion boundary, as shown in figure 1.d.
In pixel-based 3D rigid surface reconstruction methods the
surface is more densely covered by using image intensities
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over all the visible pixels. Based on an initial estimate of
the surface function between the template and deformed im-
ages, the color discrepancy is minimized [2]. Usually this
minimization involves computing the gradient of the dis-
crepancy functional. However, in the presence of a self-
occlusion, a simple binary function to represent the visi-
bility will not be continuous at the boundary between the
visible and the self-occluded regions (the visibility func-
tion moves abruptly from 1 to 0). Some authors bypass this
problem by learning beforehand a set of statistical 3D mod-
els of the deformed shape [10]. Moreover, it is obvious that
the visibility function depends on the surface function and
a basic binary function does not take into account this de-
pendency. Based on work by Solem et al. [14] on the geo-
metric formulation of gradient descent for variational prob-
lems with moving surfaces, Gargallo et al. [5] derived a 3D
surface reconstruction algorithm. In their method, the vis-
ibility function is explicitly defined with respect to a rigid
3D surface as being the zero-set of a level-set function. The
gradient descent algorithm is initialized using a rough esti-
mate of the rigid surface from rigid Structure-from-Motion.
In the context of template-based 3D reconstruction of de-
formable surfaces from one single view, the application of
such a method is not straightforward. The difficulty lies in
the formulation of the visibility function with respect to the
surface function.

In this work, the first pixel-based approach to 3D recon-
struction of a deformable surface using one single view is
proposed. Based on methods for 3D rigid surface recon-
struction, it expresses in a variational framework the color
discrepancy with respect to the surface function. The vis-
ibility is defined as a continuous functional from the tem-
plate to the deformed surface. The derivative of the color
discrepancy is computed in the template with respect to
the surface function which facilitates gradient descent mini-
mization. The 3D reconstructed surface is given in the cam-
era frame of the deformed image.

Paper organization. Section 2 gives related work. Sec-
tion 3 presents basic definitions and concepts. Section 4
presents the proposed pixel-based variational method. Sec-
tion 5 reports our experimental results and finally section 6
concludes.

Notation. Vectors are in bold (e.g. q). Matrices are in
uppercase sans-serif fonts (e.g. Π). The identity matrix
is denoted I. ||.|| denotes the vector two norm in a real
vector space of finite dimension. Images are denoted us-
ing calligraphic fonts (e.g. I). They are seen as functions
from a compact domain Ω ⊂ R2 to R3 for the three RGB
color channels . For instance I(q) is the image value
of pixel q ∈ Ω. Bilinear interpolation is used for sub-
pixel coordinates. The gradient of a scalar valued func-

tion f with respect to vector x = (x1 · · ·xn)>, is denoted
Ox = (∂fx1 · · · ∂fxn). H designate the Heaviside step
function valued to zero for real negative arguments and to
one for real positive arguments. δ stands for the Dirac im-
pulse valued to one at zero and to zero elsewhere. The ab-
breviation iff states for the logical equivalence (if and only
if).

2. Related work
Up to now, only 2D warp estimation has been addressed

using pixel-based approaches to deformable surfaces with
known template [1]. Even recent works has addressed the
problem of self-occlusion in 2D warp estimation [11, 6],
to the best of our knowledge there is no existing pixel-
based method to template-based 3D reconstruction of de-
formable surfaces. However, the problem we tackle in
this paper has been addressed separately in the computer
vision community, where in one hand several algorithms
have been proposed for feature-based (either sparse or even
some times using denser matching methods like template-
matching) monocular 3D reconstruction of non-rigid shapes
and in the other hand a set of pixel-based approaches have
been derived for 3D reconstruction of rigid surfaces with
self-occlusion handling. In feature-based methods, the de-
formed surface is obtained by measuring distances between
sparse features matched between a template and a target im-
age. These approaches may differ by the type of represen-
tation of the surface. The point-wise methods use a sparse
representation of the 3D surface [9], while other methods
make use of complex surface models like triangular meshes
[12] or smooth parametric maps [3, 8, 15]. Also they may
differ by the physical assumptions on the surface; some of
them use analytic constraint in the case of isometric defor-
mation [3] while others learn local statistical models of de-
formation [13] relying on template matching which enables
denser coverage of the surface. In [7] sparse feature corre-
spondences are combined with silouhette points to fit an im-
plicit 3D mesh model to a given surface deformation. The
purpose of this method is similar to the goal of the pro-
posed approach since both handle self-occlusions. How-
ever, they differ in the way the visibility is handled; while
in [7] silouhettes are taken to be self-occlusion border, in
our approach we rigourously formalize the visibility func-
tional with respect to the deformable surface in a variational
framework which allows us to derive continuous functional
expressions and use gradient descent methods.

In pixel-based approaches to 3D reconstruction of rigid
shapes, developments of the last decade have led to the for-
mulation of many interesting problems in a variational set-
ting. Surface evolution is one of the most successful ap-
proaches in 3D geometric reconstruction [4, 17, 14]. The
idea of starting with an initial rough approximation of the
surface and then deform it so that it improves some color



discrepancy score has been proved to be efficient. How-
ever, these methods describe the visibility function as bi-
nary function (i.e. one for visible regions and zero for self-
occluded ones) which imposes to use some computational
tricks to overcome the discontinuity in the self-occlusion
boundary. Tsai et al. [16] have defined the visibility, us-
ing level-set functions, as a continuous function when the
view point and the scene objects move. Recently, based on
works by [16] and [14], Gargallo et al. [5] propose continu-
ous expression of the color discrepancy in the self-occlusion
boundary to successfully produce 3D reconstruction of rigid
surfaces using multiple views. In our work, we extend
this approach to template-based 3D reconstruction of de-
formable surface using one single view.

3. Background and definitions
A template image is a compact domain Ω ⊂ R2 for

which the 3D shape of the template surface Γ is known. A
surface function is a Ck-function ϕ which maps the com-
pact domain Ω to the deformed surface Γ′ embedded in R3:

Ω→ R3 : q 7→ Q′ = ϕ(q) (1)

As it represents a regular surface, the integer k is con-
strained to be at least two. A target image is a compact
domain Ω′ ⊂ R2 which contains the visible projected points
q′ ∈ Ω′ of the deformation of the surface points Q′ ∈ Γ′

given a point of view:

Π

(
Q′

1

)
= µ

(
q′

1

)
, q′ ∈ Ω′ (2)

where Π ∈ R3×4 is the projection matrix which encodes
both camera intrinsics and extrinsics. µ refers to the depth
of the 3D point Q′. Without loss of generality Π can be as-
sumed as being the canonical projection with known camera
calibration parameters. To simplify the notation, we refer to
W : q 7→ q′ as the 2D warp which concatenates equations
(2) and (1). This allows to define Ω∗ ⊂ Ω′ as being the
mapping of Ω by the warpW .

4. Pixel-Based Variational Formulation
4.1. First Variational Formulation

A geometric pixel-based 3D reconstruction problem can
be formulated in a variational framework as the minimiza-
tion of the photometric error between the template and the
target images:

min
ϕ

EI + λpEp (3)

where:

EI =
∫
q∈Ω

‖ (I ′(W(q)) − I(q)) νΓ(q, ϕ) ‖2 dq (4)

represents the color discrepancy weighted by the visibility
function νΓ defined in the template domain by:

νΓ : Ω → {1, 0}

q 7→
{

1 ifW(q) is visible,
0 otherwise.

(5)

The term Ep accounts for some prior knowledge about the
physical constraints of the deformable surface (e.g. extensi-
blity, smoothness, etc). λp is real positive number to tune
the importance of this prior over the photometric error.

4.2. Visibility in the template space

It is obvious that the visibility function depends on the
surface posture and the viewing point which are implic-
itly given in the target image. However, as it is described
this dependency is not explicit. It has to be exhibited for
gradient computation purposes to deform the surface ac-
cording to the visible and the self-occluded areas. For this
reason, it has been shown [16, 14] that the visibility func-
tion, νΓ(q, ϕ), of a regular surface observed from a vantage
point depends on the level-set function that is defined as
the zero-set of this surface. Indeed, since the deformed sur-
face Γ is a regular surface of codimension 1 in R3, it can
be represented as the zero set of a C2-function in R3, i.e.
Γ = {(x, y, z) ∈ R3| φ(x, y, z) = 0}. The sets {(x, y, z) ∈
R3| φ(x, y, z) < 0} and {(x, y, z) ∈ R3| φ(x, y, z) > 0}
are called the inside and the oustide of φ. From the vantage
point, these sets are respectively behind and before of the
surface Γ, see figure 2. As expected, it is this property that
allows us to well define the visibility as being dependent of
the associated level-set function. One of our contributions
is to exhibit the visibility function in the template space and
to compute its gradient with respect to surface deformation
so that it can be taken into account in the minimization of
the photometric error. For this purpose, we define a level-set
function as a functional in the template domain:

φϕ : Ω× R → R
(q, λ) 7→ φϕ(λϕ(q)) (6)

where λ is a real positive parameter. λϕ(q) is the sight
line (joining the view point and the surface point ϕ(q))
which intersects the different level sets of φϕ. According
to this parametrization, the zero-set becomes Γ = {q ∈
Ω| φϕ(q, 1) = 0}. If there is no self-occluded area, the ex-
terior set (behind Γ) is {q ∈ Ω, λ > 1 : φϕ(q, λ) < 0} and
the interior set (before Γ) is {q ∈ Ω, λ < 1 φϕ(q, λ) > 0}.
If there is some self-occluded area, the parameterized line
λϕ(q) may cross a level-set curve at least twice. This prop-
erty will help us to determine the self-occluded region as
described below.

Thanks to the exterior and interior sets, the visibility of
any surface point ϕ(q) ∈ Γ can be determined from the
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Figure 2. Visibility/Occlusion sets. (a) represents a template im-
age. (b) represents the target image where the deformed surface
self-occludes. (c) and (d) show the computed 3D model of the de-
formed surface. (f) sketches how the visibility/occlusion sets are
determined. The red point on the surface represents a point of the
horizon. The green point on the surface represents the terminator
point which is the dual of the red one. Point 1 is the self-occluder
of point 3. Point 2 is the result of the mapping by β of point 3.

values that φϕ takes when λ varies from 0 to 1. For a given
q ∈ Ω if all the values φϕ(q, λ) are positive for all 0 ≤
λ ≤ 1 then the line of sight from the view point to ϕ(q) is
in the interior of Γ, which means that q is visible. However,
if any of the level-sets values φϕ(q, λ) is negative, which
means that the line of sight has crossed the surface Γ at least
two times and has passed through the exterior before hitting
the point q to which corresponds λ = 1. In this case it is
obvious that ϕ(q) is self-occluded and its self-occluder on
the surface is the first point of the intersection of the sight

line λϕ(q) with the surface. It is defined as:

λq = β(q, λ) = argmin
λ∈R

{|φϕ(q, λ)|} (7)

Tsai et al. [16] have shown that β is a continuous func-
tion on Ω × R (in their notation, it is continuous in the 3D
space and since the functional ϕ is continuous in q, by the
composition of continuous functions the result holds). If
q ∈ Ω is visible then φϕ(q, λq) = 0 and if is self-occluded
then φϕ(q, λq) < 0. Henceforth, visible and self-occluded
points can be characterized by the following proposition:

Proposition 4.1 A template point q ∈ Ω is said to be vis-
ible iff (φϕ(q, λq) = 0, or equivalently, iff β(q, λ) = 1.
However a template point q ∈ Ω is said to be occluded iff
(φϕ(q, λq) < 0, or equivalently, iff β(q, λ) < 1. Moreover,
qo, such that qo = β(q, λ)ϕ(q), is said to be the occluder
of q.

The set of all visible points is denoted V ∈ Ω and the set
of all self-occluded points is denoted O ∈ Ω. Among the
pairs self-occluder/occluded points, there is a pair of subset
of particular interest which are called the horizon and the
terminator. They self-occur when the sight line that joins
the origin to the self-occluded point is tangent to the surface
Γ at the self-occluder point:

Definition 4.1 A visible point q ∈ V is said to be on the
horizonH iff it satisfies the two following conditions:

1. N>Γ (q)ϕ(q) = 0

2. q is an self-occluder

where NΓ(q) states for the normal of Γ at the point ϕ(q).
An self-occluded point is said to be on the terminator T iff
its self-occluder is on the horizon.

It can be easily seen that condition 1 of this definition is
necessary but not sufficient since in the case where condi-
tion (2) is not fulfilled, then the point self-occludes a point
outside Γ (a background point) which does not correspond
to a self-occlusion. Using the warpW , we can write:

W(V) ∩W(O) =W(H) =W(T ) (8)

This means that in the target image horizon and termina-
tor images are superposed. The relation is even stronger,
since to every point q ∈ H corresponds its dual point
q′ ∈ T . Dual points have the same projection in the tar-
get image:

W(q) =W(q′), for all q ∈ H and its dual q′ ∈ T (9)

This property defines a one-to-one correspondence between
the horizon and the terminator points:

η : H → T (10)



According to these developments, it follows that φϕ◦β is
an implicit representation of the self-occluded surface and
it can be linked to the visibility function as:

νΓ(q, ϕ) = H(φϕ(q, β(q, λ)) (11)

In order to compute gradient expression of the visibility
function, the functional νΓ = H ◦ φϕ ◦ β is considered as a
distribution since the Heaviside function is not continuous.

4.3. Gradient of the Data functional

We assume a variation of the function ϕ which produces
an evolution of the surface Γ that does not change the topol-
ogy of the level sets. Henceforth, the variation of the level
set can be described as φϕ1 = φϕ + (ϕ1 − ϕ)>ψ. In this
case, the visibility sets change in the template and the dif-
ferential of the visibility function is given by the chain rule
in the distribution space as:

OϕνΓ(q, ϕ) = δ(φϕ(q, β(q, λ)))ψ(q, β(q, λ)) (12)

where δ is the Dirac function and Oϕ denotes the gradi-
ent with respect to the function ϕ. To make it explicit, one
needs to instantiate the function ϕ in a given basis function.
This part of the computation is addressed in the next sec-
tion. ψ is the variation of the level set function when the
surface is deformed. Then, if we consider the photometric
difference as a functional of the deformable surface:

g(q, ϕ) = I ′(W(q)) − I(q) (13)

Its gradient in the visible part of Ω is:

Oϕ (g(q, ϕ)νΓ(q, ϕ)) = OϕW(q, ϕ)νΓ(q, ϕ)+
g(q, ϕ)δ(φϕ(q, β(q, λ)))ψ(q, β(q, λ))

(14)

Notice that the second term of the right hand side would
not appear without an implicit formulation of the visibility
function. This term supports the surface evolution by con-
sidering evolution in the level set function. However since
the δ distribution is not a smooth function, it brings non-
feasible deformation and it has to be approximated by an
admissible function to allow admissible surface deforma-
tion. In practice, this is done simply by approximating it
with a narrow gaussian.

4.4. Second Variational Formulation

Taking into account the properties related to the visibility
and self-occluded regions of a template space Ω, the pixel-
based 3D reconstruction is then formulated as follows:

min
ϕ

EI + λnEn + λH,T EH,T + λpEp (15)

with:

• EI the data error as defined in (4) with the visibility
function as defined in (11).

• En is the orthogonal constraint on the horizon points:

En =
∫

q∈H

‖ (NΓ(q)ϕ(q)) ‖2 dq (16)

• EH,T expresses the duality property on the hori-
zon/terminator points:

EH,T =
∫

q∈H

‖ (W(q)−W(η(q)) ‖2 dq (17)

where η is the one-to-one mapping between horizon
and terminator sets as defined in (10). This constraint
ensures that the projection of the horizon and the ter-
minator points coincide in the image.

• Ep is as defined in the first formulation and
λn, λH,T , λp are real positive weights.

4.5. Algorithm Description

The proposed pixel-based variational method to 3D re-
construction of deformable surface is implemented as fol-
lows:

Step 1: The 3D surface can be initialized with any feature-
based method. In this work, we use the method pro-
posed in [3].

Step 2: According to the 3D model, extract an self-
occlusion map using Z-buffer.

Step 3: Evaluate the horizon points as described in defi-
nition 4.1.

Step 4: Compute gradient of evolution of the level-set
function with respect to the 3D surface. Since level-set
estimation methods are time and memory consuming,
the gradient of the level-set is locally approximated.
For a given point q, the level-set is locally approxi-
mated by the tangent plane at q so that the gradient
can be approximated as:

ψ(ϕ) ≈ Oϕ(N>Γ (q)ϕ(q)) (18)

Step 5: Update the surface function ϕ using gradient de-
scent.

Step 6: Repeat step 2 to step 4 until a minimum is
reached.



5. Experimental Results

The proposed method is tested on one synthetic and two
real world scenes. The goal of these experiments is to show
the influence of the proposed pixel-based method on the
improvement of the self-occlusion map and on the recon-
structed 3D surface. The proposed method does not depend
on the type of the deformable surface and Ep can encode any
physical prior. However, in feature-based methods only iso-
metric surfaces has been defined in a variational framework
such as:

Ep =
∫

Ω

‖J(qi)>J(qi)− 1‖2dq

+α
∫

Ω

3∑
j=1

2∑
k=1

∥∥∥∥∥ ∂ϕij
∂qi(k)

(qi)

∥∥∥∥∥
2

dq
(19)

Where the first term constraint the deformation to be iso-
metric and the second weighted with the real number α is
used to smooth up the reconstructed surface [3]. In our
experiments, The surface function ϕ is initialized with the
feature-based method described in [3]. This initial 3D re-
construction allows us to determine the initial visible and
self-occluded sets. A first step optimization allows us to
deform the surface to better fit the color discrepancy mea-
sure. The constraints (16) and (17) ensure that the 3D re-
construction consistent with the visible/self-occlusion con-
straints which link the surface and the vantage point.

5.1. Simulated Data

The Mandrill simulated dataset consists of 5 synthetic
images of size 480×500 pixels. They are designed to evalu-
ate the performance of our approach with different amounts
of self-occlusion areas. A planar textured surface is de-
formed isometrically and projected to an image plane so
that we obtain 5 different amounts of self-occlusions ar-
eas between 20% and 45% percents of the surface area as
shown in figure 3. The correpondences are generated and
perturbed with gaussian noise of zero mean and 2 pixels of
std. The target image intensities are perturbed with a gaus-
sian noise of zero mean and 5 of std (The intensity values
being in the integer interval 0-255 for the RGB channels). It
can be observed that the proposed pixel-based approach is
very useful when the self-occluded area becomes bigger. In-
deed, in figure 4 left we can see that more the self-occluded
area is big and more the feature-based method gives poor
results. While the proposed pixel-based approach gives re-
sults very close to the ground-truth self-occlusion map. The
figures 4 middle and right evaluate quantitatively the perfor-
mance of the proposed method regarding to the 3D recon-
structed surface. It can be seen that the performance of the
feature-based method depends highly on the number of the
correspondences and their presence near the self-occlusion

boundary. For instance, this can be seen by comparing the
performance between frame 1 and frame 5.

5.2. Real Data

We show the performance of the proposed approach for
two datasets. Each dataset has a template image and a target
image.

The ‘Graffiti’ dataset has a template image as shown in
figure 5.a, of size 378× 316 and a target image as shown in
figure 5.b, of size 720×576. The image presents a deformed
A4 paper sheet on which a graffiti is printed. Figures 5.c
and 5.d show the result of the feature-based reconstruction
where it can be seen that the reconstructed surface does not
fit accurately to the deformed paper. The visible part in fig-
ure 5.c appears to be bigger than what is in the target image.
Figures 5.e and 5.f exhibit the result obtained with the pro-
posed pixel-based approach. It appears that in this case the
visible part exhibited in figure 5.e fits more accurately the
visible area on the surface in the target image. Indeed, it can
be observed that the reconstructed surface in figure 5.f fits
better the deformed paper.

The ‘Toy-cloth’ dataset results are shown in figure 1. In
this dataset similar observations can be made as for our
‘Graffiti’ dataset.

6. Conclusion

We proposed a variational framework for pixel-based
monocular template-based 3D reconstruction of a de-
formable surface. While state-of-the-art methods solve this
problem using parametric formulations and feature-based
methods, our approach is the first one that can perform si-
multaneous pixel-level image matching and 3D geometric
reconstruction of the non-rigid surface.

We validated our approach on challenging real data
sets showing phenomena such as surface self-occlusion
on which previous methods tend to have poor accu-
racy.
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