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Abstract

We present a monocular 3D reconstruction algorithm for inextensible deformable surfaces. It uses point cor-

respondences between a single image of the deformed surface taken by a camera with known intrinsic parameters

and a template. The main assumption we make is that the surface shape as seen in the template is known. Since

the surface is inextensible, its deformations are isometric to the template. We exploit the distance preservation

constraints to recover the 3D surface shape as seen in the image. Though the distance preservation constraints

have already been investigated in the literature, we propose a new way to handle them. Spatial smoothness priors

are easily incorporated, as well as temporal smoothness priors in the case of reconstruction from a video. The

reconstruction can be used for 3D augmented reality purposes thanks to a fast implementation. We report results

on synthetic and real data. Some of them are compared to stereo-based 3D reconstructions to demonstrate the

efficiency of our method.

1 Introduction

Recovering the 3D shape of a deformable surface from a monocular video and a template (a ‘reference’ image of the

surface) is a challenging problem, illustrated in figure 1. This problem has been addressed by researchers over the

past few years and several algorithms have been proposed. The 3D shape as seen in the template is usually known.

The problem of recovering the 3D shape as seen in the image is ill-posed due to depth ambiguities. Additional

consistency constraints are thus required. Most commonly, ad hoc constraints are used. These include spatial and

temporal surface smoothness (Gumerov et al., 2004; Prasad et al., 2006), the low-rank shape model (Bregler et al.,

2000) and combinations of those (Bartoli et al., 2008; Del Bue, 2008).

∗NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Centre of Excellence program.



We propose an algorithm dedicated to inextensible surfaces such as those shown in figure 2. It uses point

correspondences to compute upper bounds on the points’ depth using the surface inextensibility assumption. We

show that these bounds directly provide a ‘good’ 3D reconstruction of the surface. As opposed to algorithms that

iteratively refine an initial solution that must be ‘close’ to the optimal one, ours is standalone and easily handles

additional constraints such as spatial and temporal smoothness. Our method was first published in a short version

of this paper (Perriollat et al., 2008). The closest works to ours are (Ecker et al., 2008; Ferreira et al., 2009; Penna,

1992; Salzmann et al., 2008a). Our method improves the state of the art since it does not make any assumption about

the surface deformation. It reconstructs an inextensible surface from a template and a single image1 of the deformed

surface from point correspondences only, though we demonstrate it on both single-image and video datasets. Our

algorithm is simple and fast, and can therefore be used to provide a good initialization to local iterative algorithms.

This paper is organized as follows. Related work on monocular deformable reconstruction is reviewed in §2. The

evaluation of upper bounds is presented in §3 and the surface recovery procedure in §4. An experimental study of the

reconstruction error with simulated data is proposed in §5. Results on real datasets are reported in §6. Eventually,

we give our conclusion and research perspectives in §7.

Template
(known)

isometric
deformation
(unknown)

3D surface
(unknow)

Image of the deformed
surface (known)

Figure 1: Template-based monocular reconstruction of a deformable surface: problem setup. We are
given a template for which the surface shape is known, and an image for which the surface shape has to be recon-
structed, through the estimation of an isometric deformation from the template surface shape to the image surface
shape. Point (typically keypoint) correspondences between the template and the image are used. The template is
often flat, but not always. As an example, the can shown in figure 2 (b) has a cylindrical template shape. An
isometric deformation of the cylinder to ‘explain’ the image of the deformed shape is sought.

2 State of the Art

There are three main components used for monocular deformable scene reconstruction in the literature: the general

low-rank shape model, the assumption that the object of interest is a surface and the knowledge of a template.

1For which the camera intrinsic parameters are known.



(a) (b)

Figure 2: Examples of images from which our algorithm can reconstruct the 3D surface shape. (a)
Examples of a paper sheet: the template (left) and two deformed sheets, a smooth one (middle) and a creased one
(right). (b) Example of a can: template image (left), the 3D shape associated with the template (middle), and the
input image showing the can deformed (right). The reconstructions are shown in §6, figures 12, 13 and 14.

These components can be independently used or combined together, so as to handle the intrinsic ambiguities in

monocular deformable reconstruction. Surface is a fairly broad term which in the context of this paper means a

smooth (continuous and differentiable) shape. There also exist work on surface tracking, that can be used to provide

input data to surface reconstruction methods, such as (Shen et al., 2009) that does inextensible surface tracking,

and (Gay-Bellile et al., 2009) that uses a self-occlusion resistant smoothness constraint.

The low-rank factorization solution to the non-rigid shape recovery problem has been introduced by (Bregler

et al., 2000) and used in (Bartoli et al., 2008; Brand, 2005; Del Bue, 2008; Olsen and Bartoli, 2008; Torresani et al.,

2008; Vidal and Abretske, 2006; Xiao and Kanade, 2006). The 3D object shape is represented by a linear combination

of unknown basis shapes. The algorithm recovers both the basis shapes and the configuration weights. The surface

hypothesis has recently been incorporated in this framework through the use of priors (Bartoli et al., 2008; Del Bue,

2008; Olsen and Bartoli, 2008). These methods are batch: they need the whole video to compute a solution and are

thus not suited for reconstruction on the fly.

Learning approaches have proven efficient to model deformable objects (Gay-Bellile et al., 2006; Salzmann et al.,

2007, 2008b). The main drawback is the lack of generality when the trained model is too specific. So as to properly

deal with videos, temporal consistency is used to smooth the deformations. The initial 3D shape i.e., the surface

shape for at least one frame of the video, must be known. These methods usually also need a template. In practice,

the initial 3D shape and template constraints are met by acquiring the video such that the object deformation in the

first frame is close to the one seen in the template.

Methods using only the surface assumption have been proposed. They require strong additional priors on the

surface such as its developability, applicable to paper sheets. One of the motivations for these methods is to perform

paper scanning from images of deformed paper sheets. For this kind of application, a template is obviously not

available. Under the surface smoothness assumption, (Gumerov et al., 2004) solve a system of differential equations

on the page borders to obtain the 3D shape. Other approaches such as (Liang et al., 2006) use textual information

to evaluate the surface parameters. These methods perform well on smoothly bent paper but cannot be extended to



arbitrary inextensible objects.

The method we propose is dedicated to inextensible surfaces (that deform isometrically), uses a template and

assumes the internal parameters of the camera to be known. The method in (Salzmann et al., 2008a) uses the same

hypotheses as our method, but solves the problem differently, using Extended Linearization. The method in (Ferreira

et al., 2009), however, is different in that it uses a scaled orthographic camera model, does not use a template, but

multiple images so as to unfold the surface, thereby reconstructing the template itself. The method in (Ecker et al.,

2008) also uses an affine approximation, more precisely, an orthographic camera model. These two methods enforce

the inextensiblity constraints exactly. Finally, the method in (Penna, 1992) makes similar hypotheses to ours but

also requires partial derivatives around the point correspondences. This extra piece of information is rarely available

in practice.

In summary, our approach is more flexible than the others in several respects: it applies to any inextensible

surface such as paper, garment or faces2 and it uses only one frame to compute the reconstruction. When processing

a video, it does not need that the 3D surface is known in advance for a particular, reference frame.

3 Finding Upper Bounds on the Surface Depth

We focus on inextensible deformable objects imaged by projective cameras. A surface template is assumed to be

known. We describe our algorithm to compute upper bounds on the depth of the surface points. We first give the

principle, then the bound initialization and finally their iterative refinement. Our notation is shown in table 1.

T template

qTi point i in the template

I image of the deformed object

P camera matrix for I

C camera centre for I

qIi point i in the image

Si sightline for point qIi

vi direction of the sightline Si

αij the angle between Si and Sj

q̄i point i in homogeneous coordinates

‖.‖ vector two-norm

dij = dgeo(q
T
i , qTj ) geodesic distance between qTi and qTj

µi depth of point i

Qi = Qi(µi) 3D point i

µ̂i true depth of point i

Q̂i true 3D point i

µ̃i reconstructed depth of point i

Q̃i reconstructed 3D point i

i⋆ index of the point constraining
the depth of point i

µ̆i = µ̆ii⋆ maximal depth of point i

Q̆i deepest 3D point i

Table 1: Our notation for this paper.

We assume that the template is composed of the 3D surface shape registered with an image of the object.

Examples are shown in figure 2. For the paper sheets, the reference shape is a plane, and for the can, it is an open

cylinder. Assuming that point correspondences are established between the image of the deformed object and the

template, we show that the region of space containing the object is bounded. The internal camera parameters allow

2See (Bronstein et al., 2005) for more details on the 3D geometric properties of faces.



one to compute the backprojection of the matched feature points, known as sightlines. Since the camera is projective,

the sightlines intersect at the camera center and are not parallel to each other. The consequence is that the distance

between two points increases with their depths. The template gives the maximal distance between two points. when

the real dimensions of the template are available, the 3D scale ambiguity is resolved. This is used to compute the

maximal depth of the points.

First of all, correspondences are established between the image and the template using for instance KLT (Shi and

Tomasi, 1994) or SIFT (Lowe, 2004), or a detection / tracking process designed for deformable objects (Gay-Bellile

et al., 2009; Pilet et al., 2008). We assume that there is no point mismatches. The upper bounds are evaluated

through a two step algorithm:

1. Initialization. (§3.1) A suboptimal solution is computed by using pairwise constraints.

2. Refinement. (§3.2) An iterative refinement process considers the upper bounds as a whole and tunes all of

them to get a fully compatible set of bounds.

3.1 Initializing the Upper Depth Bounds

An initialization for the bounds is computed by considering the point correspondences pairwise. Two points and

the inextensibility constraint are sufficient to bound the depth of these two points along their sightlines. For n

correspondences, n − 1 bounds are obtained for each point. The most restrictive bound (i.e., the tightest one) is

kept for each point. The sightlines are computed in the image of the deformed object I (details can be found in

e.g. (Hartley and Zisserman, 2004)). The camera matrix P = [M |p4] is composed of a (3 × 3) matrix M and a

(3× 1) vector p4. The camera center is C = −M−1p4. It will be seen that it is convenient to set the arbitrary world

coordinate frame aligned with the camera coordinate frame, and we therefore set C = 0. The vector vi orienting the

sightline passing through the point qIi is:

vi =
M−1q̄Ii
‖M−1q̄Ii ‖

.

A 3D point Qi on the sightline Si can be parametrized by:

Qi(µi) = µi vi + C = µi vi.

The camera position and orientation for the image can in practice be chosen arbitrarily. This is thanks to the problem

setup illustrated in figure 1. Indeed, placing the camera differently entails applying a Euclidean transformation. Since

what we are computing is an isometric deformation of the surface, a Euclidean transformation has no influence on it.

The depth µi is the distance of the point to the camera center; it is positive (Hartley, 1998). As figure 3 illustrates,

the inextensibility of the object gives the following constraint between the points: whatever the actual deformation,

the Euclidean distance between two 3D points is lower than or equal to the geodesic distance between them on the



template:

‖Q̂i − Q̂j‖ ≤ dgeo(q
T
i , qTj ) = dij .

Template

isometric deformation

3D surface

qTi

qTj

Q̂i

Q̂j

dij

‖Q̂i − Q̂j‖

Figure 3: Inextensible object deformation. The template surface shape is deformed to the 3D surface by an
unknown isometric transformation. The dashed line is the geodesic curve between Q̂i and Q̂j . It has the same length
dij as the known geodesic distance in the template. The Euclidean distance between the 3D points Q̂i and Q̂j is
shorter than dij due to the surface deformation.

As figure 4 illustrates, the coordinate frame can be chosen such that:
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0

0
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µj cos(αij)

µj sin(αij)

0
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Given µi, the two candidate points for Qj such that ‖Qi −Qj‖ equals dij are given by:

µj (µi) = µi cos(αij)±
√

d2
ij − µ2

i sin2(αij), (1)

where µj (µi) gives the depth of the j-point as a function of the depth µi of the i-th point. So there exists a real

solution if and only if:

µi ≤

√

d2
ij

sin2(αij)
.

The upper bound µ̆i is then computed from the whole set of correspondences (we assume αij ≤
π
2 which holds with

most of the common lenses):

µ̆i = µ̆ii⋆ = min
j = 1..n

j 6= i

(

dij

sin(αij)

)

.

The point that induces the minimum upper bound has index i⋆. We refer to this point i⋆ as the anchor point of

point i. Note that the ‘anchor’ property is not symmetric: the anchor point of i⋆ is not necessarily i. It is one of the

reasons why this initialization is suboptimal, as explained in the next paragraph.
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Figure 4: Point parametrization along the sightlines. Point Qi is parametrized by its depth µi along the
sightline passing through the camera projection center C and with direction Si.
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Figure 5: Refinement of the upper bounds. The initial bound µ̆ki gets refined to µ̆′
ki.

3.2 Refining the Upper Depth Bounds

The set of initial bounds is not optimal for the whole set of points, as illustrated in figure 5. As an example, we

consider three points, and their pairwise computed bounds. The bounds for the points Qj and Qk are given by the

point Qi. The points Qj and Qk are used to compute two bounds for the point Qi. Only the most restrictive one is

kept i.e., µ̆ij. It means that the depth of the point Qi cannot be greater than µ̆ij. This gives the new bound µ̆′
ik for

the point Qk.

We propose an iterative implementation of bound refinement. During one iteration, for each point, the upper

bounds of the other points induced by the actual point are computed. If they are smaller than their actual bounds,

these are updated. The iterations stop when there is no change during one iteration, meaning that the bounds are

all coherent. So as to derive the update rule, we refer to equation (1) that links the depth of two points such that the

distance between the points is equal to their distance measured in the template i.e., the maximal distance between

the two points. We study the upper bound on point j induced by point i. It is given by the largest value of µj:

µj (µi) = µi cos(αij) +
√

d2
ij − µ2

i sin2(αij). (2)

As figure 6 illustrates, this function has a global maximum:

µmax
i =

dij

tan(αij)
µj(µ

max
i ) =

dij

sin(αij ) .
(3)
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Figure 6: The function (2) giving the depth of point j against the depth of point i. (left) Parametrization of the
points, illustrating how µmax

i and µj(µ
max
i ) are retrieved in equation (3). (right) Graph of the function.

The upper bound for point j with respect to point i is thus:

µ̆ji =











µi cos(αij) +
√

d2
ij − µ2

i sin2(αij) if µ̆i ≤ µmax
i =

dij

tan(αij )

µj(µ
max
i ) =

dij

sin(αij ) otherwise,
(4)

and the formula to update the bound is the following:

µ̆j = min (µ̆jj⋆, µ̆ji) .

In our experiments, this process converges in 3 or 4 iterations. It gives the upper bound and the anchor point of

each point; both are used to recover a continuous surface. Algorithm 1 summarizes the upper depth bound refinement

process.

Algorithm 1 Upper depth bound refinement.

Require: Initial upper depth bounds : µ̆jj⋆.
1: c← true
2: while c do

3: c← false
4: for j = 1 to number of points do

5: for i = 1 to number of points, i 6= j do

6: Compute µ̆ji using equation (4).
7: if µ̆ji < µ̆jj⋆ then

8: c← true
9: µ̆jj⋆ ← µ̆ji

10: j⋆ ← i

11: end if

12: end for

13: end for

14: end while

Ensure: Refined upper depth bounds : µ̆j.

4 Recovering the Surface

Our surface recovery procedure has two main steps:



1. Reconstruction of sparse 3D points. (§4.1) The 3D points are computed using the upper bounds and the

distances to their anchor points,

2. Reconstruction of a continuous surface. (§4.2) The surface is expressed as an interpolation of the recovered

3D points, possibly using surface smoothness priors.

4.1 Finding a Sparse Set of 3D Points

The previously computed set of upper bounds gives the maximal depth of the points. For a fast surface reconstruction

algorithm, one can directly use the upper bounds as points on the surface:

µ̃i = µ̆i. (5)

In practice, the error due to this approximation is small, as our experimental error study of §5 shows. However, this

is not fully satisfying when regarding surface inextensibility. Indeed, the distance between two upper bound points

‖Q(µ̆i)−Q(µ̆i⋆)‖ can be larger than their distance in the template dii⋆ . In other words, we cannot individually assign

each point to its upper bound without violating the constraint. For instance, when there is a symmetry between a

point and its anchor point (in other words if i and i⋆ are mutual anchor points) it can be shown that the distance is

equal to dii⋆ cos−1
(

1
2αii⋆

)

≥ dii⋆ . To get a more consistent surface, we propose an optimization scheme to enforce

the length equality between a point and its anchor point. Since the upper bounds give good results, the points’ depth

such that these length equalities are satisfied are sought near the upper bounds. The optimization can also handle

other priors on the points. For instance when processing a video, a first order temporal smoother can be used to

penalize the too ‘strong’ surface variations in time. The optimization problem thus takes the following form:

µ̃ = argmin
µ

n
∑

i=1

(

(µ̆i(t)− µi(t))
2 + γ (µi(t)− µi(t− 1))2 + η(‖Qi −Qi⋆‖ − dii⋆)

2
)

, (6)

with µ the points’ depth vector and µi(t) the depth of the i−th point for frame t (the current frame). The choice of

the balancing weights γ and η are discussed in §6. This is a nonlinear least squares problem that we solve with the

Levenberg-Marquardt algorithm (Hartley and Zisserman, 2004) (the initial solution is given by equation (5)). We

use the Matlab implementation provided by the lsqnonlin function. The Cheirality constraints imply that the

depths in vector µ must be positive, and this is easily incorporated in the minimization.

4.2 Interpolating to a Continuous Surface

The reconstructed 3D points are eventually treated as control points of a mapping Γ from the template to the 3D

space. This allows us to represent the surface by mapping a regular mesh from the template. In practice the mapping



we choose is composed of three 2D to 1D Thin-Plate Splines (Bookstein, 1989):

Γ(q) = Aq +
n

∑

i=1

ρ(‖q − qi‖)Qk with ρ(d) = d2 log(d),

where A is a (3 × 2) matrix that represents the affine part of the Thin-Plate Splines. These have proven efficient in

the representation of deformable objects. Getting a continuous surface makes it possible to deal with surface priors,

such as surface smoothness. At this stage, another optimization process can be used to include these priors. They

are written as penalty terms of a cost function that is minimized with respect to the depth of the control points. For

priors on the temporal and geometric smoothness of the surface (modeled by a penalty on the squared second spatial

derivatives of the surface, also called the bending energy), one can write this optimization problem as:

µ̃ = argmin
µ

n
∑

i=1

(

(µ̆i(t)− µi(t))
2 + η(‖Qi −Qi⋆‖ − dii⋆)

2
)

+ λ

m
∑

j=1

∥

∥

∥

∥

∂2Γ

∂q2
(cj)

∥

∥

∥

∥

2

+ γ

m
∑

j=1

‖Cj(t)− Cj(t− 1)‖2,

(7)

with Cj a vertex of a surface mesh (Cj depends on the unknown depths since Cj = Γ(cj), where cj is a point

defining the mesh position in the template), m the number of vertices of the mesh and λ, γ and η balancing weights

controlling the trade-off between the distance to the bounds, the geometric and temporal smoothness terms and the

inextensibility constraints (the influence of the smoothing weight λ on the reconstructed surface will be experimentally

tested in §5.3). Fixing the deformation centers of the Thin-Plate Splines in the template, problem (7) shows to be

nonlinear least squares. It can be solved similarly as problem (6). The spatial smoothing term is evaluated in

closed-form, as described in (Bartoli et al., 2010).

5 Error Analysis

The quality of the reconstruction depends on the number of correspondences and the noise in the images. Though the

latter has been ignored in the theoretical derivation, we show how to deal with it in the reconstruction algorithm. The

experiments to assess the reconstruction error against the number of points or the noise magnitude are performed

on synthetic surfaces. They are modeled by developable surfaces, which are isometric to the plane. In practice

we use a 200 mm wide square shape, that we randomly deform using the generative developable surface model we

proposed (Perriollat and Bartoli, 2007). The feature points are randomly drawn on the shape. Examples of simulated

shapes are shown in figure 7. The 3D reconstruction error e(i) for the i−th feature point is monitored and averaged

over all points. It is defined as the distance of the reconstructed to the true 3D point:

e(i) = ‖Q̃i − Q̂i‖. (8)



The dashed curves represent the fast implementation error (equation (5)) and the bold curves correspond to the

optimized points under length penalty (equation (6)). We also plot bars showing the standard deviation of the 3D

error. As will be seen, the standard deviation is important, showing that the accuracy of the algorithms significantly

depends on the surface that is being considered. In general, the point optimization has a lower 3D error and a slightly

larger standard deviation than the fast implementation.

Figure 7: Simulated data. Example of simulated developable surfaces and points that we use in our experiments.

5.1 Number of Points

Figure 8 shows the average reconstruction error against the number of correspondences. As expected, the error

decreases thanks to the length constraints. For both algorithms the higher the number of points the lower the error.

The accuracy of the reconstruction is related to two quantities: the amount of deformation between the points and

the ‘orientation’ of the points with respect to the camera. Their respective influence will be explained below. While

deforming, the Euclidean distance between the 3D points decreases. Since our algorithm is based on the preservation

of the Euclidean distance between a point and its anchor point, the less it deforms between these point pairs, the

better the results. The 3D orientation of a point and its anchor point changes the relative position of their projections

in the image. There exist a configuration for which the angle between the sightlines of the two points is maximum.

This is the optimal orientation since it leads to a tighter upper bound, and thus minimizes the reconstruction error.

For both situations, the increasing number of points gives more chance to get an optimal situation i.e., for which the

points and their anchor points are well-oriented and the surface is not deformed too much between them.
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Figure 8: Simulated data. Error against the number of point correspondences.

5.2 Noise on the Point Positions

The point correspondences we use between the template and the image have positions corrupted by noise. Since we

do not use special points, there are two ways for one to look at the noise. Indeed, if one considers a single pair of

corresponding points, and fixes one of these two points, say the image point, there always exist an ‘ideal’ template

point that exactly satisfies the constraints we use. Consequently, we may interpret a measured image point as being

noise-free, and the measured template point as a noisy version of the ideal corresponding point. The opposite is

obviously also true. Therefore, one can arbitrarily choose which observations (in the template or in the image) are

exact and which ones are noisy. This choice induces differences in our algorithm: ‘noise in the image’ changes the

orientation of the sightlines whereas ‘noise in the template’ modifies the reference distances dij between the points.

Since our 3D points are parametrized along their sightlines, we choose the second possibility, that yields a simple

yet efficient solution to understand and handle noise. The noisy distances measured in the template lead to tighter

upper bounds if they are under-estimated. With the refinement process on the bounds, this error is propagated to

other points, spoiling the reconstruction accuracy. To avoid this, we add a constant corrective term k to the reference

distances:

dij ←− dij + k. (9)

This term reflects how reliable the distances are. Its efficiency is related to the noise level, as shown in figure 9. The

curve presents a minimum at 55% of the average noise magnitude, giving an empirical way to choose the value of the

term k. This curve shows also that it is better to over-estimate this parameter than to under-estimate it. However

it is difficult in practice to evaluate the noise magnitude. This term is fixed to one pixel in our experiments. The

precision of the reconstruction gracefully degrades with the noise magnitude, as shown in figure 10. The relation

between the noise magnitude and the reconstruction error is nearly linear. For a noise magnitude of 5 pixels, the

average error is below 5.5 mm.
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Figure 9: Simulated data. Influence of the corrective term on the 3D error.
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Figure 10: Simulated data. 3D error versus the noise magnitude in the image.



5.3 Smoothing Weight

Our reconstruction engine uses a smoothing prior, as equation (7) shows. To this prior, a smoothing weight λ is

associated, that controls the strength of the surface smoothness. This prior is likely to have a higher impact on

the recovered surface when the number of available point correspondences is fewer. We thus looked at how the

reconstructed surface error changes as a function of both the number of point correspondences and the value of λ.

Figure 11 shows the results we obtained. What this reveals is that, the influence of the smoothing weight on the

quality of the reconstructed surface is marginal. It is indeed slightly more important when the number of points is low

but not significant when the number of points is above about 30. We also observe that the quality of the reconstructed

surface gracefully increases with the number of points, which is consistent with our previous experimental results.

It is thus in general not necessary to automatically tune the smoothing weight for our algorithm using a complexity

selection criterion such as the one used in (Bartoli, 2008).
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Figure 11: Simulated data. 3D error versus the smoothing weight λ and the number of point correspondences.

6 Experimental Results on Real Data

This section reports the experimental results we obtained by applying our algorithms to real datasets. We first show

results obtained for single-image datasets, and then results for videos. In the latter case, the temporal consistency

of the time-varying 3D structure is enforced.

6.1 Reconstruction from Single Images

The results we show in this section were obtained from a single image of the deformed object of interest. The

reference models, i.e., the templates, are shown in figure 2. So as to evaluate the quality of the 3D reconstructions,

we compare them to 3D measurements obtained from two images of the deformed object, in a stereovision manner.

The surfaces we reconstruct with our algorithm are first registered with a scaled euclidean transformation to the



stereo reconstructions, for which the scale is properly normalized so as to obtain metric measurements that we report

in mm. We then compute the surface discrepancy, as a measure of the quality that our algorithm reaches. We note

that since the points are reconstructed by our algorithm along their sightlines, the reprojection error they induce

always vanishes. The stereo reconstruction is obtained as follows. We use a stereo rig, that we accurately calibrate

(internally and externally) using (Bouguet, 2008). Points are then triangulated in a maximum likelihood manner by

minimizing their reprojection error as in (Hartley and Sturm, 1997).

Reconstruction of a slightly deformed paper sheet. The data and results we obtained are shown in figure 12.

We use 80 point correspondences, both for the monocular and stereo algorithms. The paper shape is well reconstructed

by our algorithm. It closely resembles the shape obtained with stereovision. The inter-surface distance is 1.2 mm. It

means that our 3D reconstruction is very close to the stereo, reference reconstruction. The average stereo reprojection

error was 0.83 pixels.

(a) (c) (e)

(b) (d) (f)

Figure 12: Reconstruction of a slightly deformed paper sheet. (a) Point correspondences on the template. (b)
Point correspondences on the image of the deformed paper sheet. (c) Reconstruction obtained with our monocular
algorithm. (d) Reconstruction obtained by stereovision (the second image of the deformed paper sheet is not shown).
(e) Color-coded surface discrepancy between the monocular and stereo reconstructions. (f) The reconstructed surface
reprojected in the image.

Reconstruction of a creased paper sheet. The data and results we obtained are shown in figure 13. We use

78 point correspondences, both for the monocular and stereo algorithms. The paper shape is similar for the two

algorithms. The surface discrepancy is 3.3 mm. It is larger than for the slightly deformed paper example, but is still



of an acceptable magnitude. This slight degradation of accuracy is due to the creases that make the deformations

more difficult to estimate. The average stereo reprojection error was 0.99 pixels.

(a) (c) (e)

(b) (d) (f)

Figure 13: Reconstruction of a creased paper sheet. (a) Point correspondences on the template. (b) Point
correspondences on the image of the creased paper sheet. (c) Reconstruction obtained with our monocular algorithm.
(d) Reconstruction obtained by stereovision (the second image of the deformed paper sheet is not shown). (e)
Color-coded surface discrepancy between the monocular and stereo reconstructions. (f) The reconstructed surface
reprojected in the image.

Reconstruction of a deformed can. The data and results we obtained are shown in figure 14. The reference,

template model is in this case an open cylinder, and is thus different from the two previous datasets, for which

the reference model is a plane. The global surface shape is correctly estimated by our algorithm. For 72 point

correspondences, we get a surface error between our monocular and the stereo algorithms of 1.6 mm. The average

stereo reprojection error was 0.57 pixels.

6.2 Reconstruction from Videos

Videos could be simply handled by applying our algorithm to each frame independently. However, it is possible

to enforce temporal consistency of the frame-varying (i.e., time-varying) reconstructed surface. This is done by

introducing a term penalizing abrupt temporal surface changes in the cost function, as is done in equations (6) and

(7).

Reconstruction of a bending paper sheet. Figure 15 shows some frames (over a total of 208 frames) of a paper

sheet filmed while being manually bent. The figure also shows a warp visualization grid. Indeed, for this example,



(a) (c) (e)

(b) (d) (f)

Figure 14: Reconstruction of a deformed can. (a) Point correspondences on the template. (b) Point cor-
respondences on the image of the deformed can. (c) Reconstruction obtained with our monocular algorithm. (d)
Reconstruction obtained by stereovision (the second image of the deformed paper sheet is not shown). (e) Color-coded
surface discrepancy between the monocular and stereo reconstructions. (f) The reconstructed surface reprojected in
the image.



we used the image registration method of (Gay-Bellile et al., 2009). This provided us with a set of image warps,

mapping points from the template to each of the video frames. We then drew a set of 140 points on a regular grid

in the template, that we mapped to each of the video frames to serve as a dataset for our algorithm.3

Figure 15: Reconstruction of a bending paper sheet. (top) Four frames from the 208-frames video. (bottom)
The warp visualization grid from which point correspondences were extracted (see main text for details).

Once the 3D surface is reconstructed, it can be used for augmented reality purposes. As figure 16 shows, we

were able to augment the video by inserting new, virtual objects. Those were manually set on the template, and

automatically rendered in the original video frames, giving a highly convincing visual impression. As figure 16 also

shows, we can render the reconstructed surface from a viewpoint different from the original one, and with an arbitrary

appearance for the surface. This illustrates that our algorithm opens the possibility for full monocular video surface

deformation capture.

The results we obtained are very satisfying. Indeed, the optic flow field induced by the paper sheet between

the template and some of the video frames significantly collapses on the self-occlusion boundary. This makes 3D

reconstruction difficult, since all the points located in the self-occluded area are non-informative on the surface shape,

which still, is pretty well recovered by our algorithm, even in these areas where it is hidden.

Reconstruction of a waved tee-shirt. Some frames of a 898-frames video of a tee-shirt being waved are shown in

figure 17. In this video, 43 point tracks were on average obtained using the Kanade-Lucas-Tomasi (KLT) tracker (Shi

and Tomasi, 1994), from which we manually removed the erroneous tracks. Loss of point tracks and newly detected

points caused the number of visible points to vary between 26 and 71 over the video.4 Figure 18 shows a view of the

reconstructed camera and surface. While shown on the figure, the camera is not explicitly reconstructed. Indeed, a

full 3D surface is computed by our algorithm for each frame, with the camera is at a fixed position. What we did

3For that video, we used typical values for the balancing weights, λ = 500, γ = 0.5 and η = 1.5, in equation (7).
4For that video, we used typical values for the balancing weights, λ = 300, γ = 0.25 and η = 1.5, in equation (7).



Figure 16: Augmentation of a bending paper sheet. (top) The reconstructed surface rendered from a different
camera viewpoint as the original one and retextured. (bottom) The video augmented with virtual objects. Knowing
the 3D surface allows us to correctly place the teapot and to take the surface self-occlusions into account. All but
the teapot placement on the template by the user is automatically done.

to infer the camera pose with respect to the surface, was to standardize the surface’s centre of gravity and principal

axes, and interpret the rigid standardizing transformation as the camera pose.

Figure 17: Reconstruction of a waved tee-shirt. (top) Four frames from the 898-frames video, overlaid with the
tracked points and a grid reprojected from the reconstructed surface. (bottom) The reconstructed surface rendered
from a new viewpoint.

7 Conclusions

The algorithm we presented has been designed for the reconstruction of inextensible surfaces imaged by a perspective

camera. It evaluates the 3D bounds on the points such that the inextensible constraints can be satisfied. A surface

optimization can then be run to handle priors such as surface smoothness or temporal consistency. Our results



Figure 18: Reconstruction of a waved tee-shirt. (left) One of the video frames, overlaid with the point tracks
and their trajectories over the past few frames. (right) The reconstructed surface and camera (shown as a pyramid),
with its trajectory over the past few frames.

are convincing, and show that our algorithm brings a simple and effective solution to the monocular deformable

reconstruction problem.

There are several possible extensions of our work. One of them regards the continuous surface reconstruction,

obtained by interpolating the reconstructed points. The surface we compute does not strictly speaking satisfy the

inextensibility constraints, because they are used as a weighted penalty in our cost function. However, they could be

used as hard inequality constraints, since the euclidean distance between two points can decrease but not increase

from the template to the image. Alternatively, one could use the link that exist between our corrective term and

the preservation of the euclidean distance or detect and inhibitate those constraints that get the most violated (for

instance over a paper crease). This may improve the accuracy of the final result. Finally, we assume that there is

no point mismatches between the template and the input image. This is a real practical problem that should be

addressed in future work.
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