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Abstract

The quality of a mosaic depends on the projective align-
ment of the images involved. After point-correspondences
between the images have been established, bundle adjust-
ment finds an alignment considered optimal under certain
hypotheses. This procedure minimizes a nonlinear cost and
has to be initialized with care. It is very common to compose
inter-frame homographies which have been computed with
standard methods in order to get an initial global alignment.
This technique is suboptimal if there is noise or missing ho-
mographies as it typically uses a small part of the available
data.

We propose four new closed-form solutions. They all
provide non-heuristic initial alignments using all the known
inter-frame homographies. Our methods are tested with
synthetic and real data and are compared to the standard
method. These experiments reveal that our methods are
more accurate, taking advantage of the redundant informa-
tion available in the set of inter-frame homographies.

1. Introduction

In computer vision, many applications require
panoramic stitching [18] from a collection of images
or frames from a video. This technique allows one to
create for instance wide-angle recordings without using
special hardware such as fish-eye lenses. Panoramic
stitching is also used in more advanced applications such as
super-resolution imaging [4, 15], video compression [10],
and camera auto-calibration [8, 14].

Creating a mosaic from only two overlapping images is
a relatively easy task and standard techniques provide very
good results [3]. Unfortunately aligning multiple images is
more complicated, particularly if some input images do not
overlap.

We propose a means to linearly extract and entirely use

the redundantly contained information from inter-frame ho-
mographies in order to better initialize the final bundle ad-
justment.

Paper organization. A brief introduction to the mathe-
matical background of stitching is given in Section 2. We
discuss prior work (threading and batch methods) in Section
3. We then introduce in Section 4 our proposed methods.
They fall into two categories: those which require all the
inter-frame homographies and those which handle missing
information. We experimentally show the improvements
brought by our methods in Section 5 and provide a con-
clusion in Section 6.

Notation. P2 represents the 2D-projective space and ∼
equality up to scale. Vectors are denoted using bold fonts.
In general but not exclusively, small letters (e.g. q) refer
to homogeneous point coordinates in images and capitals
(Q) represent point coordinates in 3D; matrices are denoted
with type-writer capitals (e.g. M). ‖ · ‖ refers to the standard
two-norm when used for vectors and to the Frobenius norm
if used for matrices.

2. Theoretical Background
In order to create a mosaic, it is necessary to warp an

image from its own to the mosaic’s coordinate frame. A
projective camera projects a point Q∈R3 in space to a point
q ∈ P2 in the image plane as:

q∼ KRQ, (1)

with K the matrix of intrinsic parameters and R the rotation
matrix specifying the camera orientation. (We assume that
the origin coincides with the centre of projection; hence
there is no translational component.) A point qi from im-
age Ii is related to its corresponding point q j in image I j
by:

q j ∼ KR jR
T
i K
−1qi. (2)
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Figure 1. Sweep of images with a static center of projection C (no
parallax): the real 3D point Q projects to qi in image Ii and its
corresponding point q j in I j, but is not visible in Ik.

This is illustrated in Figure 1. Thus, an inter-frame homog-
raphy is given by

Hi, j ∼ P jP
−1
i , ∀k : Pk ∼ KRk (3)

from which we derive the consistency relationship

Hi, j ∼ P jP
−1
k PkP

−1
i ∼ Hk, jHi,k. (4)

A homography between two images can easily be esti-
mated from point correspondences using standard proce-
dures [9]. Assuming that the image points are perturbed
by Gaussian noise, these methods provide Maximum Like-
lihood Estimates (MLE) Ĥi, j for each overlapping pair of
images (Ii,I j). These methods generally ignore the addi-
tional information from the remaining images in the set and
under presence of noise the consistency relationship (4) is
violated, thus in general Ĥi, j 6∼ Ĥk, jĤi,k. That is to say, two
images may align well to a reference image but may at the
same time be badly aligned with each other.

In other words, aligning n images I1, . . . ,In to a (real
or virtual) reference image in order to create a mosaic, re-
quires a set of homographies U1, . . . ,Un which by construc-
tion consistently aligns all images to a common reference
frame. These global homographies respect the relationship:

Hi, j ∼ U jU
−1
i . (5)

As we assume an independent and identically distributed
noise model for the image points, the optimal global homo-
graphies can be found by minimizing

CBA(q̂1, . . . , q̂m, Û1, . . . , Ûn) =
m

∑
z=1

n

∑
i=1

δz,id2(qi
z, Ûiq̂z) (6)

which represents the reprojection error and

δz,i =

{
1 if qi

z exists
0 otherwise. (7)

In order to solve this problem, one has to non-linearly op-
timize the cost [9] which is then called Bundle Adjustment

(BA). The results of non-linear optimization though depend
on the initialization parameters provided to the optimization
algorithm [16]. The latter can only yield reasonable results
if they are being run in a specific trust region in order to
converge at all and a good initialization increases the prob-
ability that the algorithm converges to a better local mini-
mum. Additionally, BA becomes quite resource intensive
for larger problems and an initialization closer to the mini-
mum which the algorithm will converge to may reduce the
number of necessary iterations. We hereafter introduce four
analytical batch methods which provide initial parameters
for the bundle adjustment and make use of all known inter-
frame homographies.

3. State of the Art
For this paper we suppose the image set topology graph

known. The nodes of this graph consist of the images and
its edges represent the known inter-frame homographies.
The known homographies are the ones computed either with
feature-based methods [3] or direct methods [2] between the
input images.

3.1. Threading Type Methods

Threading methods treat the problem of finding an ini-
tialization based on local homographies as a searching al-
gorithm and generally determine a reference image Ir from
the set of images. The coordinate frame of Ir acts as the
mosaic coordinate frame. Thus we see from Equation (5)
that the global homographies Ui which align each image Ii
to the mosaic are ∀i : Ui = Hr,i since Ur = I. Ir is not chosen
arbitrarily: it is either chosen as the image for which each
homography to the other images in the set is known or, if
such an image does not exist, the reference is chosen as an
image with a maximum number of connections to other im-
ages in the image set topology. In the latter case, missing
homographies must be hallucinated from known ones, fol-
lowing Equation (4). More complex threading methods are
based on finding paths in the topology graph. The corner
stone of all threading methods is the cost they impose on
edges and paths: Kang et al. accumulate the residual er-
ror [11], Marzotto et al. impose constraints on the ratio of
overlapping area and residual error [15], and Verges-Llahi
et al. and Bajramovic and Denzler use notion of uncertainty
propagation for Structure from Motion (SfM) [20, 1].

3.2. Batch Methods

Batch approaches find a global solution by linearly ap-
proximating the motion model. For instance, Govindu uses
such an approach for SfM. In order to build a linear system,
he uses quaternions [6] or Lie algebra [7].

Trying to solve a similar SfM problem, Sturm [17] uses
homographies induced by planes as input. In order to com-



pute the initial rotation and translation for his nonlinear op-
timization, he uses a factorization based approach which
suffers from the missing data problem, which he solves by
averaging known rotations. Zelnik-Manor and Irani [21]
combine inter-frame homography estimates and multi-view
subspace constraints derived from the underlying 3D-planar
structures to increase the accuracy of the computed global
homographies.

Malis and Cipolla [14] impose the constraints in
collineation matrices of a planar structure in multiple views
for efficient camera self-calibration, mosaicing, and recon-
struction in order to reduce geometric errors.

Contrarily to the problem we tackle in this paper, previ-
ous works use other constraints, as they additionally assume
that the camera translation does not vanish between the dif-
ferent images.

4. Proposed Closed-Form Solutions
In order to build the linear system which is to be solved

in Section 4.2 and 4.3, we require the homographies to rep-
resent a group with respect to standard matrix multiplication
which is created in Section 4.1.

4.1. A Non-Homogeneous Group for Full-Rank Ho-
mographies

Our proposed methods require one to resolve the non-
uniform scaling of the homographies. As homographies
are represented by invertible square matrices, we normal-
ize them so that ∀H : det(H) = 1 by dividing H by 3

√
det(H).

As a consequence it makes them be part of the special linear
group SL3 in regard to standard matrix multiplication:

• Closure ∀A,B ∈ SL3 :

det(AB) = det(A)det(B) = 1⇒ AB ∈ SL3. (8)

• Associativity follows immediately from associativity of
matrix multiplication and from closure.

• Identity Element is I, since det(I) = 1⇒ I ∈ SL3.

• Inverse Element

∀A ∈ SL3 : det(A−1) = det(A)−1
= 1. (9)

This solves the scaling issue. A similar idea was used in
[14] to normalize the supercollineation matrix. Hence, im-
posing this normalization for each and every inter-frame ho-
mography allows us to rewrite equation (5) as a strict equal-
ity

Hi, j = U jU
−1
i . (10)

This normalization of the homographies is absolutely
mandatory in order to derive the following closed-form so-
lutions.

4.2. Full Data Solutions

For the next two methods we suppose that all inter-frame
homographies are known, hence the ”full data” denomina-
tion.

4.2.1 Full Data SVD (SVD)

Since all Hi, j are known, we can rewrite (10) to

∀i, j : Hi, j−U jU
−1
i = 0 (11)

for the noise free case. In presence of noise the estimated Ûi
should minimize the cost

CFDS(Û1, . . . , Ûn) =
n

∑
i=1

n

∑
j=1

∥∥∥Hi, j− Û jÛ
−1
i

∥∥∥2
. (12)

We additionally introduce Û′−1
i = Û−1

i , leading to the matrix
form for the cost

CFDS(Û , Û ′) = ‖H−ÛÛ ′>‖2, (13)

with

Û = [Û>1 . . . Û>n ]>, Û ′ = [Û′−1
1 . . . Û′−1

n ], (14)

H=

 H1,1 . . . Hn,1
...

. . .
...

H1,n . . . Hn,n

 . (15)

We know from equation (12) that H is of rank 3 theoreti-
cally since H is a product of Û Û ′T . The best least squares
approximation rank 3 matrix of the noisy H is obtained via
its Singular Value Decomposition (SVD). This observation
is similar to the one achieved by Tomasi and Kanade in
the seminal paper on factorization [19]. Using the SVD
(UΣVT SVD← H) we obtain a solution for Û which is con-
tained in the three columns of U

√
Σ corresponding to the

three smallest singular values. Û ′ would then be the three
columns of

√
ΣV corresponding to the three smallest singu-

lar values, but we only keep Û .
This is a major drawback of FDS since we cannot guar-

antee that Û ′ is composed of the block by block inverse of
the matrices in Û ′ as we originally wanted to in (10).

4.2.2 Full Data Eigenvector (FDE)

In the noise free case, each Uk is contained in any Hi,k and
hence

∀k ∈ {1, . . . ,n} :
n

∑
i=1

Hi,kUi =
n

∑
i=1

UkU
−1
i Ui = nUk. (16)

In order to best approximate this relationship in the noisy
case we propose to minimize the cost

CFDE(Û1, . . . , Ûn) =
n

∑
k=1

∥∥∥∥∥nÛk−
n

∑
i=1

Hi,kÛi

∥∥∥∥∥
2

, (17)



which can be rewritten as

CFDE(Û) =
∥∥HÛ −nÛ

∥∥2
s.t. ÛTÛ = I. (18)

Thus, the theoretical problem is to find the three eigen-
vectors λa,λb,λc of H with eigenvalues equal (in practice,
close) to n which provides a solution Û =

(
λa λb λc

)
.

In practice however, due to numerical instability, the eigen-
vectors might not be real. We therefore use another means
to solve the problem.

The solution Û is in the null space of (H−nI). We can
again use the SVD, since it gives the best approximation in
a least squares sense of the null space under the constraint
that Û>Û = I. Let va′ ,vb′ ,vc′ be the singular vectors as-
sociated to the smallest singular values of (H− nI). They
provide the global minimum of CFDE with va′ ,vb′ ,vc′ being
orthonormal. Our global alignment will be Û = [va′ vb′ vc′ ].
(See appendix for proof.)

Unfortunately both methods are unable to handle miss-
ing inter-frame homographies. This requires a mechanism
which composes missing homographies from known ones
in order to cope with such a situation. This is not desirable
as it requires the preceding step of iteratively finding com-
positions for the unknown homographies and additionally
one might argue about its theoretical justification.

4.3. Missing Data Solutions

From now on we relax the constraint on the full-data and
the need for hallucination and present two methods which
handle the missing data issue implicitly.

4.3.1 Locally Scaled Homographies (LSH)

Our third method we propose can be considered as a gener-
alization of the FDE solution as it extends equation (16) to
cope with missing homographies. Each inter-frame homog-
raphy Hi,k is re-scaled depending on the interconnectivity of
each image k. This re-weighting is done as follows:

∀k ∈ {1 . . .n} : Uk =
1
ζk

n

∑
i=1

γi,kHi,kUi (19)

with γi, j =

{
1 if Hi, j is known
0 otherwise and ζk =

n

∑
i=1

γi,k.

We propose the cost function

CLSH(Û1, . . . , Ûn) =
n

∑
k=1

∥∥∥∥∥Ûk−
1
ζk

n

∑
i=1

γi,kHi,kÛi

∥∥∥∥∥
2

. (20)

The construction of matrix

S =


γ1,1
ζ1
H1,1 . . .

γn,1
ζ1
Hn,1

...
. . .

...
γ1,n
ζn
H1,n . . .

γn,n
ζn
Hn,n

 (21)

allows us to rewrite the cost in matrix form as

CLSH(Û) =
∥∥SÛ −Û∥∥2

=
∥∥(S −I) Û

∥∥2
. (22)

The problem is to minimize CLSH(Û) under the constraint
that ÛTÛ = I. This is solved using the singular value de-
composition UΣVT

SVD← (S − I) which provides the three
columns of Û as the three right singular vectors of (S −I)
associated to the smallest singular values since Û is in the
null space of (S−I) and as stated before the SVD gives the
best approximation.

4.3.2 Globally Scaled Homographies (GSH)

The cost function CLSH has two drawbacks. First, homo-
graphies connecting an image for which a high number of
homographies are known have a stronger influence on the
cost than the images for which only few homographies are
known. Second, we know that Hk,k = I and therefore should
not be used in the cost function, biasing the weighting.

Thus, we alter equation (16) with a slightly different
weighting. Instead of scaling the term containing the local
homographies, we scale the term with the global homogra-
phies to get:

∀k ∈ {1, . . . ,n} : Uk +
n

∑
i=1,i6=k

γi,kHi,kÛi = ζkUk, (23)

so that each known Hi, j uniformly influences the cost. We
then get the cost function:

CGSH(Û1, . . . , Ûn) =
n

∑
k=1

∥∥∥∥∥(ζk−1)Ûk−
n

∑
i=1,i6=k

γi,kHi,kÛi

∥∥∥∥∥
2

(24)

in which this weighting is corrected according to the pre-
ceding arguments. We build the matrix

G =


(1−ζ1)I (γH)2,1 . . . (γH)n,1

(γH)1,2 (1−ζ2)I
. . .

...
...

. . .
. . . (γH)n,n−1

(γH)1,n . . . (γH)n−1,n (1−ζn)I

 (25)

and rewrite
CGSH(Û) =

∥∥GÛ∥∥2
. (26)

The problem is to minimize CGSH(Û) under the constraint
ÛTÛ = I. Again the three right singular vectors associated
with the 3 smallest singular values of G provide a solution
for the three columns of Û .

5. Experiments
In order to compare the different methods we are inter-

ested in certain statistical values which are described below.



As a measure for quality of the estimation of homographies
we used the Root Mean Squared Residual (RMSR):

ε= min
q̂1,...,q̂m

√
∑

m
z=1 ∑

n
i=1 δz,id2(qi

z,Uiq̂z)

∑
m
z=1 ∑

n
i=1 δz,i

, (27)

which we evaluated for each method before the bundle ad-
justment ε̃ and afterwards ε̂. For the synthetic experiments
we compared the final alignment based on the noisy projec-
tions with the noise-free data. To do so, we introduced and
computed

η̂ =
∑

n
r=1 ∑

n
i=1 ∑

4
z=1 d(pz,UrU

−1
i ÛiÛ

−1
r pz)

4n2 (28)

with p1, . . . ,p4 being the corners of the image borders. We
aligned the exact and estimated homographies to the same
reference image Ir and computed the distance between the
exact and estimated image corners, then we took the mean
in regard of the number of images and corners. The purpose
of η̂ was to compare the performance of each method to the
ground truth data without considering the number of points
visible in an image. The RMSR itself could miss a drift of
multiple estimated images in the same direction, which was
the reason to look for an additional measure. At this point,
it is once more pointed out explicitly, that η̂ does not have
a direct statistical meaning! It only helps to identify which
alignment visually reflects the ground truth better.

5.1. Implementation Details

An implementation of the proposed methods in Matlab
served for the experiments. For the synthetic tests each sam-
ple was created following the steps hereafter. First we gen-
erated about 104 normally distributed 3D points around the
camera center. For the viewer those points are uniformly
distributed around the static camera center. Then we ran-
domly picked n rotations R1, . . . ,Rn to simulate different
views for the camera. Simulating a camera mounted on a
tripod we used only pitch ρ ∈ [−α;α] and yaw θ ∈ [−α;α]
rotations. A small α avoids that the views create images
for which the geometric transform of a point from one im-
age to the other will produce points at infinity. Afterwards
these points and rotations are used to generate the images
while projecting the points to finite projective planes with a
surface of 640× 480 pixels (the images) and adding some
Gaussian noise with standard deviation σ to the projected
points.

Knowing the exact point correspondences between the
images we then estimated the homography Hi, j for each pair
of images (Ii,I j) with sufficiently overlapping regions us-
ing the DLT [9] as implemented by Kovesi [12]. This has
been followed by a non-linear optimization in order to find
the MLE for the homography in question. Additionally, we
required a minimum number of 20 point correspondences

between both images. This number had been chosen arbi-
trarily but helped preserving a certain stability of the homo-
graphies when we added noise to the points. For the bundle
adjustment we used a sparse Levenberg-Marquardt imple-
mented in Matlab.

5.2. Synthetic experiment

We ran experiments on 15 different levels of Gaussian
noise σ ∈ [0.1;1.5] in steps of ∆σ = 0.1 pixels. Each exper-
iment consisted of 100 random runs. We used a setup com-
posed of n = 50 images and the maximum camera rotation
had been fixed to α = π/8. This setup produced significant
projective transformation (Figure 3).

In average an image was connected to 9 other images.
83.5%± 7.4 of the overal inter-frame homographies were
missing, and 70%±18.0 of the connections to the reference
image needed to be hallucinated.

Taking a look at the RMSR before the bundle adjustment
(Figure 2(a)), it turns out that our methods found initial-
izations with a lower RMSR than the standard method did.
FDS and FDE brought improvements but could not reach
initializations as good as they have been achieved by LSH
and GSH. More important though is to see in Figure 2(b)
the fact that after the bundle adjustment the RMSR could in
our experiments be lowered by initializing with our meth-
ods instead of the Threading. Again – even though it might
not be well visible in the figure – both methods GSH and
LSH achieved the lowest ε̂.

Figure 2(c) shows the distribution of the relative RMSR
in terms of the RMSR achieved by the standard method,
both after the bundle adjustment. That is to say, the dis-
tribution of each sample’s ε̂/ε̂Threading. The figure illus-
trates clearly that all of the proposed solutions initialized
the bundle adjustment so that latter converged to a signifi-
cantly smaller minimum of CBA than it did initialized with
the standard method in most of the cases.

Furthermore 2(d) visualizes that our methods not only
allowed to find a lower local minimum during the opti-
mization, but that the estimated alignment found a solution
which better reflected the noise-free data source.

The idea of what η̂ should penalize is shown in Figure
3. The plots show the projections of the frameborders in
the same reference frame for different initializations. In the
upper left corner of each sub-figure the difference between
each method is visible. It is clear that the bundle adjustment
did not recover from the bad initilization provided by the
threading, but did so using our batch methods.

5.3. Real Data Experiments

For the real data experiments a video sequence of n =
167 undistorted frames with a resolution of 640× 480 pix-
els has been used. The images have been aligned using
SIFT features [13] which had been robustly matched using
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Figure 2. Results of synthetic experiment
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Figure 3. Mosaics of frameborders computed with different initial-
izations.



Figure 4. Mosaic of the real experiment composed of each tenth
frame of the video sequence. The bundle adjustment was initial-
ized with homographies computed with GSH.

RANSAC [5]. 46.56% of the homographies failed to be es-
timated and 20.36% of the homographies to the reference
image couldn’t be computed. In average an image was con-
nected to 89±48 other images. Figure 4 depicts the results
using GSH.

Comparing the RMSR after the bundle adjustment the
real data produced

ε̂FDS/ε̂Threading = 1.0009
ε̂FDE/ε̂Threading = 0.9979
ε̂LSH/ε̂Threading = 0.9980
ε̂GSH/ε̂Threading = 0.9980.

That is to say, every of our proposed methods but FDS
found an initialization with which the optimization achieved
a smaller minimum of CBA in this experiment.

Even though it is impossible to determine the ground
truth in real examples as for the one denoted here, an over-
lay of the plots of the frameborders found with different
initialization methods reveals, that the impact of the differ-
ent methods can visually be bigger as one might expect it to
be after considering the RMSR only (either relative or abso-
lute). In Figure 5 the plots of the frameborders found after
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GSH

Figure 5. Overlay of frame borders found with Threading versus
GSH after BA. The borders of the reference frames (upper right)
align well. At the other extremity (lower left) discrepancies of
several pixels can be seen.

the BA initialized once with the threading solution and once
with GSH are overlaid and aligned to the same image’s ref-
erence frame. At the bottom of the plot one may notice the
discrepancies between the differently detected alignments
which differ from each other by some pixels.

In regard to the observation made during the synthetic
experiment concerning the Mean Reprojected Image Corner
Distance, one can suppose that the results yielded by GSH
better reflect the ground truth. To what extent and if this
is really the case at all can unfortunately not be verified for
real examples.

6. Conclusion
We proposed four non-heuristic analytical methods in-

tended to find an initialization, based on inter-frame homo-
graphies, for bundle adjustment. We compared these four
methods with the standard technique of homography thread-
ing and investigated their behavior under the influence of
noise and missing data.



Even though we are not able to decrease the number of it-
erations made by the nonlinear optimization, initializations
with our methods FDE, LSH, and GSH lead to better min-
ima than the standard technique. Finally it should be noted
that the four methods presented in this paper are very easy
to implement.

Appendix
Lemma Let A be a v× w matrix with real entries and
let X be the w× n matrix with n ≤ min{v,w} which mini-
mizes ‖AX‖2

2 under the constraint that XTX = I, then the n
coloumns of X are made up of the n right singular vectors of
A corresponding to the latter’s n smallest singular values.

Proof

arg min
X|XTX=I

‖AX‖2
2 ≡ arg min

x1,...,xn|xTi xi=1,xTi x j=0
∑

k∈[n]
‖Axk‖2

2 (29)

The lagrangian to this problem which encodes the norm-
and the pairwise orthogonality-constraint on x1, . . . ,xn is
given by L= ∑k∈[n]Lk with

Lk = ‖Axk‖2
2 +λk(1−xT

k xk)+ ∑
r∈[n],r 6=k

µk,r(xT
k xr)

2 (30)

which encode the problem in regard of the terms
‖Ax1‖2

2 , . . . ,‖Axn‖2
2. ∑k∈[n] ‖Axk‖2

2 can only be at a mini-
mum if ∀p ∈ [n] : ∂L

∂xp
= 0 and as ∀k ∈ [n] : Lk ≥ 0 is equiv-

alent to ∀p,k ∈ [n] : ∂Lk
∂xp

= 0.
Differentiating the lagrangian yields

∀p,k ∈ [n], p 6= k :
1
2

∂Lk

∂xp
= µk,pxkxT

k xp = 0 (31)

∀k ∈ [n] :
1
2

∂Lk

∂xk
= ATAxk−λkxk + ∑

r∈[n],r 6=k
µk,rxrxT

r xk

= ATAxk−λkxk. (32)

Both, (31) and (32) together with (6) (resp. (6)) yield
that ∑k∈[n] ‖Axk‖2

2 can only be minimal if

∀k ∈ [n] : ATAxk = λkxk. (33)

That is to say, that ∑k∈[n] ‖Axk‖2
2 can only be minimal if

x1, . . . ,xn are eigenvectors of the matrix ATA and λ1, . . . ,λn
their corresponding eigenvalues. This insight in regard of
the problem statement (29)

arg min
x1,...,xn|xTi xi=1,xTi x j=0

∑
k∈[n]

xTk A
TAxk︸ ︷︷ ︸
λkxk

≡ arg min
λ1,...,λn

∑
k∈[n]

λk (34)

reveals that the problem is equivalent to the problem of find-
ing the n eigenvectors corresponding to the n smallest eigen-
values of ATA, which are the n right singular vectors corre-
sponding to the n smallest singular values of A. �
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