
Calibrating an Optical See-Through Rig with Two Non-Overlapping Cameras:

the Virtual Camera Framework

Jim Braux-Zin1, Adrien Bartoli2, Romain Dupont1, Régis Vinciguerra1

1
CEA, LIST, 91191 Gif-sur-Yvette, France, {jim.braux-zin, romain.dupont, regis.vinciguerra}@cea.fr

2
ISIT, Université d’Auvergne, 63000 Clermont-Ferrand, France, adrien.bartoli@gmail.com

Abstract

We present a novel extrinsic calibration method for opti-

cal see-through systems. It is primarily aimed at tablet-like

systems with a semi transparent screen, a camera tracking

the user position and another camera analyzing the scene

but easily generalizable to any optical see-through setup.

Relative poses of the cameras and the screen are all needed

for proper alignment. The proposed algorithm is based on

the user indicating the projections onto the screen of sev-

eral reference points chosen on a known object. A convex

estimation is computed through the resectioning of virtual

cameras and used to initialize a global bundle adjustment.

Both synthetic and real experiments show the viability of

our approach.

1. Introduction

Video see-through augmented reality systems – where

virtual objects are added on a real scene video stream –

are more and more widespread due to low cost and broad

availability of compatible hardware. However, critical ap-

plications such as surgery or driving assistance cannot allow

any level of indirection between the reality and the user.

Optical see-through systems where the augmentations are

directly superimposed on reality would be better suited to

those cases, and would greatly improve the immersion feel-

ing in more standard applications such as games. Until re-

cently those systems were limited and reserved to niche us-

ages. For example, airplanes Head Up Displays use a heavy

and pricey combination of projector, lenses and mirrors and

are mostly monochrome. An interest is growing in the in-

dustry toward transparent head mounted displays (glasses)

but, despite recent improvements in weight and size, such

systems are still invasive and subject to rapid moves of the

head that makes scene analysis difficult.

In this paper, we focus on a tablet-like system composed

(a)

(b)

(c)

(d)
(e)

Figure 1: System setup. The components are: (a) user, (b)

face tracking camera, (c) scene analyzing camera, (d) trans-

parent screen, (e) scene

of a transparent LCD screen (Figure 1) with two mounted

cameras facing opposite sides. This kind of setup alleviates

most of the drawbacks of head-mounted displays while still

being mobile and versatile. The front camera tracks the user

position and the back camera analyzes the scene, providing

in particular localization information. Their poses relative

to the screen are needed in order to align the display with

the reality but the cameras fields of view do not overlap and

none of them can see the screen which makes classical cal-

ibration methods impractical.

The problem of extrinsic calibration of two non-

overlapping cameras has already been investigated. Sev-

1

eral tracking-based methods have been proposed for mo-

bile [3, 5, 9] or static [11, 2] cameras but none of these

methods would allow to compute the pose of the screen as

needed. To our knowledge, the only existing works that can

give the required poses use a moving mirror to estimate the

pose of an object located outside the camera field of view

[14, 8, 12, 15]. Applying such methods on each camera

with the screen as the target object would result in a fully

calibrated system.

However these methods minimize the reprojection error

of the target reflections (here the screen) into the camera

which is not relevant in our configuration. What matters

to the user is the misalignment error, i.e. the 2d distance

on the screen between the displayed virtual scene and the

real one. This is the idea behind most calibration methods

of head-mounted displays [16]. By considering the whole

system this approach makes no assumption on the sensors

and tracking methods. It can be applied without changes

to 3d sensors or electromagnetic head tracking for example.

Moreover, errors in the trackers or in the model can be com-

pensated. In this paper we present a new method minimiz-

ing the misalignment error in the context of the following

calibration scenario.

A known object is put behind the screen such as being

visible by the scene camera. The position in the camera

coordinates of several reference points is assumed to be

known. The user indicates from the other side the appar-

ent projections of the object points on the screen, while the

front camera tracks his position. The input is currently done

by clicking on the projections in a predefined order and re-

peating the process from different points of view.

Problem and outline As formalized in Section 2, the cal-

ibration process should minimize the distance between the

display and the user input. This error function is highly non

convex due to the involvement of two rotations. In our goal

to build a generic and versatile system1, we do not use any

prior information on the poses of the cameras and initialize

the estimation with a robust convex scheme based on virtual

cameras. This process is explained in Section 3 along with

the bundle adjustment step that follows. At last we evaluate

in Section 4 the accuracy of the method on both synthetic

and real world data.

2. Problem formulation

We adopt the following notations: 3d points and vectors

are represented with capital letters X = (Xx, Xy, Xz)
T ,

2d points and vectors with lower-case letters x, matrices

with bold capital letters M and cameras with calligraphic

letters C. The same notation is used to describe the camera

1Useful generalizations of the method are presented in Section 3.6

itself and its associated coordinates system. The World co-

ordinate system is noted W . We will use the Mahalanobis

norm written ||x||Σ =
√
xTΣ−1x.

There are three rigidly fixed components in the consid-

ered setup: the semi-transparent screen, the camera Cu look-

ing at the user and the camera Cs looking at the scene. The

transparent screen is used as the reference. It defines the

world coordinate system W , with the axis as in Figure 2a

and the origin anywhere on the screen. The pose of Cu in

W is defined by the transformation Mu =
[
Ru Tu

]
with

Ru the 3 × 3 rotation matrix and Tu the 3 × 1 translation

vector. Similarly, Ms, Rs, and Ts define the pose of Cs.

The m user positions in Cu are noted Ui, i = 1 . . .m.

The n object reference points in Cs are noted Oj , j =
1 . . . n. In the world coordinates system, they are respec-

tively (MuUi)i=1...m and (MsOj)j=1...n.

For given user position Ui and object reference point Oj ,

cij is the intersection of the ray (MuUi,MsOj) with the

plane z = 0 (the screen) in W . We define fint the intersec-

tion function:

fint





x1

y1
z1


 ,



x2

y2
z2




 =

(
x1 − z1 × x2−x1

z2−z1

y1 − z1 × y2−y1

z2−z1

)
(1)

for z1 > 0 and z2 < 0 so we have:

cij = fint(MuUi,MsOj) (2)

The cij are expressed in world units: conversion from pix-

els coordinates in the screen to real world coordinates is

straightforward given the dimensions of the screen.

Noise model The positions of the user and of the object

points are subject to noise in the pose estimation. The user

input is also subject to noise, due to human factors. The

noises are assumed to be Gaussian and the covariance ma-

trices diagonal (independent noise on each coordinate). We

write with a tilde the noisy versions of the system inputs:

Ũi = Ui + n(0,ΣU) (3)

Õj = Oj + n(0,ΣO) (4)

c̃ij = cij + n(0,Σc) (5)

for all i in 1 . . .m and j in 1 . . . n. The noises are mostly

constant for a given setup, and there are ways to estimate

their covariances (see Appendix B for an example). This

knowledge must be used to improve the calibration accu-

racy. We need to distinguish the estimated parameters from

their true values. We note the estimates with a hat: M̂u,

M̂s, Ûi=1...m, Ôj=1...n.

Calibration problem The goal of the proposed method

is to find the best M̂u and M̂s given Ũi=1...m, Õj=1...n

Cu

Cs

c11
c12
c13

U1

U2

U3
W

x
z

O1

O2

O3

(a)

c11
c12
c13

V1

V2

V3

O1

O2

O3

Cu

Cs
W

x
z

(b)

Figure 2: Top view of the system with (a) notations (same

color meaning same coordinates system), (b) user-centered

virtual cameras (see text).

and the corresponding c̃ij (user inputs), using equation (2).

With Gaussian noise, the optimal solution is given by min-

imizing the covariance-weighted bundle adjustment cost

function:

f(Mu,Ms, Ui=1...m, Oj=1...n) = (6)
∑∑

i=1...m
j=1...n

‖c̃ij − fint(MuUi,MsOj)‖2Σc

+
∑

i=1...m

∥∥∥Ũi − Ui

∥∥∥
2

ΣU

+
∑

j=1...n

∥∥∥Õj −Oj

∥∥∥
2

ΣO

The first term is the 2d alignment error and is highly non-

convex making initialization critical. Next section presents

a novel direct convex initialization.

3. Calibration with Virtual Cameras

3.1. Virtual cameras definition

The introduction of virtual cameras allows to see the

problem as several classical camera resectioning problems.

We define m virtual cameras Vi whose optical centers are

the user positions, whose common focal plane is the screen

plane (z = 0) and whose principal points lie at the origin of

W . Due to their definitions, the virtual cameras share some

interesting properties. Their optical axis are all parallel and

pointing toward the +z axis in W . Thus the poses of the

cameras are defined by, for all i in 1 . . .m:

Mi =
[

I Ti

]
(7)

where I is the 3 × 3 identity matrix and Ti = MuUi is the

position of Ui in W . Since the cij are expressed in W units,

the “pixels” of the virtual cameras are perfectly square: the

focal lengths in x and y are equal and the skew is 0. More-

over, since the cameras are defined by their focal plane and

principal point in W , their intrinsic parameters are linked to

the position of their optical center:

Ki =



fi 0 ui

0 fi vi
0 0 1


 =



−Tiz 0 Tix

0 −Tiz Tiy

0 0 1


 (8)

The cij are the projections of the object points in Vi, so in

homogeneous coordinates:

cij ∝ KiM
−1
i MsOj (9)

cij = λijHiOj λij ∈ R ∀j ∈ 1 . . . n (10)

where

Hi = KiM
′

i and M
′

i = M
−1
i Ms = [Rs|Ts − Ti] (11)

3.2. Virtual cameras resectioning

We will see that computing the intrinsic and extrinsic pa-

rameters of a virtual camera Vi allows to estimate the pose

of the real scene camera Cs. This process is called cam-

era resectioning [6]. We use the Direct Linear Transform

(DLT) approach presented in [1] to estimate Hi from equa-

tion (10). The scalar factor is eliminated with a cross prod-

uct:

cij ∧HiOj = 0 ∀j ∈ 1 . . . n (12)

These vector equations give 2× n independent linear equa-

tions in the coefficients of Hi. With n ≥ 6 object points, it

is possible to compute a least square solution for the 12 co-

efficients using a SVD decomposition. This solution min-

imizes the algebraic distance as opposed to the geometric

distance but is a suitable initialization for further refine-

ment.

The next step is to extract the intrinsic Ki and extrinsic

M
′

i parameters, such as Hi = KiM
′

i. We start from an

initial direct decomposition using the equation

HiH
T

i = KiRsR
T
s K

T
i = KiK

T
i (13)

where Hi is the left 3×3 submatrix of Hi. With noisy input,

this gives a general intrinsic matrix unlikely to respect the

properties of eq. (8):

K
init
i =



fxi si · fxi ui

0 fyi vi
0 0 1


 (14)

This initial decomposition is iteratively refined using soft

constraints [6] to force the intrinsic matrix into the proper

form. The Levenberg-Marquardt algorithm is used to mini-

mize:

f(Ki,M
′

i, Oj=1...n) =
∑

j=1...n

‖c̃ij − λijKiM
′

iOj‖2Σc

(15)

+
∑

j=1...n

∥∥∥Õj −Oj

∥∥∥
2

ΣO

+ w
(
|fxi − fyi|+ |s|

)

where w is a weight variable which should be gently in-

creased during iterations. In practice we observed that it

is sufficient to do a full Levenberg-Marquardt optimization

until convergence with w = 1
σmin

, where σmin is the small-

est diagonal coefficient of Σc and ΣO. This ensures the

soft-constraint has an impact, regardless of the noise levels.

3.3. Extracting the pose of the real camera Cs
It is now possible to extract Ti from Ki using equa-

tion (8). Then we build Mi from Ti using equation (7).

At last we extract M̂
(i)
s from M

′

i using equation (11).

We need a way to aggregate the estimates M̂
(i)
s into an

optimal M̂s to initialize a bundle adjustment. We start by

eliminating obvious failures: virtual cameras whose non-

linear refinement step failed or whose camera matrix has

an improper shape like fx and fy focal lengths of oppo-

site sign. Then we choose to compare them using the cost

(16) after the refinement step and pick the best candidate. It

appeared to be a good heuristic in experiments with more

accurate results than averaging estimates.

3.4. Estimation of the user camera Cu
The virtual cameras are centered on the user positions ;

the resectioning of each Vi gives an estimate Ti of MuUi.

The M̂u estimate can then be obtained by solving a 3d-3d

alignment problem [7]. Another approach is to do the same

camera resectioning process with virtual cameras centered

on the object points to compute M̂u as presented in Ap-

pendix A. Thus, there are three possible approaches that

will be discussed:

Symmetrical: estimate M̂s with user-centered virtual

cameras and M̂u with object-centered virtual cameras.

Only user-centered cameras: estimate M̂s with user-

centered virtual cameras and M̂u with 3d-3d align-

ment.

Only object-centered cameras: estimate M̂u with object-

centered virtual cameras and M̂s with 3d-3d align-

ment.

The most critical step of the calibration is the DLT. It

is sensitive to noise on observations and not on the camera

centers. As a result, it is better to “put” the camera cen-

ters on the noisier inputs (user positions or object reference

points). In practice, it is more difficult to track the user than

to locate a known object. The well-conditioning of the DLT

is also tied to the non-planar constraint of the calibration

points (see Section 3.6), hard to verify for user positions

which are limited by the size and shape of the screen. Fi-

nally, in order to take the optimal estimate regardless of the

configuration we estimate the reprojection error with every

approach and pick the best candidate.

3.5. Bundle Adjustment

Once the initialization parameters M̂u and M̂s are

estimated, a global covariance-weighted Bundle Adjust-

ment step minimizes the function (6) using the Levenberg-

Marquardt algorithm.

3.6. Discussions

Constraints and degenerate cases Constraints on the

problem geometry arise from the DLT step. We already

wrote that the constraint m ≥ 6 is necessary for the solution

to be unique. Moreover, some configurations of the object

points could lead to degenerate cases and multiple solutions.

Those cases are discussed in [6], the most notable ones be-

ing when the camera and points all lie on a twisted cubic or

on the union of a plane and a single straight line containing

the camera center. In particular, the reference object cannot

be flat or placed too far from Cs so that it appears almost

flat.

Multi-view optimization The aggregation issue (Sec-

tion 3.3) arises from the fact that no multi-view constraint

is enforced. The problem formulation with an observation

matrix is



λ11c11 · · · λ1nc1n

...
...

λm1cm1 · · · λmncmn




=



K1[Rs|Ts − T1]

...

Km[Rs|Ts − Tm]



[
O1 · · ·On

]
(16)

where the λij are the projective depth which can be com-

puted using fundamental matrices or recursive algorithms

[17, 10]. One can see that the DLT approach ignores three

constraints: the fact that Rs and Ts are shared by all views

and that the Ti are linked to the Ki (8). To our knowledge,

there is no way to compute a direct estimate taking advan-

tage of these constraints. Moreover, the DLT approach al-

lows to easily parallelize the algorithm.

Generalization of the method The method has been in-

troduced as a way to calibrate a particular system, but great

care has been taken so as to keep it versatile by not using

any a priori knowledge on the camera poses. It ensues sev-

eral possible generalizations. Head-mounted displays can

be calibrated using only one user-centered virtual camera.

At the opposite, by using only one object-centered virtual

camera, it is possible to calibrate a head tracking system

with a unique reference point. Another interesting config-

uration is when the object is static relative to the system.

Then there is no need for a physical scene camera Cs which

can be replaced by the object local coordinates system: Ms

is then the pose of the object in W . This allows an easy way

to calibrate an interactive showcase setup. This is actually

the configuration chosen for the test case (Appendix B) as

it removes the burden of object pose estimation.

0 5 10 15
0

2

4

σU (cm)

re
p

ro
je

ct
io

n
er

ro
r

(p
x

)

0 2 4
0

2

4

σc (px)

Figure 4: Bundle Adjustment evaluation on synthetic data

0 5 10 15 20
0

5

10

15

Mean

User position

re
p

ro
je

ct
io

n
er

ro
r

(p
x

)

Training data Evaluation data

Figure 5: Leave-one-out cross validation

4. Evaluation

This section aims to demonstrate the robustness of our

method and its accuracy. The algorithm has been imple-

mented in the Python interpreted programming language

with processing times of 1-3 seconds per calibration.

Evaluation on synthetic data To study the behaviour of

the convex initialization, a synthetic scene is generated to

mimic the geometry and noise of the real world test case

presented in B. Starting from this realistic basis, the influ-

ence of several parameters is measured and averaged over

50 samples. The error in rotation and translation with regard

to the ground truth is measured rather than the reprojection

error in the virtual cameras which is not a good indicator of

the quality of the initialization. In Figure 3, rows 1 and 2,

it can be seen that noise on user positions does not affect

user-centered virtual cameras estimation, and noise on ob-

ject points does not affect object-centered virtual cameras.

The most interesting outcome of those tests is the crucial

importance of the problem geometry (see Section 3.6) as

can be seen on the object scale plot (row 3).

The bundle adjustment accuracy is showed Figure 4. The

reprojection error is almost constant at 3 pixels which is

the value of the two dimensional noise. This proves the

optimality of the solution.

Real world test The calibration process was put to the

test in a real world setup as explained in B. A wireframe

mesh of the box was aligned and displayed on the trans-

parent screen. The alignment error was almost impercep-

tible, supporting the viability of our approach. In order to

produce some quantitative results, we acquired data for 20
different user positions and realized a leave-one-out cross

validation. The real camera and object poses are estimated

with the data from 19 user positions and used to compute

the alignment error from the left-out one. Results can be

seen on Figure 5. The reprojection error average is about 10
pixels which corresponds to less than 3 mm on the screen.

Examples of reprojections can be seen Figure 6.

Comparison with related work It is interesting to com-

pare this result to the state of the art mirror-based methods

[12, 15]. These two papers present real experiments of com-

parable scale and ideal conditions that show an angular error

of 7◦ = 0.122 rad in [12] and 0.057 rad in [15]. For small

values of the angular error α of the camera orientation, the

resulting position error of the user or object is α · d where d

is the distance to the camera.

For a user at 70 centimeters from the camera (center of

the user position area in our setup), an error of 0.06 rad
translates to a user position error of 0.06× 0.7 ≈ 0.04 me-

ters. The object is placed at one meter from the screen

so the object position error is 0.06 × 1 = 0.06 meters.

The resulting alignment error is approximately 0.04+0.06
2 =

0.05 meters, without considering the translation errors and

the trackers defects. This is not suitable for Augmented Re-

ality applications and is more than 15 times higher than the

3 mm we obtained.

5. Conclusion

This article presents a solution to the calibration of an op-

tical see-through system consisting of a transparent screen

and two cameras. Our original scheme consisting of a con-

vex initialization with virtual cameras followed by a bundle

adjustment has proven to be robust and accurate – even with

a simplistic user tracker – and generalizable to most com-

mon see-through configurations. Future works will involve

the integration of a better user tracker and an augmented re-

ality stack. We also plan to adapt the method to non-planar

transparent surfaces such as car windshields.

Appendix

A. Object-centered Virtual Cameras

It is possible to do the camera resectioning process (see

Section 3.2) using virtual cameras centered on object points.

The problem is mostly symmetric with slight changes. Be-

cause their optical axis point toward the −z axis, the poses

User clicks Computed position

Figure 6: Examples of alignment quality on cross-

validation data. Best viewed in color.

of the virtual cameras are defined by M
O
j = [RO|TO

j]

where R
O = diag(−1, 1,−1) and TO

j = MsOj . The in-

trinsic equation (8) becomes:

K
O
j =



(TO

j)z 0 −(TO
j)x

0 (TO
j)z (TO

j)y
0 0 1


 (17)

and the projections of the points Ui=1...m in the virtual cam-

era j are cOij = (−(cij)x, (cij)y)
T . Other than that, the res-

olution process is similar and leads to an estimate M̂u of

the pose of Cu.

B. Setup details and noise estimation

The non-linear refinement steps and the bundle adjust-

ment need an estimate of the variance of the noise on the

user positions ΣU , object positions ΣO and user inputs Σc.

We define here a real world test case used for evaluation and

as a reference for synthetic data generation.

Object points Since the object is static in this real world

test, the camera Cs is defined as the local coordinates sys-

tem of the known object (interactive showcase configuration

from Section 3.6). The only noise on the object points is due

to errors in the model. In practice those are very small, we

set

ΣO = diag(12, 12, 12) in millimeters (18)

The object is a 372× 305× 229 mm rectangular box put at

approximately 1 meter from the screen. 10 reference points

are chosen: the 6 visible corners and 4 arbitrary additional

points on the visible sides.

User positions Any tracker can be used to track the user

position, such as commercially available state of the art

monocular head tracking softwares [13]. We use a Minoru

USB stereo webcam2 (2×640×480) detecting the user left

pupil in each camera. The eye position is first estimated us-

ing the OpenCV eye detector [18], then a Mean-Shift [4] al-

gorithm is used to find the pupil center. This method has the

advantage of being absolute and more robust than tracking-

based methods. However accurate pupil center detection

with a low resolution camera is difficult without a dedicated

setup such as a frontal infrared projector. Thus the esti-

mated position is quite noisy with some jitter. To model the

noise, we recorded the estimated positions of a user while

he stood still for several hundreds of frames and computed

the variance of this sequence. We got:

ΣU = diag(52, 52, 202) in millimeters (19)

The position of the user is measured at all clicks and av-

eraged over each sequence. As a result, for sequences of n

2http://www.minoru3d.com/

http://www.minoru3d.com/

clicks, the variance of the measured user positions is divided

by n i.e. ΣUaverage
= 1

n
ΣU . We use 10 clicks sequences so

we have:

Σ
(n=10)
Uaverage

= diag(1.62, 1.62, 6.32) in millimeters (20)

The camera has a narrow field of view which restricts the

user position to the area where

Ui ∈ [−300, 300]× [−150, 150]× [400, 1000] in mm (21)

This area is further shrinked by the constraint that all object

points must be visible through the screen. The reference

number of user positions has been fixed to 20.

User inputs The transparent screen is a 22” SAMSUNG

LTI220MT02. The active area is 473.6 × 296.1 mm with

a resolution of 1680 × 1050 pixels. The pixel size is then

spx = 0.282 mm/px.

The “noise” in the user inputs has several causes: slight

blur introduced by the transparent screen, precision of the

mouse (one pixel), shape of the mouse cursor, hand trem-

bling, bad vision, inability to stand perfectly still during a

clicks sequence and other human factors. . . In the consid-

ered setup, a user study shows the average error to be 3

pixels:

Σc = diag(32, 32) in pixels

= diag(0.8462, 0.8462) in millimeters (22)

References

[1] Y. Abdel-Aziz and H. Karara. Direct linear transfor-

mation from comparator to object space coordinates

in close-range photogrammetry. In ASP Symposium

on Close-Range Photogrammetry, pages 1–18, 1971.

3

[2] N. Anjum, M. Taj, and A. Cavallaro. Relative Position

Estimation of Non-Overlapping Cameras. In ICASSP,

volume 2, pages II–281 –II–284, 2007. 2

[3] Y. Caspi. Alignment of non-overlapping sequences. In

ICCV, 2001. 2

[4] D. Comaniciu, V. Ramesh, and P. Meer. Real-time

tracking of non-rigid objects using mean shift. In

CVPR, 2000. 6

[5] S. Esquivel, F. Woelk, and R. Koch. Calibration of a

Multi-camera Rig from Non-overlapping Views. In

Pattern Recognition, volume 4713 of Lecture Notes

in Computer Science, pages 82–91. Springer Berlin /

Heidelberg, 2007. 2

[6] R. I. Hartley and A. Zisserman. Multiple View Geom-

etry in Computer Vision. Cambridge University Press,

second edition, 2004. 3, 4

[7] B. Horn. Closed-form solution of absolute orientation

using unit quaternions. Journal of the Optical Society

of America A, 4(April), 1987. 4

[8] R. Kumar, A. Ilie, J. Frahm, and M. Pollefeys. Simple

calibration of non-overlapping cameras with a mirror.

In CVPR, 2008. 2

[9] P. Lebraly, E. Royer, O. Ait-Aider, C. Deymier,

and M. Dhome. Fast calibration of embedded non-

overlapping cameras. In ICRA, 2011. 2

[10] J. Oliensis and R. Hartley. Iterative extensions of the

Sturm/Triggs algorithm: Convergence and nonconver-

gence. PAMI, 29(12):2217–2233, Dec. 2007. 4

[11] A. Rahimi, B. Dunagan, and T. Darrell. Simultane-

ous calibration and tracking with a network of non-

overlapping sensors. In CVPR, 2004. 2

[12] R. Rodrigues, J. Barreto, and U. Nunes. Camera pose

estimation using images of planar mirror reflections.

In ECCV, 2010. 2, 5

[13] Seeing Machines. Faceapi. http://www.

seeingmachines.com/product/faceapi/.

6

[14] P. Sturm and T. Bonfort. How to Compute the Pose of

an Object without a Direct View? In ACCV, 2006. 2

[15] K. Takahashi, S. Nobuhara, and T. Matsuyama. A new

mirror-based extrinsic camera calibration using an or-

thogonality constraint. In CVPR, 2012. 2, 5

[16] A. Tang, J. Zhou, and C. Owen. Evaluation of calibra-

tion procedures for optical see-through head-mounted

displays. In ISMAR, 2003. 2

[17] B. Triggs. Factorization Methods for Projective Struc-

ture and Motion. In CVPR, 1996. 4

[18] P. Viola and M. Jones. Rapid Object Detection using a

Boosted Cascade of Simple Features. In CVPR, 2001.

6

http://www.seeingmachines.com/product/faceapi/
http://www.seeingmachines.com/product/faceapi/

0 0.2 0.4 0.6 0.8 1
100

101

102

σU (cm)

tr
an

sl
at

io
n

er
ro

r
(%

)

0 0.2 0.4 0.6 0.8 1
100

101

102

σU (cm)

ro
ta

ti
o

n
er

ro
r

(d
eg

)

0 0.2 0.4 0.6 0.8 1
100

101

102

σO (cm)

tr
an

sl
at

io
n

er
ro

r
(%

)

0 0.2 0.4 0.6 0.8 1
100

101

102

σO (cm)

ro
ta

ti
o

n
er

ro
r

(d
eg

)

0.2 0.4 0.6 0.8 1
100

101

102

Object scale

tr
an

sl
at

io
n

er
ro

r
(%

)

0.2 0.4 0.6 0.8 1
100

101

102

Object scale

ro
ta

ti
o

n
er

ro
r

(d
eg

)

10 20 30 40 50
100

101

102

Number of user positions

tr
an

sl
at

io
n

er
ro

r
(%

)

10 20 30 40 50
100

101

102

Number of user positions

ro
ta

ti
o

n
er

ro
r

(d
eg

)

Ts estimated with user-centered VC Rs estimated with user-centered VC

Tu estimated with object-centered VC Ru estimated with object-centered VC

Figure 3: Comparison of the virtual cameras methods robustness to user positions noise, object positions noise, object scale

and number of user positions. Dots correspond to the average value over 50 samples and bars to the standard deviation among

those samples (best viewed in color). All plots use a logarithmic scale on the y-axis.

