
3D Shape Registration

Umberto Castellani and Adrien Bartoli

Abstract
Registration is the problem of bringing together two or more 3D shapes, either

of the same object or of two different but similar objects. This chapter first intro-
duces the classical Iterative Closest Point (ICP) algorithm which represents the gold
standard registration method. Current limitations of ICP are addressed and the most
popular variants of ICP are described to improve the basic implementation in several
ways. Challenging registration scenarios are analyzed and a taxonomy of recent and
promising alternative registration techniques is introduced. Three case studies are
then described with an increasing level of difficulty. The first case study describes
a simple but effective technique to detect outliers. The second case study uses the
Levenberg-Marquardt optimization procedure to solve standard pairwise registra-
tion. The third case study focuses on the challenging problem of deformable object
registration. Finally, open issues and directions for future work are discussed and
conclusions are drawn.

1 Introduction

Registration is a critical issue for various problems in computer vision and com-
puter graphics. The overall aim is to find the best alignment between two objects
or between several instances of the same object, in order to bring the shape data
into the same reference system. The main high level problems that use registration
techniques are:
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1. Model reconstruction. The goal in model reconstruction is to create a complete
object model from partial 3D views obtained by a 3D scanner. Indeed, it is
rare that a single 3D view grabs the whole object structure, mainly due to self
occlusions. Registration allows one to obtain the alignment between the partial
overlapping 3D views in order to build a complete object model, also called a
mosaic (see figure 1). In this context registration is first applied between pairs
of views [6, 75]. The whole model is then reconstructed using multiple view
registration refinement [75, 40]. Typically, model reconstruction is employed in
cultural heritage [5] to obtain 3D models of archaeological findings. It has also
been applied in applications such as reverse engineering and rapid prototyping
[91] and for vision in hostile environments [16, 17].

2. Model fitting. The goal in model fitting is to compute the transformation be-
tween a partial 3D view and a known CAD model of the actual object. Model
fitting is used in robotics for object grasping [61, 24] and model-based object
tracking [72]. Model fitting is typically used with rigid objects but has recently
been extended to deformable objects [18].

3. Object recognition. The goal in object recognition is to find, amongst a
database of 3D models, which one best matches an input partial 3D view. This
problem is more challenging than model fitting since a decision has to be made
regarding which model, if any, is the sought one. Solving the recognition prob-
lem this way is called recognition-by-fitting [89]. Several works have been done
for 3D face recognition [9, 8, 80] and for 3D object retrieval [31, 87]. Registra-
tion becomes more challenging in a cluttered environment [53, 44, 3].

4. Multimodal registration. The goal in multimodal registration is to align sev-
eral views of the same object taken by different types of acquisition systems.
After registration, the information from different modalities can be merged for
comparison purposes or for creating a multimodal object model. This problem
is typical in medical imaging where it is common to register MRI and CT scans
or MRI and PET scans [51, 81]. 3D medical image registration is discussed
further in Chapter 11.

This chapter gives a general formulation for the registration problem. This for-
mulation leads to computational solutions that can be used to solve the four above
mentioned tasks. It encompasses most of the existing registration algorithms. For a
detailed description of registration techniques and experimental comparisons, we re-
fer the reader to recent surveys [75, 73, 54, 45, 76]. It is worth mentioning that most
of the existing computational solutions are based on the seminal Iterative Closest
Point (ICP)[6] algorithm that we will describe shortly.

1.1 Chapter outline

This chapter is organized as follows. We first present the two-view registration prob-
lem and the current algorithmic solutions. We then describe some advanced registra-
tion techniques. We give a comprehensive derivation of algorithms for registration
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Fig. 1 Example of model reconstruction. Partial 3D views of the object of interest are acquired
(left). After registration all the 3D views are transformed to the common reference system and
merged (right).

by proposing three case studies. We give an overview of open challenges with future
directions and conclusion. Further suggestions, additional reading and exercises are
finally proposed.

2 Registration of Two Views

We first give a mathematical formulation of the two view registration problem and
then derive the basic ICP algorithm and discuss its main variants.

2.1 Problem Statement

Given a pair of views D and M representing two scans (partial 3D views) of the same
object, registration is the problem of finding the parameters a of the transformation
function T (a,D) which best aligns D to M. Typically, D and M are either simple
point clouds or triangulated meshes [14]. The moving view D is called data-view,
while the fixed view is called model-view. The registration problem is solved by
estimating the parameters a∗ of the transformation T that satisfy:

a∗ = arg min
a

E(T (a,D),M), (1)

where E is called the error function and measures the registration error. Figure 2 il-
lustrates the two-view registration process. The data-view and the model-view show
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different portions of Bunny. The transformation function T (a,D) is applied and the
registered views are shown.

Fig. 2 Pairwise registration. The data-view and the model-view (left) are registered. The transfor-
mation function T (a,D) allows one to move the data-view to the model-view coordinate frame
(right).

Most of the registration methods are based on the paradigm defined directly
above and differ o the following aspects:

• The transformation function. The transformation function T usually imple-
ments a rigid transformation of the 3D space. It uses a translation vector t and
a rotation matrix R whose values are encoded or parametrized in the param-
eter vector a. The transformation function may also handle deformations; this
requires a more complex formulation.

• The error function. The error function E measures the registration error or dis-
similarity between D and M after alignment. When the transformation function
T is rigid, E is a measure of congruence between the two views. In general E
takes the form of an L2 approximation of the Hausdorff distance which further
involves the so-called point-to-point distance [6] or the point-to-plane distance
[22].

• The optimisation method. This is the method or algorithm used to find the
minimizer a in problem (1). The gold standard is the ICP algorithm [6] which
was specifically designed for the problem at hand. General purpose optimisa-
tion methods such as Levenberg-Marquardt [30] have also been used for this
problem.
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2.2 Iterative Closest Point (ICP)

In the classical ICP algorithm [6] the overall aim is to estimate a rigid trans-
formation with parameters a∗ = (R, t). Both views are treated as point clouds
D = {d1, . . . ,dNd} and M = {m1, . . . ,mNm}. The error function is chosen as:

EICP(a,D,M) =
Nd

∑
i=1
‖(Rdi + t)−m j‖2, (2)

where we define EICP(a,D,M) = E(T (a,D),M) and where (di,m j) are correspond-
ing points [75]1. Fixing di ∈ D the corresponding point m j ∈M is computed such
that:

j = arg min
j∈{1,...,Nm}

‖(Rdi + t)−m j‖2. (3)

More specifically, the value

e2
i = ‖(Rdi + t)−m j‖2 (4)

is the square of the residual. Figure 3 illustrates the step of correspondence com-
putation. For each data point (in red) the closest model point (in blue) is computed
using the euclidean distance. The list of correspondences is thus obtained. Note that
given point correspondences, problem (2) can be solved in closed-form [75].

Fig. 3 Correspondence estimation in ICP. For each data point d′i = (Rdi + t) the closest model
point m j is estimated (left). The list of corresponding points is then defined (right).

The ICP algorithm is iterative because it iteratively improves the putative corre-
spondences. If true corresponences were known, clearly the process could operate

1 Note that the pair (di,m j) is a putative correspondence which becomes true correspondence when
convergence is reached.



6 Umberto Castellani and Adrien Bartoli

in one shot (one pass). ICP has two main steps in its inner loop: (i) closest point
computation and (ii) rigid transformation estimation. In more details, the algorithm
is:

1. For each data-point di ∈ D, compute the closest point m j ∈ M according to
equation 3.

2. With the correspondences (di,m j) from step 1, compute the new transformation
parameters a = (R, t),

3. Apply the new transformation parameters a from step 2 to the point cloud D,
4. If the change in EICP(a,D,M) between two successive iterations is lower than

a threshold terminate, else goto step 1.

It was proven [6] that this algorithm is guaranteed to converge monotonically to a
local solution of problem (2). Note that as for any local iterative method, a strat-
egy for initializing a must be used. An overview of the most popular initialization
strategies is given in section 2.3.1.

2.3 ICP extensions

Although ICP has been successfully applied to many registration problems, there
are several critical issues that need to be taken care of. In particular, ICP performs
well when the following assumptions are met:

1. The two views must be close to each other. If not, ICP will probably get stuck
in a local minimum. This issue is typically solved by pre-alignment of the two
3D views, also called coarse registration.

2. The two views must fully overlap or the data-view D must be a subset of the
model-view M. The problem arises from the fact that ICP always assigns a clos-
est point to every data point. If a data point has no corresponding model point,
this will create a spurious correspondence, an outlier with respect to the sought
transformation, that will bias the solution or prevent the algorithm from finding
the correct transformation parameters.

Two other important issues are the speed of computation and the accuracy of the
ICP algorithm. Typically, methods focused on speed improvement for the closest
point computation step which is the bottleneck of the algorithm. Other interesting
approaches address instead the speed of convergence by proposing new distance
formulations for problem (1). Methods focusing on accuracy exploit additional in-
formation in order to measure the similarity between corresponding points not only
in terms of proximity. In the following, we describe some registration techniques
which improve the basic ICP method in several ways. Figure 4 illustrates the pro-
posed taxonomy of ICP extensions so as to easily understand the organization of
previous work in this field.
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Fig. 4 A taxonomy of some ICP extensions.

2.3.1 Techniques for Pre-Alignment

The aim of pre-alignment techniques is to estimate a coarse transformation which
will allow the two views to get closer. This helps the data-view to be transformed
within basin of attraction of the correct local minimum. In practice, instead of
searching dense point-to-point correspondences, pre-alignment techniques estimate
the best matching between features extracted from the views. Roughly speaking the
features can be global or local. The former is a compact representation that effec-
tively and concisely describes the entire view. The latter instead is a collection of
local and discriminative descriptors computed on subparts of the views.

Global approaches

Global approaches typically estimate and match the principal coordinate system of
each view. The simplest approach is to compute the main translational alignment
by shifting the centroids of the two point clouds to the origin of the coordinate
system (i.e., zero-mean). In order to estimate also the orientation of the principal
axes PCA (Principal Component Analysis) to the 3D points can be performed. The
problems with PCA as a pre-alignment method are (i) a 180 degree ambiguity in the
direction of the principal axes, (ii) principal axes may switch for shapes that have
eigenvalues similar in value, particularly if the object is able to deform slightly (iii)
a vulnerability to outliers in the raw shape data (as discussed). Even if we enforce a
right handed frame using the sign of cross-product of basis vectors, there still exists
an overall 180 degree ambiguity, unless higher order moments are used. Moments of
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higher orders are also useful to improve accuracy [10]. Of course, these approaches
perform well when the two views fully overlap. Otherwise, the non-overlapping
parts change the estimation of the principal axes and thus affect the pre-alignment.
Some improvements have been made by extracting and matching the skeletons of
the views [57, 19] but this is feasible for articulated objects only.

Local approaches

Local approaches define a descriptor (or signature) for each 3D point which en-
codes local shape variation in the point neighborhood [44, 15, 59, 46, 86]. Point
correspondences are then obtained as the best matches in regard of the point signa-
tures. Various methods to compute signatures were proposed. In the seminal work
[44], the Spin Images were introduced. In a spin-image, the neighbours of some
selected 3D point (e.g. a 3D interest point) are binned in a 2D cylindrical-polar
coordinate system. This consists of a distance from the selected point within that
point’s tangent plane and a signed height above/below the tangent plane. Thus the
spin-image is a 2D histogram of 3D shape, where one dimension of information
is sacrificed for pose invariance. In [47] curvilinear features on the object are esti-
mated from a small amount of points of interest. Gaussian and mean curvatures are
used to this aim. Similarly in [95] bitangent curve pairs were used as landmarks on
the surface. In [59] a geometric scale-space analysis of 3D models was proposed
from which a scale-dependent local shape descriptor was derived. Similarly in [15]
registration involves few feature points by extending the approach for salient point
detection to the 3D domain. A generative model is then estimated as a point de-
scriptor by using Hidden Markov Models. In [46] the proposed descriptor encodes
not only local information around the point, but also inter-point relationships. The
method is inspired by the so-called Shape Context [4] which was improved using
the Bag-of-Words paradigm [25]. Note that from the analysis of inter-point relation-
ships it is also possible to estimate the overlapping region between two views. It is
worth noting that in general the estimation of the overlap area is not trivial. An in-
teresting approach was proposed in [79] by combining local geometric features with
advanced graph matching techniques. The method consists of representing all puta-
tive point matches as a graph, and then selecting as many consistent matches among
them as possible. To this aim, a global discrete optimization problem is proposed
based on the so called maximum strict sub-kernel algorithm [78].

2.3.2 Techniques for Improving Speed

The speed of the algorithm is crucial for many applications. Unfortunately, when
the number of points is very high the basic ICP algorithm becomes very slow. In
order to address this issue several strategies were proposed.
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Subsampling

Subsampling can be applied to either the data-view only or to both the data-view and
the model-view. Random and uniform strategies are common approaches [75]. Nor-
mal space sampling is a more sophisticated approach based on choosing points such
that the distribution of normals among the selected points is as spread as possible.
This increases the influence of smaller details which are crucial to better disam-
biguate the rigid transformation due to translational sliding.

Closest point computation

As mentioned above, closest point computation is the bottleneck of the registration
process due to the quadratic complexity (O(n2)) in finding the correspondence of
each point. Early strategies were based on the organization of the model-points in a
k-d tree [84] structure in order to reduce the closest point complexity to O(n logn).
Closest point caching [84] also accelerates the speed of ICP (the data point corre-
spondence search is only among a subset of model points which were the closest at
the previous iteration). Indeed, in [60] k-d tree and caching are combined in order
to further improve the speed of ICP. Other more effective approaches are based on
the so called reverse calibration paradigm [7]. The idea is to project the source data
point onto the destination model-view which is encoded as a range image [73]. In
particular, the projection from the 3D domain into the range image is performed
by using the calibration parameters of the 3D scanner. In this fashion the corre-
spondence is computed in one-shot. The reverse calibration approach is especially
effective for real-time application. For instance in [74] the authors proposed a real-
time 3D model reconstruction system, and in [17] on-line registration is performed
to build a 3D mosaic of the scene in order to improve the navigation in underwa-
ter environments. The one-shot computation can be carried out also on generic point
cloud (not necessary coming from a range image) by precomputing the so called dis-
tance transform of the model view [30]. Figure 5 illustrates the distance transform.
In practice the distance to closest model-points are precomputed for all grid-points
of the discretized volume. The case for distance transform computed for the model
is particularly compelling when one wishes to align many istances of data scan to
the same model scan.

Distance formulation

Another crucial factor affecting the speed of ICP is the point-to-point or point-to-
plane distance used in problem (1). Figure 6 shows a schema of the two kinds of
distances: point-to-point computes the euclidean distance between the data-point
and model-point (left), point-to-plane distance computes the projection of the data-
point onto the surface of the the model-view which is encoded in terms of piecewise
planar patches (for instance a triangular mesh). In spite of an increased complexity
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Fig. 5 Using the distance transform. The model-view is enclosed in a volumetric grid (left). For
each point of the grid the closest model-point is computed. Two planes are highlighted on the XY
and Y Z axes respectively and the distance transform values of each grid-point are visualized for
both planes (right).

of the distance formulation, the number of ICP iterations required to converge is
reduced [62, 66]. Whether this results in a reduced registration time depends on the
trade-off between the increased per-iteration time and the reduced number of iter-
ations. Results regarding this aspect on example 3D scans are presented in section
4.

Recently a new “distance formulation” has been proposed [63] where the model
surface is implicitly represented as the zero-isosurface of a fitted radial basis func-
tion (RBF), s(x)= 0, for any 3D point x, where the function s represents distance-to-
surface. For any point on the data scan (or on a pre-computed 3D grid), the distance
and direction (gradient) to the zero isosurface can be computed directly from the
RBF. The advantage of this RBF distance formulation is that it interpolates over
holes that may exist in the model scan. Particularly for lower resolution scans, the
interpolation is more accurate than the piecewise linear point-to-plane method. Both
RBF model fitting and RBF model evaluation are O(n logn).

2.3.3 Techniques for Improving Accuracy

The accuracy of the alignment is the most critical aspect of the registration since
even a small misalignment between two views can affect the whole 3D model re-
construction procedure. The simplest strategy that can be used is outlier rejection.
Other methods improve the accuracy by using additional information such as color
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Fig. 6 Distance formulation. Point-to-point distance (left) and point-to-plane distance (right).

and texture or local geometric properties. Finally, an effective class of methods de-
voted to the improvement of accuracy are probabilistic methods.

Outlier rejection

Closest point computation may yield spurious correspondences due to errors or to
the presence of non-overlapping parts between the views. Typically, outlier rejec-
tion techniques threshold the residuals. The threshold can be fixed manually, or as
a percentage of worst pairs (e.g., 10% [75, 68]). Other techniques perform statistics
on the residual vector and set the threshold as 2.5σ or apply the so-called X84 rule
[16, 37]. More recently, statistical analysis has been introduced into the general reg-
istration problem (equation 1) by proposing a new error function named Fractional
Root Mean Squared Distance [64].

Additional information

The basic ICP algorithm computes the correspondences by taking into account only
the proximity of points. However, corresponding points should be similar with re-
spect to other aspects. Several studies have attempted to exploit additional infor-
mation available from the acquisition process or from the analysis of the surface
properties. In practice the distance formulation is modified to integrate such ad-
ditional information like local surface properties [33], intensity derived from the
sensor [94, 33], or color [69]. In [42] the authors proposed to use color and texture
information. In [82] the so-called ICP using invariant features (ICPIF) was intro-
duced where several geometric features are employed, namely curvatures, moments
invariants and Spherical Harmonics Invariants. In [13] additional information was
integrated in the point descriptors using the Spin Image with color.
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Probabilistic method

In order to improve the robustness of the registration several probabilistic version
of the standard ICP have been proposed [71, 70, 35]. In [71, 70] the idea of multi-
ple weighted matches justified by a probabilistic version of the matching problem
is introduced. A new matching model is proposed based on Gaussian weight (Sof-
tAssign [71]) and Mutual Information [70], leading to a smaller number of local
minima and thus presenting the most convincing improvements. In [35] the authors
introduced a probabilistic approach based on the Expectation Maximization (EM)
paradigm, namely EM-ICP. Hidden variables are used to model the point matching.
Specifically, in the case of Gaussian noise, the proposed method corresponds to ICP
with multiple matches weighted by normalized Gaussian weights. In practice, the
variance of the Gaussian is interpreted as a scale parameter. At high scales EM-ICP
gets many matches while it behaves like standard ICP at lower scales.

3 Advanced Techniques

Although registration is one of the most studied problems in computer vision, sev-
eral cases are still open and new issues have emerged in the recent years. In this
section we focus on some scenarios where registration becomes more challenging:
registration of more than two views, registration in cluttered scenes and registration
of deformable objects. We also describe some emerging techniques based on ma-
chine learning to solve the registration problem. Figure 7 illustrates the proposed
taxonomy for advanced registration techniques.

3.1 Registration of More Than Two Views

Once registration has been performed pairwise, all the views need to be transformed
into a global reference system by applying a multiple-view registration technique.
There are two main issues: (i) error accumulation and (ii) the automation of the
process.

Reducing error accumulation

When the ordering of the sequence of views N1, ...,Np is available the registration
can be performed pairwise between consecutive views (i.e., between views Ni and
Ni+1). In general, even if all the pairs are apparently well registered, some misalign-
ment typically appears when the full model is reconstructed due to the accumulation
and propagation of the registration error. The general idea of multiple-view registra-
tion techniques is to solve simultaneously for the global registration by exploiting
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Fig. 7 A taxonomy of advanced registration techniques.

the interdependences between all views at the same time. This introduces additional
constraints which reduce the global error. A comparative study of similar multiple-
view registration schemes was performed [26]. In [68] a method is presented that
first aligns the scans pairwise with each other and then uses the pairwise alignments
as constraints in a multi-view step. The aim is to evenly distribute the pairwise reg-
istration error, but the method itself is still based on pairwise alignments. In [16] a
method that distributes registration errors evenly across all views was proposed. It
operates in the space of estimated pairwise registration matrices, however ordering
of the views is required. More recently, [88] proposed a new approach based on
the well-known Generalized Procrustes Analysis, seamlessly embedding the mathe-
matical theory in an ICP framework. A variant of the method, where the correspon-
dences are non-uniformly weighted using a curvature-based similarity measure was
also presented.

Automating registration

Especially when the full model is composed of a large number of scans the view or-
der might not be available and therefore should be manually specified. Many meth-
ods were proposed to improve the automation of multiple-view registration. In [40]
a global optimization process searches a graph constructed from the pairwise view
matches for a connected sub-graph containing only correct matches, using a global
consistency measure to eliminate incorrect but locally consistent matches. Other
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approaches use both global and local pre-alignment techniques to select the over-
lapping views by computing a coarse alignment between all the pairs. In [52] the
pre-alignment is performed by extracting global features from each view, namely
extended Gaussian images. Conversely, in [46] the pre-alignment is computed by
comparing the signatures of feature points. Then, the best view sequence is esti-
mated by solving a standard Travelling Salesman Problem (TSP).

3.2 Registration in Cluttered Scenes

Thanks to the recent availability of large scale scanners it is possible to acquire
scenes composed of several objects. In this context registration is necessary to lo-
calize each object present in the scene and estimate its pose. However, in cluttered
scenes, an object of interest may be made of a small subset of the entire view. This
makes the registration problem more challenging. Figure 8 shows two examples of
highly cluttered scenes: an entire square2 and a scene composed of several mechan-
ical objects.

Fig. 8 Example of large scan acquisition (left) and scene with multiple mechanical objects (right).

Roughly speaking two main strategies were proposed to address this problem: (i)
the use of point signatures to improve point-to-point matching and (ii) the design of
more effective matching methods.

2 Piazza Brà, Verona, Italy. Image courtesy of Gexcel: http://www.gexcel.it
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Point signatures

This approach is similar to local approaches for pre-alignment. Here, due to the
cluttered scene, the challenge comes from the fact that the neighborhood of one
point of an object can cover part of other objects. Therefore, the descriptor may
become useless. In [53] a descriptor that uses two reference points to define a local
coordinate system is proposed. In particular, a three-dimensional tensor is built by
sampling the space and storing the amount of surface intersecting each sample. In
[3] a method that exploits surface scale properties is introduced. The geometric scale
variability is encoded in the form of the intrinsic geometric scale of each computed
feature by leading to a highly discriminative hierarchical descriptor.

Matching methods

Since the number of corresponding points are very few within cluttered scenes stan-
dard methods for outlier rejection are not useful but more complex matching algo-
rithm can be exploited. In [53] descriptors are stored using a hash table that can
be efficiently looked up at the matching phase by geometric hashing algorithm. In
[3] matching is performed in hierarchical fashion by using the hierarchy induced
from the definition of point-descriptor. In [28] a method is proposed that creates a
global model description using an oriented point pair feature and matches it by us-
ing a fast voting scheme. A fast voting scheme, similar to the Generalized Hough
Transform, is used to optimize the model pose in a locally reduced search space.
This space is parametrized in terms of points on the model and rotation around the
surface normals.

3.3 Deformable Registration

While rigidity in the aligning transformation is a largely applicable constraint, it is
too restrictive in some cases. Imagine indeed that the object that has to be regis-
tered is not rigid but deformable. Deformable registration has two main issues: the
computation of stable correspondences and the use of an appropriate deformation
model. Note that the need for registration of articulated or deformable objects has
recently increased due to the availability of real-time range scanners [55, 48, 20, 21].
Roughly speaking we can emphasise two classes of deformable registration meth-
ods: (i) methods based on general optimization techniques, and (ii) probabilistic
methods.
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Methods based on general optimization techniques

The general formulation of deformable registration is more involved than the rigid
case and it is more difficult to solve in closed-form. Advanced optimization tech-
niques are used instead. The advantage of using general optimization techniques
consists of jointly computing the estimation of correspondences and the deformable
parameters [48, 23, 20, 21]. Moreover, other unknowns can be used to model fur-
ther information like the overlapping area, the reliability of correspondences, the
smoothness constraint and so on [48]. Examples of transformation models which
have been introduced for surface deformations are (i) affine transforms applied
to nodes uniformly sampled from the range images [48], (ii) rigid transforms on
patches automatically extracted from the surface [20], (iii) Thin-Plate Splines (TPS)
[23, 73], or (iv) linear blend skinning model (LBS) [21]. The error function can
be optimized by the Levenberg-Marquardt Algorithm [48], GraphCuts [20], or
Expectation-Maximization (EM) [23, 21, 58]. In [39] deformable registration is
solved by alternating between correspondence and deformation optimization. As-
suming approximately isometric deformations, robust correspondences are gener-
ated using a pruning mechanism based on geodesic consistency.

Deformable alignment to account for errors in the point clouds obtained by scan-
ning a rigid object is proposed in [11, 12]. Also in this case the authors use TPS to
represent the deformable warp between a pair of views, that they estimate through
hierarchical ICP [73].

Probabilistic methods

Using probabilistic methods the uncertainty on the correct surface transformation
can be addressed by adopting maximum likelihood estimation [43, 58, 92, 2, 27, 38].
Probabilistic approaches are based on modeling each of the point sets by a kernel
density function [90]. The dissimilarity among such densities is computed by in-
troducing appropriate distance functions. Registration is carried out without explic-
itly establishing correspondences. Indeed, the algorithm registers two meshes by
optimizing a joint probabilistic model over all point-to-point correspondences be-
tween them [2]. In [43], the authors propose a correlation-based approach [90] to
point set registration by representing the point sets as Gaussian Mixture Models.
A closed-form solution for the L2 norm distance between two Gaussian mixtures
makes fast computation possible. In [92], registration is carried out simultaneously
for several 3D range datasets. The method proposes an information-theoretic ap-
proach based on the Jensen-Shannon divergence measure. In [58], deformable reg-
istration is treated as a Maximum Likelihood estimation problem by introducing the
Coherent Point Drift paradigm. Smoothness constraints are introduced based on the
assumption that points close to one another tend to move coherently over the veloc-
ity field. The proposed energy function is minimized with the EM algorithm. Similar
approach has been proposed in [27] to track the full hand motion. A stereo set-up is
employed to estimate the 3D surface. To improve the estimation of the hand pose,
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2D motion (i.e., optical flow) is combined with 3D information. A well defined hand
model is employed to deal with articulated structures and deformations. Also in this
case the standard ICP algorithm has been extended to its probabilistic version ac-
cording to the EM-ICP approach. This approach has been further extended in [38]
where the so called Expectation Conditional Maximization paradigm is introduced.
A formal demonstration is proposed to show that it is convenient to replace the stan-
dard M-step by three conditional maximization steps, or CM-steps, while preserving
the convergence properties of EM. Experiments are reported for both the hand and
body tracking.

3.4 Machine learning techniques

Recently, advanced machine learning techniques have been exploited to improve
registration algorithms [85, 1, 41, 56, 34]. The general idea is to use data-driven
approaches that learn the relevant registration criteria from examples. The most
promising methods have been proposed for (i) improving the matching phase, and
(ii) detecting an object which is a general instance of one or more classes.

Improving the matching

In these approaches the emphasis is on the effectiveness of the correspondence
computation. In [85] a new formulation for deformable registration (3D faces)
is proposed. The distance function from corresponding points is defined as a
weighted sum of contributions coming from different surface attributes (i.e., prox-
imity, color/texture, normals). Instead of manually or heuristically choosing the
weights a machine learning technique is proposed to estimate them. A Support Vec-
tor Machine framework is employed in a supervised manner, based on a dataset of
pairs of correct and incorrect correspondences. In [1] the authors propose a novel
unsupervised technique that allows one to obtain a fine surface registration in a sin-
gle step, without the need of an initial motion estimation. The main idea of their
approach is to cast the selection of correspondences between points on the surfaces
in a game theoretic framework. In this fashion, a natural selection process allows
one to select points that satisfy a mutual rigidity constraint to thrive, eliminating all
the other correspondences.

Object detection

A new class of methods is emerging from employing machine learning techniques
for detecting specific classes of objects on large scenes [41, 56, 34]. Several works
have been done for the 2D domain, but its extension to 3D scenes is not trivial. In
[41] the authors proposed to detect cars in cluttered scenes composed of millions
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of scanned points. The method is based on integrating Spin-Images with Extended
Gaussian Images in order to combine effectively local and global descriptors. Fur-
thermore, the method is able to detect object classes and not only specific instances.
In [56] the Associative Markov Network (AMN) has been extended to integrate the
context of local features by exploiting directional information through a new non-
isotropic model. In [34] different objects are simultaneously detected by hierarchical
segmentation of point clouds. Indeed, clusters of points are classified using standard
learning by example classifiers.

4 Quantitative Performance evaluation

In this section we report some experiments using pairwise registration in order to
show in practice how basic registration techniques work. Two objects are evaluated:
Foot and Frog for which two views are available for pairwise registration 3. In
Figure 9 we show the two objects, the overlapping region of both the objects in
the two views is quite large, i.e., around 80%. The Foot model has approximately
1500 points, while Frog is composed of around 5000 points for each view. The
two views have been acquired separately by two scans and are already aligned by
the authors of [76], as shown in Figure 9 (right). In order to evaluate the robust-
ness of pairwise registration methods against the initial pose variation we define 30
poses by generating random angles sampled from a uniform distribution between
0◦ and 10◦ (for the three Euler’s angles) and random translations (for the three
translation components tx, ty, tz) such that the translation is 5% of the object main
diagonal. Indeed, such transformations are considered as ground truth. We evaluate
the performance of three methods: i) Besl’s ICP [6] (Besl), which is described in
Section 2.2, ii) Chen and Medioni ICP [22],(Chen) which introduces the point-to-
plane distance, and iii) Picky ICP proposed by Zinsser et. al [97] (Picky) which
implements a combination of ICP variations described in Section 2.3. A hierarchical
sampling strategie is introduced to improve the speed, and a thresholding approach
on the residual distribution is employed. More specifically, a treshould is define as
T H = µ +2.5σ , where µ=mean({ei}), and σ=std({ei}). According to the basic ICP
algorithm described in Section 2.2 the threshold of Step 4 is set as 0.00001 but in
practice in the most of the evaluated experiments the algorithm stops because they
reach the maximum number of iterations. Therefore, we define two settings with
maximum number of iterations 15 and 50 respectively in order to evaluate the speed
of convergence for the analysed cases. In Figure 10 computational efficiency is eval-
uated. Experiments were carried out on an entry level laptop at 1.66 Ghz with 4Gb.
The code is in Matlab. The three methods are shown in red (Besl), blue (Chen),
and green (Picky). In general, the best results were obtained by the Picky algo-
rithm. Moreover, due to the higher computational cost of point-to-plane distance the

3 Experimental material is based on the survey paper [76]. Objects and code are availabe at
http://eia.udg.es/cmatabos/research.htm
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Fig. 9 Two views of Foot (Top) and Frog (Bottom). Separated views (left) and aligned
views(right). The portion of overlap is large for both the objects.

Chen method is the slowest. Note that a drastic reduction of the registration speed
is observed when the number of points increase from Foot to Frog.

In Figure 11 the accuracy of registration is evaluated. In general, especially when
the ground truth is not available, a good accuracy evaluation criterion is the Mean
Squared Error (MSE) (i.e, mean{ei}). Note that the MSE error is not comparable
between the three methods since they compute different distance measures, and in
Picky the error generated by outliers is not considered. Note that for both the ob-
jects MSE error of Besl does not improve when the number of iterations increases.
Conversely, in Picky the benefit of a higher number of iterations is observed and
the most of the registrations are able to reach convergence. In order to get a direct
comparison between the methods we use the ground truth.

transformations which are available since we have generated them. Indeed, we
evaluate the Rotation and the Translation error as shown in Figures 12 and 13
respectively. Rotation error is computed as the mean of the difference between the
observed Euler’s angles of the estimated transform and the ground truth. Angles are
in radians. Translation error is the norm of the difference between the two translation
vectors.

Table 1 summarizes the experiments by showing the mean of the evaluated mea-
sures. We observe better accuracy by using Picky. Note also that in general Chen
outperforms Besl. Finally, we also show in Table 1 the number of failures (or di-
vergences) because a local minimum is reached. We show that in more than half of
the cases the convergence is reached within 15 iterations. Again the best results are
shown with Picky since no failures are observed after 50 iterations and it always
converges after 15 iterations with Foot. We observed also that the cases of failures
of Besl and Chen methods are related to the strongest variations of starting pose
thus confirming the importance of a good initialization procedure.



20 Umberto Castellani and Adrien Bartoli

Foot 15 Foot 50

Frog 15 Frog 50

Fig. 10 Computational time evaluation. Time (sec.) employed for each pairwise registration. The
three methods are shown in red (Besl), blue (Chen), and green (Picky).

Exp. MSE error(mm.) Rot-error (rad.) Transl-error (mm.) # Divergences Time (sec.)
Besl Foot 15 4.681 0.026 0.922 13/30 4.568
Chen Foot 15 3.155 0.007 0.593 15/30 5.173
Picky Foot 15 2.084 0.003 0.195 6/30 0.593
Besl Foot 50 4.672 0.025 0.853 13/30 15.309
Chen Foot 50 2.725 0.004 0.601 5/30 17.680
Picky Foot 50 1.910 0.001 0.104 0/30 5.683
Besl Frog 15 4.905 0.099 2.936 14/30 28.811
Chen Frog 15 2.203 0.026 0.976 10/30 45.917
Picky Frog 15 0.932 0.021 0.411 9/30 25.850
Besl Frog 50 4.906 0.099 2.939 5/30 95.882
Chen Frog 50 3.217 0.092 2.608 9/30 145.028
Picky Frog 50 0.765 0.008 0.069 0/30 50.292

Table 1 Summary of performance evaluation. The mean of the 30 pairwise registrations for each
evaluated measure is shown.
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Foot Frog

Fig. 11 MSE evaluation for Besl (top), Chen (middle), and Picky (bottom). The cases employ-
ing 15 iterations are shown in magenta, while cases employing 30 iterations are shown in cyan.
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Foot 15 Foot 50

Frog 15 Frog 50

Fig. 12 Rotation error. The three methods are shown in red (Besl), blue (Chen), and green
(Picky). Note that peaks correspond to failures of the pairwise registration procedure.

5 Case Study 1: Pairwise Alignment with Outliers Rejection

In this section we describe a simple but effective strategy to make the ICP algorithm
resistant to wrong correspondences. Especially when views are only partially over-
lapped, many points of the data-view do not have a correspondence in the model-
view. We call those points single-points. However, the basic ICP enforces single
points to be associated to closest points in the model-view, therefore generating out-
liers. A robust outlier rejection procedure is introduced based on the so-called X84
rule [16, 37]. The idea is to perform a robust statistical analysis of the residual er-
rors ei after closest point computation. The underlying hypothesis was pointed out
in [96] and consists of considering the residuals of two fully overlapping sets as an
approximation of a Gaussian distribution. Non-overlapping points can be detected
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Foot 15 Foot 50

Frog 15 Frog 50

Fig. 13 Translation error. The three methods are shown in red (Besl), blue (Chen), and green
(Picky). Note that peaks correspond to failures of the pairwise registration procedure.

by estimating a Gaussian distribution from residual errors and by defining a thresh-
old on the tails of the estimated Gaussian.

The X84 rule is a tool to estimate robustly and automatically this threshold. Given
the residual errors e = [e1, . . . ,eNd ], the Median Absolute Deviation (MAD) is de-
fined as:

MAD = med(|ei− location|), (5)

where med is the median operator and location is the median of residual errors (i.e,
med(e)). The X84 rule prescribes to reject values that violate the following relation:

|ei− location|< k ·MAD. (6)

Under the hypothesis of Gaussian distribution, a value of k = 5.2 is adequate in
practice, as the resulting threshold contains more than 99.9% of the distribution.
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Now we are ready to define the new procedure for robust outlier rejection:

1. For all data-point di ∈ D, compute the error ei according to equation 4 (i.e., by
estimating the closest point and by generating the pair of corresponding points
ci = (di,m j)).

2. Estimate location by computing the median of residuals med(e).
3. Compute MAD according to equation 5.
4. For each residual error ei (i = 1, . . . ,Nd):

a. If ei satisfies equation 6 then keep ci in the list of correspondences,
b. If not, reject the correspondence.

5. A new list of corresponding points ĉi is obtained from which outliers have been
filtered out.

In practice this procedure replaces step 1 in the ICP algorithm described in sec-
tion 2.2. The X84 rejection rule has a breakdown point of 50%: any majority of
the data can overrule any minority. The computational cost of X84 is dominated
by the cost of the median, which is O(n), where n is the size of the data point set.
The most costly procedure inside ICP is the establishment of point correspondences,
which costs O(n logn). Therefore X84 does not increase the asymptotic complexity
of ICP.

Fig. 14 Registration with robust outliers rejection. Two views at starting pose (left) and after reg-
istration (right). Note that the overlap area is quite restricted.

In figure 14 an example of registration between two views with a strong oc-
cluded part is shown. The non-overlapping area is wide: the ears and the whole
face of Bunny are only visible in the data-view while the bottom part of the body
is observed in the model-view only. The number of data-point is Nd = 10000, the
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number of model point Nm = 29150, and the number of points of the overlap is
#(D∩M) = 4000. In this experiment the two views are synthetically sampled from
the whole 3D model. A view mask of 600× 500 points is used in order to obtain
highly dense views. Moreover, in this fashion we know the ground truth transfor-
mation, and no noise affects the views. Figure 15 shows the distribution of residual
errors after X84-ICP registration. Note that most of the residuals are concentrated
around zero. It is confirmed that the behavior of the early part of the distribution is
similar to a Gaussian [96]. The X84 rule is employed and the threshold is automati-
cally estimated on the tail of the Gaussian. The second peak of the distribution cor-
responds to residuals generated by the non-overlapping points4. In figure 15 (right)
points of the data-view are colored differently between inliers and outliers. Note that
non-overlapping parts are correctly registered.

Fig. 15 Automatic residuals thresholding. From the distribution of residuals the threshold is es-
timated according to the X84 rule. Points under the threshold are inliers (red), while outliers are
over the threshold (blue). Outliers are points in non-overlapping areas.

Method Rot-error (rad.) Transl-error (mm.) # Overlap. points # Iterations Time (sec.)
Besl 0.22345 1.2636 10000 20 370
Picky 0.10918 0.9985 9534 28 76

X84-ICP 0.06351 0.4177 4582 21 383
Ground Truth - - 4000 - -

Table 2 X-84 performance evaluations. Rotation and translation errors are reported.

4 In order to visualize the peak the second part of the histogram has been quantized with wider
intervals.
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Table 2 summarizes the performance of X84-ICP in comparison with Besl and
Picky. The ground truth transformation is shown as well. Note that the basic ICP
is strongly affected by outliers and is not able to correctly align the two views. The
Picky ICP improves the accuracy but it is not able to correctly estimate the over-
lapping parts and it does not reach convergence. Conversely, by employing the X84
rule wrong correspondences are well detected and a correct registration is obtained.
We highlight that although X84-ICP performs well in this experiment, in more gen-
eral cases if the number of outliers is greater than 50% of the residual distribution
the X84 rule is likely to fail.

6 Case Study 2: ICP with Levenberg-Marquardt

In this section we describe a registration method called Levenberg-Marquardt ICP
(LM-ICP) which addresses several of the issues of ICP by modeling the registration
as a general optimization problem. LM-ICP [30] was proposed in order to minimize
the alignment error by employing a nonlinear optimization procedure. The advan-
tage of the LM-ICP is the versatility in the definition of the optimization function in
order to take into account of several aspects of the registration such as, the outlier
rejection and the speed.

6.1 The LM-ICP Method

The general problem formulation is defined as for the ICP algorithm. The error
function E(a) = EICP(a,D,M) is Nonlinear Least Squares and can thus be written
as the sum of Nd squared residual vectors:

E(a) =
Nd

∑
i=1

(ei(a))2, ei(a) = ‖Rdi + t−m j‖. (7)

Defining the residual vector as:

e(a) = {ei(a)}Nd
i=1, (8)

we rewrite the error function as E(a) = ‖e(a)‖2.
The Levenberg-Marquardt algorithm combines gradient-descent and Gauss-Newton.

The goal of each iteration is to choose an update to the current estimate ak, say x, so
that setting ak+1 = ak +x reduces the registration error.

We first derive the Gauss-Newton update. Expanding E(a+ x) to second order
yields:

E(a+x) = E(a)+(∇E(a) ·x)+ 1
2!
((∇2E(a) ·x) ·x)+h.o.t. (9)
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This is rewritten in terms of e as:

E(a) = eTe
∇E(a) = 2(∇e)Te

∇
2E(a) = 2(∇2e)e+2(∇e)T∇e.

We now define the Nd× p Jacobian matrix J= ∇e, with block (i, j) as Ji, j =
∂Ei
∂a j

(p
is the number of elements in a). Introducing the Gauss-Newton approximation (i.e.,
neglecting (∇2e)e) we get:

E(a+x)≈ eTe+xTJTe+xTJTJx. (10)

Differentiating with respect to x and nullifying yields:

∇xE(a+x) = JTe+JTJx = 0, (11)

and gives the Gauss-Newton update:

xGN =−(JTJ)−1JTe. (12)

Gauss-Newton is usually fast for mildly nonlinear problems (it has superlinear con-
vergence speed), but there is no guarantee of convergence in the general case (an
update may increase the error).

We now derive the gradient descent update. Since we deal with a Least Squares
problem, the gradient descent update is simply given by:

xGD =−λ
−1JTe, (13)

where λ is the inverse step length. Gradient descent has the nice property that, unless
a local minimum has been reached, one can always decrease the error by making the
step length small enough. On the other hand, gradient descent is known to be slow
and rather inefficient.

The Levenberg-Marquardt algorithm combines both Gauss-Newton and gradient
descent updates in a relatively simple way:

xLM =−(JTJ+λ I)−1JTe. (14)

A large value of λ yields a small, safe, gradient-descent step while a small value of
λ favor large and more accurate steps of Gauss-Newton that make convergence to a
local minimum faster. The art of a Levenberg-Marquardt algorithm implementation
is in tuning λ after each iteration to ensure rapid progress even where Gauss-Newton
fails. The now standard implementation is to multiply λ by 10 if the error increases
and to divide it by 10 if the error decreases (with an upper bound at 108 and a lower
bound at 10−4 for instance). In order to make the method robust to outliers one may
attenuate the influence of points with a large error by replacing the square error
function by an M-estimator ε and an Iterative Reweighted Least Squared (IRLS)-
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like reweighting procedure. For instance, the following robust functions can be used:

Lorenzian: ε(r) = log
(

1+
r2

σ

)
or Huber: ε(r) =

{
r2 r < σ

2σ |r|−σ2 otherwise.

6.2 Computing the Derivatives

An important issue in how Levenberg-Marquardt is applied to ICP is the one of
computing the derivatives of the error function. The simplest approach is based on
using finite differencing, assuming that the error function is smooth. However, this
leads to a cost of p extra function evaluations per inner loop. In [30] a more effec-
tive solution was proposed based on the distance transform which also drastically
improves the computational efficiency. The distance transform is defined as:

Dε(x) = min
j

ε
2(‖m j−x‖), (15)

where x ∈ X and X is a discrete grid representing the volume which encloses the
model-view M. Indeed, each data-point di can be easily associated to grid-points by
obtaining the residual error ei = X(di) in one shot5. In other words, LM-ICP merges
the two main steps of ICP, namely closest point computation and transformation
estimation, in a single step. Note further that when the mapping ‖x‖ → ε2(‖x‖) is
monotonic, we obtain that Dε(x) = ε2(‖D(x)‖), so existing algorithms to compute
D may be used to compute Dε , without requiring knowledge of the form of ε .

By combining equation (7) with equation (15) the new formulation of the regis-
tration problem becomes:

E(a) =
Nd

∑
i=1

Dε(T (a,di)). (16)

This formulation makes it much easier to compute the derivatives of E. In fact, since
the distance transform is computed in a discrete form, it is possible to compute fi-
nite differences derivatives. More specifically, ∇xDε = [ ∂Dε

∂x
, ∂Dε

∂y
, ∂Dε

∂z
] is computed

by defining ∂Dε (x,y,z)
∂x

= Dε (x+1,y,z)−Dε (x−1,y,z)
2 , ∂Dε (x,y,z)

∂y
= Dε (x,y+1,z)−Dε (x,y−1,z)

2 , and
∂Dε (x,y,z)

∂z
= Dε (x,y,z+1)−Dε (x,y,z−1)

2 . In practice, ∇xDε remains constant through the
minimization, and we get:

∇aE(a) =
Nd

∑
i=1

∇xDε(T (a,di))∇
>
a T (a,di). (17)

5 Note that the volume is discretized into integer values, therefore the data-point di should be
rounded to recover X(di).
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Note that the computation of ∇>a T (a,di) depends on the rigid transformation
parametrization being used. In [30] the author proposed to model rotations by
unitary quaternions for which the derivatives can be easily computed analytically.
Finally, in order to compute the derivatives using matrix operators the Jacobian
matrix is defined as Ji, j = (∇xDε(T (a,di)) · ∇>a j

T (a,di)), where ∇a j T (a,di) =

[ ∂Tx(a,di)
∂a j

,
∂Ty(a,di)

∂a j
, ∂Tz(a,di)

∂a j
].

6.3 The case of quaternions

Let the quaternion be defined by q = [s,v] where s and v are the scalar and vectorial
components respectively [93]. Let d be the point on which the rotation must be
applied. To this aim such point must be represented onto the quaternion space by
leading to r = [0,d]. Therefore the rotated point is obtained by:

r′ = qrq−1

By solving the moltiplication onto the quaternion space6 we obtain:

r′ = [0,s2d+(d ·v) ·v+2s(v×d)+v× (v×d)].

We represent this rotated point as:

r′ = [0,Tx,Ty,Tz],

where:

Tx = s2dx +(dxvx +dyvy +dzvz)vx +2s(vydz− vzdy)+ vy(vxdy− vydx)− vz(vzdx− vxdz) =

= s2dx + v2
xdx + vxvydy + vxvzdz +2svydz−2svzdy + vxvydy− v2

ydx− v2
z dx + vxvzdz =

= (s2 + v2
x− v2

y− v2
z )dx +2(vxvy− svz)dy +2(vxvz + svy)dz

Ty = s2dy +(dxvx +dyvy +dzvz)vy +2s(vzdx− vxdz)+ vz(vydz− vzdy)− vx(vxdy− vydx) =

= s2dy + vxvydx + v2
ydy + vyvzdz +2svzdx−2svxdz + vyvzdz− v2

z dy− v2
xdy + vxvydx =

= 2(vxvy + svz)dx +(s2− v2
x + v2

y− v2
z )dy +2(vyvz− svx)dz

Tz = s2dz +(dxvx +dyvy +dzvz)vz +2s(vxdy− vydx)+ vx(vzdx− vxdz)− vy(vydz− vzdy) =

= s2dz + vxvydx + v2
z dz + vyvzdy +2svxdy−2svydx + vxvzdx− v2

xdz− v2
ydz + vyvzdy =

= 2(vxvz + svy)dx +2(vyvz− svx)dy +(s2− v2
x− v2

y + v2
z )dz

6 A multiplication between two quaternions q and q′ is defined as [ss′−v ·v′,v×v′+ sv′+ s′v].
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Now we introduce the translation component [tx, ty, tz] and normalize the quater-
nion by obtaining:

Tx =
(s2 + v2

x− v2
y− v2

z )dx

s2 + v2
x + v2

y + v2
z

+
2(vxvy− svz)dy

s2 + v2
x + v2

y + v2
z
+

2(vxvz− svy)dz

s2 + v2
x + v2

y + v2
z
+ tx

Ty =
2(vxvy + svz)dx

s2 + v2
x + v2

y + v2
z
+

(s2− v2
x + v2

y− v2
z )dy

s2 + v2
x + v2

y + v2
z

+
2(vyvz− svx)dz

s2 + v2
x + v2

y + v2
z
+ ty

Tz =
2(vxvz + svy)dx

s2 + v2
x + v2

y + v2
z
+

2(vyvz + svx)dy

s2 + v2
x + v2

y + v2
z
+

(s2− v2
x− v2

y + v2
z )dz

s2 + v2
x + v2

y + v2
z

+ tz

According to this model for rotation and translation the vector of unknown is
a = [s,vx,vy,vz, tx, ty, tz] (i.e, a ∈ R7). Therefore, the Jacobian part ∇>a T (a,d) is a
3×7 matrix:

∇
>
a T (a,d) =


∂Tx
∂ s

∂Tx
∂vx

∂Tx
∂vy

∂Tx
∂vz

∂Tx
∂ tx

∂Tx
∂ ty

∂Tx
∂ tz

∂Ty
∂ s

∂Ty
∂vx

∂Ty
∂vy

∂Ty
∂vz

∂Ty
∂ tx

∂Ty
∂ ty

∂Ty
∂ tz

∂Tz
∂ s

∂Tz
∂vx

∂Tz
∂vy

∂Tz
∂vz

∂Tz
∂ tx

∂Tz
∂ ty

∂Tz
∂ tz

 (18)

where Tx,Ty, and Tz have been defined above. For instance we can compute the
derivative component ∂Tx

∂vx
as:

∂Tx

∂vx
=

2vxdx

s2 + v2
x + v2

y + v2
z
−

2vx(s2 + v2
x− v2

y− v2
z )dx

(s2 + v2
x + v2

y + v2
z )

2 +

+
2vxdy

s2 + v2
x + v2

y + v2
z
−

4vx(vxvy− svz)dy

(s2 + v2
x + v2

y + v2
z )

2+

+
2vzdz

s2 + v2
x + v2

y + v2
z
− 4vx(vxvz− svz)dz

(s2 + v2
x + v2

y + v2
z )

2 .

Similarly, all the other components of the Jacobian can be easily computed.

6.4 Summary of the LM-ICP algorithm

The algorithm for LM-ICP can be summarized as:

1. Set λ ← λ0 = 10,
2. compute distance transform Dε(x),
3. set ak← a0,
4. compute ek = e(ak),
5. compute J,
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6. repeat

a. compute update ak+1 = ak− (JT J+λ I)−1JT )ek
b. compute ∆E = E(ak+1)−E(ak)
c. If ∆E > 0 then λ = 10λ , goto a. else λ = 1

10 λ , goto 4.

7. If ‖ek‖> ν goto 3. else terminate

Note that ν is a constant which defines the convergence of the algorithm. As already
highlighted, the algorithm above is the standard LM algorithm. The crucial compo-
nents are (i) the choice of unknowns a, (ii) the computation of error vector e and
(iii) the computation of the Jacobian matrix J. In particular, the distance transform
Dε(x), enables an improvement of the computational efficiency of the error compu-
tation and makes the computation of Jacobian feasible. The starting value a0 can be
estimated by employing some of the techniques described in section 2.3.1.

6.5 Results and discussion

Figure 16 shows an example of LM-ICP alignment between two views. In this ex-
periment the emphasis is on the speed of the algorithm since the accuracy is guar-
anteed by the fact that the two views are well overlapped. The LM-ICP takes less
than 1s for an LM iteration. A total of 20 iterations has been run to reach converge.
Both the data-view and the model-view have about 40,000 points. Using the basic
ICP algorithm the same number of iterations are required but each iteration takes
more than 30s. This confirms that a drastic improvement of the speed is observed
with LM-ICP in comparison with basic ICP. Note that a crucial parameter is the grid
size. It trades off between computational efficiency and memory space. Moreover
it requires that data scan is always inside the volume by requiring large memory
space for storage when only a small overlap is observed between the views. Further
experiments can be found in [30]. In practice LM-ICP also enlarges the basin of
convergence and estimates a more accurate solution (the minimum is reached with
50% fewer iterations on average, see [30] for more details).

Finally, it is worth noting that LM-ICP can be easily extended to apply many
other variants of the ICP. Multi-view registration could also be solved in the LM-
ICP framework.

7 Case Study 3: Deformable ICP with Levenberg-Marquardt

In this section we describe an advanced registration technique: Deformable-Levenberg
Marquardt Iterative Closest Point (DLM-ICP) [18]. DLM-ICP extends the LM-ICP
introduced in section 6 to deformable objects. We focus on continuous smooth sur-
faces such as the page of a book being turned in front of a range sensor. To this aim



32 Umberto Castellani and Adrien Bartoli

Fig. 16 LM-ICP. The starting pose (left) and merged views after registration (right).

a template model is warped toward the input scans in order to capture surface defor-
mations. In this case several instances of almost the entire time-varying object are
observed rather than different points of view of an object, and the aim of registration
is to align the views over time using a registration-by-fitting approach.

The template model introduces a prior on the acquired shape by providing a joint
registration and reconstruction of the object with hole-filling and noise removal.
The proposed method exploits only geometric information without the extraction of
feature points. According to [30] described in section 6, registration is modeled as
an optimization problem defined by an error function whose global minimum is the
sought after solution, estimated by the Levenberg-Marquardt algorithm. The error
function introduces the constraint that data points must be close to model points (i.e.,
the template). As for [30], it explicitly embeds a min operator, thus avoiding the tra-
ditional two steps in ICP-like algorithms through distance transform. Furthermore,
thanks to the flexibility of LM, many other terms are introduced to model different
expected behaviors of the deformation, namely surface, and temporal smoothness
as well as inextensibility of the surface. Finally, a boundary constraint is introduced
to prevent the computed surface to slide arbitrarily.

We highlight that with this method the unknowns are the template model repre-
sented by a planar-mesh that is deformed to fit each point cloud. More specifically,
we directly estimate the position of the model-points without imposing any prior
about the kind of transformation function that has been applied. In particular, each
unknown (i.e., each vertex of the template) influences a very small portion of the
error function. Indeed, another interesting property of DLM-ICP is that the Jaco-
bian matrix involved in the normal equations to be solved at each iteration is highly
sparse, for all the terms. This makes tractable and fast the estimation of dense de-
formation fields.
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7.1 Surface Representation

The sequence of 3D point clouds Di with Nd = li points each is represented by:

Di =

dx
i,1 dy

i,1 dz
i,1

...
...

...
dx

i,li
dy

i,li
dz

i,li

 .

The unknown model a = M has a grid structure and is thus represented by three
R×C matrices, giving the grid’s deformation. Each matrix is reshaped in a single
vector of size Nm = RC, giving Mi as:

Mi =

 mx
i,1 my

i,1 mz
i,1

...
...

...
mx

i,Nm
my

i,Nm
mz

i,Nm

 .

In practice, the number of data points is much larger than the number of model
points, i.e. li � Nm. Upon convergence, the algorithm determines for each model
point if there is a corresponding point in the current point cloud. Points may be
missing because of occlusions or corrupted sensor output. This approach has the
advantage that it naturally gives the reconstructed surface by interpolating the mesh
points. Point cloud registration is obtained by composing the deformation fields.
Note that, differently than section 6, the registration is from model-points to data-
points.

7.2 Cost Function

The cost function combines two data and three penalty terms:

E(M) = Eg(M)+λbEb(M)+λsEs(M)+λtEt(M)+λxEx(M), (19)

where λb, λs λx and λt are weights. Note that we drop the frame index i for clarity
purposes, and denote Mi as M and Mi−1 as M̃.

The data terms are used to attract the estimated surface to the actual point cloud.
The first term Eg is for global attraction, while the second one Eb deals with the
boundary. In particular, the boundary term aims at preserving the method against
possible sliding of the model along the observed surface. Moreover, these terms
must account for possible erroneous points by using robust statistics. The penalty
terms are Es, Et and Ex. The first two ones respectively account for spatial smooth-
ness and temporal smoothness Es. The third one penalizes the surface stress and is
related to the non-extensibility of the surface, and therefore to material properties of
the surface.
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This cost function is minimized in an ICP-like manner, as described in the previ-
ous section. All the five terms are explained below in details.

Data term: global surface attraction

This term globally attracts the model to the data points in a closest point manner
[75]. Denoting BM and BD the sets of boundary points in the model and in the data,
we get the following data term, integrating the model to data points matching step:

∑
m∈M\BM

min
d∈D\BD

‖ d−m ‖2, (20)

where d and m are 3−vectors respectively representing a data and a model point. As
we mentioned before, the unknowns are not the rigid transformation parameters (i.e.,
the classical rotation-translation) but correspond to the whole deformable motion
field in M.

An outliers rejection strategy is introduced by defining a robust function ε . Here,
the X84 rule is employed [16]. Therefore, (20) is modified so as to get the following
robustified data term:

Eg(M) = ∑
m∈M\EM

ε

(
min

d∈D\BD
‖ d−m ‖2

)
. (21)

Data term: boundary attraction

This term attracts boundary model points to boundary data points. It is defined in
a similar manner to the global attraction term (21) except that the sum and min
operators are over the boundary points:

Eb(M) = ∑
m∈BM

ε

(
min
d∈BD

‖ d−m ‖2
)
. (22)

Note that the boundaries can be computed by combining edge detection techniques
with morphological operators7. More precisely, from the range image we detect the
portion of the image which is covered by the object we want to track (i.e., a piece
of paper), and we impose that boundaries of the model and the observed surface
coincide.

7 The object boundaries can be estimated according to the kind of sensor being used. For instance
boundaries on range scans can be estimated on the range image. On stereo sensors they can be
estimated on one of the two optical views.
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Penalty term: spatial smoothness

This term discourages surface discontinuities by penalizing its second derivatives,
as an approximation to its curvature. According to the definition of the geometry
image [36], the model M is a displacement field parameterized8 by (u,v) with u =
[1 . . .R] and v = [1 . . .C], i.e., M(u,v) = [Mx(u,v),My(u,v),Mz(u,v)]. The spatial
smoothness term can thus be taken as the surface bending energy:

Es(M) =
∫ ∫ ∥∥∥∥∂M2

∂ 2u

∥∥∥∥2

+2
∥∥∥∥ ∂M2

∂u∂v

∥∥∥∥2

+

∥∥∥∥∂M2

∂ 2v

∥∥∥∥2

du dv.

Using a finite difference approximation for the first and second derivatives [67], the
bending energy can be expressed in the discrete form as a quadratic function of M.
More specifically, the derivatives ∂Mx

∂u at a point (u,v) is discretely approximated

as ∂Mx(u,v)
∂u = Mx(u+ 1,v)−Mx(u− 1,v). This can be conveniently represented by

a constant Nm×Nm matrix Cu such that ∇uMx = Cu · vect(Mx), where vect(Mx) is
the vectorization operator which rearranges matrix Mx to a vector. A similar matrix
Cv can be computed with respect to v. Indeed, the second derivatives are computed
using Hessian operator matrices, namely Cuu, Cuv, Cvv. The surface bending energy
can be expressed in discrete form by defining:

Ex
s = vect(Mx)>(C>uuCuu +2C>uvCuv +C>vvCvv)vect(Mx),

and by computing:

Es(M) = Ex
s (M

x)+Ey
s (M

y)+Ez
s (M

z),

which can be further expressed in matrix form as follows:

Es(M) = vect(M)>K vect(M), (23)

where K is a 3Nm×3Nm, highly sparse matrix.

Penalty term: temporal smoothness

This term defines a dependency between the current and the previous point clouds,
M and M̃:

Et(M) =‖M− M̃ ‖2 . (24)

This makes the surface deformation smooth over time and can be used within a
sequential processing approach. It is obviously not used on the first frame of the
sequence.

8 Recall that the model points lie on a grid.
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Penalty term: non-extensibility

This term discourages surface stretching. It favors the mesh vertices to preserve their
distance with their local neighborhood [77]:

EX (M) = ∑
m∈M

∑
k∈N (m)

(
‖m−k ‖2 −L2

m,k
)2
, (25)

where Lm,k are constants which are computed at the first frame after robust initial-
ization and N (m) is the 8-neighborhood of the mesh vertex m.

7.3 Minimization Procedure

The DLM-ICP cost function (19) is a sum of squared residuals nonlinearly depend-
ing on the unknowns in M. Therefore, as in section 6 the Levenberg-Marquardt al-
gorithm can be used. In order to provide partial derivatives of the residuals through
a Jacobian matrix, all five terms in the cost function are separately differentiated and
stacked as:

J> =
(

J>d J>b J>s J>t J>x
)
. (26)

where JNm×3Nm
d , JNB×3Nm

b , J3Nm×3Nm
s , JNm×3Nm

t , Jξ×3Nm
x , are related to the global at-

traction, boundary attraction, spatial smoothness, temporal smoothness and non-
extensibility terms respectively, and ξ = size(N (M)). In particular, the Jacobians
of global and boundary attraction terms are estimated by finite differences through
distance transform as described in section 6.

Note that in this case, since the Hessian matrix9 H = J>J +λ I must be inverted
at each LM iteration, the problem is not tractable if the number of model points
is too high (if the deformation field is too dense). One advantage of the proposed
approach is that the Jacobian matrix J is very sparse. Thus, it uses the sparsity to
speed up each iteration using the technique in [65]. In particular, a sparse Cholesky
factorization package can be used as in the Matlab ‘mldivide’ function.

7.4 Summary of the algorithm

The DLM-ICP algorithm can be summarized as follows:

1. Choose the model-size R×C (for instance, 10×10)
2. Initialize the template-model M0
3. For each data-frame Di

a. Extract data boundary BD

9 We use ‘Hessian matrix’ for the damped Gauss-Newton approximation to the true Hessian matrix.
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b. Set Mi = Mi−1 to initialize the LM algorithm
c. Apply LM-ICP to estimate Mi by minimizing the error function
d. Goto 3.

Step 3.c is described in section 6.4. Here, the unknown is a = Mi, the error function
E(Mi) is defined by equation (19), and the Jacobian J is defined by equation (26).

7.5 Experiments

In the following experiment the sensor is a real-time passive-stereo system10. The
sensor acquires the images at 25 FPS (frames-per-second), and provides both in-
tensity (i.e., 2D) and 3D information. The deformation of a portion of a blanket is
modeled. Figure 17 shows a picture of the blanket. Intensity information is used to
segment the boundary, more precisely, only the portion delimited by the dark square
is considered. Figure 17 also shows the image-boundary extracted by combining bi-
nary image segmentation method with 2D morphological operators and depicts the
3D data (i.e., the selected point cloud and 3D boundary).

Fig. 17 Data acquisition: intensity image of the blanket (left), image-boundary (center), and the
3D point cloud (right).

The sequence is made of 100 point clouds. A model of size R = 15 and C = 20 is
used. Model initialization M0 is carried out by lying the model-grid on a plane which
is fit on the extracted point cloud. Model initialization is employed in the first frame
only. Then, each iteration uses the output of the previous one as an initial condition.
Note that a higher value of λb is necessary (i.e., λb = 1.5) for a correct convergence
of the algorithm to the optimal solution. The other terms are set almost equally to
1. The distance transform parameters are important: the size of the voxels trades off
speed and result accuracy. In this experiment the volume is divided into 36×36×18
voxels. Figure 18 shows a selection of the output sequence. For each frame, we visu-
alize: (i) the intensity image, with the extracted 2D boundary and the 2D projection

10 Data courtesy of eVS (http://www.evsys.net).
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of the estimated model, and (ii) the point cloud - after the region of interest selec-
tion, evidencing both the 3D boundary and the grid. The blanket is handled from the

Fig. 18 Blanket sequence: 4 selected frames. For each frame the 2D intensity and the 3D data is
visualized. The grid models are shown in the 3D space as well as their projection in the 2D image.

bottom-left and upper-right corners, respectively. On the early frames, the blanket
is gradually bent toward the square center, then it is strongly stretched, moving the
corners far from each other. Finally, in the late frames, random deformations are
generated especially around the corners. Results are satisfying since the fitting is
correct for the whole sequence, in spite of the presence of strong occlusions and
deformations. The mesh grids are well superimposed on data points maintaining a
smooth shape. Nevertheless, the projection of the grids to the 2D images confirm the
accuracy of the registration. More details on performance evaluation are available
in [18].

8 Challenges and Future Directions

In general, the new challenges of registration methods arise from the advances of
new acquisition procedures. Structure and motion reconstruction techniques are now
available to provide accurate sparse or dense reconstructed scenes from 2D images.
Large-scale scanners are also able to acquire wide scenes. The registration of data
coming from these procedures are challenging due to strong clutter and occlusions.
Moreover, as observed before, the object to be registered may be very small with
respect to the whole scene. An important issue is the local scale estimation of scene
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sub-parts. On the other hand texture or color information can be also acquired by the
sensor. Therefore, registration can be improved by integrating effectively these ad-
ditional cues. Another promising direction is the use of machine learning techniques
as those described before. In particular, new techniques can be exploited, inspired
from similar issues already addressed for the 2D domain like face, car or pedestrian
detection techniques. Improvements can be achieved by integrating 3D scans and
2D images.

Other problems need to be addressed when real-time scanners are used. In this
scenario, objects can move (change their pose) or deform. Therefore, deformable
registration techniques should be employed. In particular, all the advances on
isometry-invariant point correspondence computation can improve the deformable
registration. Other issues are coming from the explosion of data collection. For in-
stance, from real-time scanners a large amount of data can be acquired. In order to
avoid exhaustive search some more effective matching strategies can be exploited.
Feature based techniques are useful to this aim. In particular, feature point detec-
tion and description can reduce drastically the number of analyzed points. Also
hierarchical techniques are needed to reduce the search space. Finally, to design a
proper surface deformation transform, deformable registration methods can be in-
spired from 3D animation techniques.

9 Conclusion

Registration of 3D data is a well studied problem but still new issues need to be
solved. The ICP algorithm is the current standard method since it works well in
general and it is easy to implement. Although the basic version is quite limited sev-
eral extensions and strong variants have been introduced that allow it to cope with
many scenarios. For instance the techniques described in section 2.3 are sufficient to
obtain a full model reconstruction of a single object observed from a few dozen of
viewpoints. However, in more challenging situations like in the presence of cluttered
or deformable objects the problem becomes more difficult. The point matching strat-
egy needs to be improved as well as the transformation function needs to be properly
designed. Therefore, more advanced techniques need to be employed like those de-
scribed in section 3. In order to give some examples of registration algorithms three
case studied were reported. Case study 1 shows in practice how a robust outliers
rejection strategy can improve the accuracy of registration and estimate the over-
lapping area. Case study 2 exploits general Levenberg-Marquardt optimization to
improve the basic ICP algorithm. In particular the advantage of using the distance
transform is clearly demonstrated. Finally, case study 3 addresses a more challeng-
ing problem, namely deformable registration from real-time acquisition. Also in this
case the Levenberg-Marquardt approach enables the modeling of the expected be-
havior of surface deformations. In particular, effective data- and penalty-terms can
be encoded easily in the general error function.
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New challenging scenarios can be addressed as described in section 8 by exploit-
ing recent machine learning and computer vision techniques already successfully
employed for the 2D domain as well as new advances inspired from recent com-
puter animation techniques.

10 Further Reading

In order to get a more comprehensive overview of 3D registration methods the
reader can refer to recent surveys [75, 54, 45, 76]. In [75], Ruzinkiewicz et al. have
analyzed some variants of ICP techniques, focusing on methods and suggestions to
improve the computation speed. An extensive review of registration methods based
on the definition of surface shape descriptors can be found in [54]. In [76] Salvi et
al. proposed an extensive experimental comparison amongst different 3D pairwise
registration methods. They evaluated the accuracy of the results for both coarse and
fine registration. More recently, Kaick et al. [45] proposed a survey on shape corre-
spondence estimation by extensively reporting and discussing interesting methods
for deforming scenarios.

The reader interested in getting in-depth details on the theoretical evaluation of
registration convergence should refer to Pottmann et al.’s work [32, 66]. Conver-
gence is discussed also by Ezra et al. [29] who provided lower and upper bounds
on the number of ICP iterations. One of these methods [83] defines a new regis-
tration metric called the ‘surface interpenetration measure’. This is in contrast to
the mean square error (MSE) employed by classical ICP and the authors claim that
this is more effective when attempting to achieve precise alignments. Finally, we
claimed already that most of the registration techniques are based on ICP algo-
rithm. Alternative methods can be considered such as those based on Genetic Algo-
rithms [83, 50, 49].

11 Questions

Q.1 Give four examples of problem where 3D shape registration is an essential com-
ponent. In each case explain why registration is required for their automated
solution.

Q.2 Briefly outline the steps of the classical iterative closest points (ICP) algorithm.
Q.3 What is usually the most computationally intensive step in a typical ICP appli-

cation and what steps can be taken to reduce this?
Q.4 What is the common failure mode of ICP and what steps can be taken to attempt

to avoid this?
Q.5 What steps can be taken to improve the final accuracy of an ICP-based registra-

tion?
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Q.6 Explain why registration in clutter is challenging and describe one solution that
has been proposed.

Q.7 Explain why registration of deformable objects is challenging and describe one
solution that has been proposed.

Q.8 What advantages does LM-ICP have over classical ICP?

12 Exercises

1. Given two partial views very close to each other and an implementation of
ICP11 try to register the views by gradually moving away the data-view from
the model-view until ICP diverges. Apply the perturbation to both the transla-
tional and rotational components. Repeat the exercise, decreasing the overlap
area by removing points in the model-view.

2. Implement a pairwise pre-alignment technique based on PCA. Try to check the
effectiveness of the pre-alignment by varying the shape of the two views.

3. Implement an outlier rejection technique to robustify ICP registration. Compare
the robustness among (i) fixed threshold, (ii) threshold estimated as 2.5σ of the
residuals’ distribution from their mean and (iii) threshold estimated with the
X84 technique.

4. Compute the Jacobian matrix of LM-ICP by encoding rotation with quater-
nions.12

5. Modify LM-ICP in order to work with multiple views, given a sequence of
10 views which surround an object such that N10 is highly overlapping N1. The
global reference system is fixed on the first view. Estimate the global registration
by including pairwise registration between subsequent views and by view N10 to
view N1. Suggestion: the number of unknowns is 9p, where p is the dimension
of the transformation vector (i.e., p= 7 for quaternions). The number of rows of
the Jacobian matrix is given by all residual vectors of each pairwise registration.
Here, the key aspect is that view N10 should be simultaneously aligned pairwise
with both view N9 and view N1.
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