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Abstract. In this paper we present the first solution to 3D reconstruc-
tion in monocular laparoscopy using methods based on Photometric
Stereo (PS). Our main contributions are to provide the new theory and
practical solutions to successfully apply PS in close-range imaging condi-
tions. We are specifically motivated by a solution with minimal hardware
modification to existing laparoscopes. In fact the only physical modifica-
tion we make is to adjust the colour of the laparoscope’s illumination via
three filters placed at its tip. Once calibrated, our approach can compute
3D from a single image, does not require correspondence estimation, and
computes absolute depth densely. We demonstrate the potential of our
approach with ground truth ex-vivo and in-vivo experimentation.

1 Introduction

An important computer vision task in Minimally Invasive Surgery (MIS) is to
recover the 3D structure of organs and tissues viewed in endoscopic images and
videos. A general solution to this has many important applications, including en-
hanced intra-operative surgical guidance, depth perception, 3D motion estima-
tion and compensation, novel-view synthesis and improving pre-operative/intra-
operative data registration. In the literature, the main practical monocular re-
construction approaches so far are based on Structure-from-Motion (SfM). How-
ever, since this is correspondence based, it is error prone and at textureless
regions 3D cannot be recovered. SfM also requires very strong assumptions on
surface motion (e.g. rigid or periodic motion), and requires sufficient motion
baseline. By contrast, PS offers a very different approach for 3D which is based
on photometric constraints using three or more light sources [2, 15, 8]. PS is at-
tractive since it provides dense 3D estimates, does not require correspondence
estimation, and can compute 3D from just a single colour image. However, to
date PS has not been applied to 3D reconstruction in MIS. Our main contri-
butions are to provide the theory and practical solutions to successfully apply
PS to the very close-range imaging conditions of MIS. In this paper we focus
on laparoscopy. On the hardware side, our solution takes a standard monocular
laparoscope, modified only with three colour filters (red, green and blue) placed
at its tip. This corresponds to a practical and very inexpensive modification.
The physical dimensions remain unchanged and it does not require any strobing
or synchronised triggering between the camera and light source.
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Fig. 1: Modification made to a standard laparoscope (a,b) to facilitate practical
in-vivo photometric stereo by fitting three colour filters at its tip (c). Photograph
of in-vivo tests (d).

3D Reconstruction in MIS. Several different research directions for 3D recon-
struction in MIS have emerged over the recent years. These differ in the sensing
hardware required to compute 3D. At one end of the spectrum are dedicated
3D sensing devices. These have included Structured Light (SL) setups [1] and
Time-of-Flight (ToF) cameras [11]. SL requires additional instruments, which
may clutter the scene and to date, neither SL nor ToF sensors have proved
sufficiently reliable in practice. Stereo endoscopes have also been tried for 3D
reconstruction [13, 4, 7]. While promising, these are limited by fixed camera con-
vergence angles and stereo baseline, and perform poorly at textureless regions.
At the other end of the spectrum are passive monocular methods. These require
no additional instruments and compute 3D using the raw video feed. This how-
ever is an extremely challenging computer vision problem. Some progress has
been made using SfM and Simultaneous Localisation And Mapping (SLAM) [3,
5, 10]. These have been tried in several domains including reconstructing the
abdominal cavity [?] and heart [6]. However standard SfM and SLAM assume
the 3D scene is rigid, which is unrealistic during intervention. Nonrigid-SLAM
extensions have been proposed, yet these require strong motion models, such as
cyclic deformation [10], learned low-rank shape bases [6] or conformal surface
extension [9]. Shape-from-Shading (SfS) is another passive method tried [12, 16]
that exploits the relationship between geometry, pixel intensity and scene illu-
mination. In contrast to SfM it can return dense 3D, but it currently has major
limitations. These include the inability to handle surface discontinuities, and
inherent unreliability due to SfS being a very weakly constrained problem.

3D Reconstruction with Distant Light Photometric Stereo. PS can be considered
the generalisation of SfS to multiple light sources. In prior work, the distant
light source model is nearly always used [2, 15, 8]. This serves as a basis for
us, but is unsuitable at close-range where illumination attenuation is signifi-
cant. A given point q = (u, v) in an image projects out into 3D according to
an (unknown) depth function z (u, v) : R2 → R+. Its 3D position is given by

p = K−1 (u, v, 1)
>
z (u, v), where K denotes the camera’s perspective intrinsics

(which implies image distortion effects have been undone.) It is assumed that p
is lit by K ≥ 3 lights whose directions are given by the vectors lk. For an RGB
camera, we have effectively three light sensors, with each channel sensitive to
different parts of the light spectrum. Denote ci (u, v) to be the radiometrically
corrected image intensity of the pixel for the ith colour channel. In standard



distant-light PS, 3D shape at p is constrained by lambertian reflectance accord-
ing to: ci (u, v) =

∑
k lk · n (u, v) Aik. Here, n (u, v) denotes the surface normal.

A is a 3 × k matrix where Aik ≥ 0 holds the illumination response of the ith

channel as a function of surface albedo and the kth light’s power spectrum [2].
Distant Light PS involves using these constraints to solve for n (u, v). This is
a small, quadratically-constrained Linear Least Squares (LLS) problem. Once
estimated, dense 3D shape is recovered by integrating n (u, v) in a second opti-
misation phase. Note however that absolute depth is not recoverable, and shape
is given up to an unknown scale factor.

2 Close-Range Photometric Stereo

In this section we generalise the PS problem to handle close range light condi-
tions. We present a new low-parameter illumination model which models very
well a laparoscope’s light source and give a method for quick and practical light
calibration. We retain the lambertian model in this work, and handle specular-
ities via saturation detection. This simplified model allows for tractable dense
3D reconstruction. We further advocate lambertian constraints in another im-
portant respect. By placing polarizing filters over the light and camera, specular
reflection can be hugely reduced, leaving mostly only the lambertian term. Thus,
with filters, the lambertian model is arguably a good one to use (for reconstruc-
tion purposes) even if the viewed surface comprises specular reflections. We start
by extending the PS constraints to the following general form:

ci(u, v) = lk(p (u, v)) · n (u, v)wk(p (u, v))Aik, p (u, v) = K−1 (u, v, 1)> z (u, v) (1)

Here lk(·) : R3 → R3 is now not a constant, but a spatially varying light vector
function. wk(·) ∈ [0 : 1] is also a spatially varying function that gives the amount
of light attenuation from the kth light source to a point in 3D space. We say
that the light model is calibrated if lk(·) and wk(·) are known. Close-range PS
then involves solving the following variational least squares system:

arg min
z(u,v)

´
(u,v)∈Ω

∑K
k=1

∑3
i=1 (lk(p(u, v)) · n(u, v)wk(p(u, v))Aik − ci(u, v))2 +

λ
´
(u,v)∈Ω ∇z(u, v)2dudv

(2)

Here the domainΩ denotes an image region bounded by the surface. The first line
enforces the PS constraints, and the second enforces surface smoothness weighted
by λ. Let us now step back and compare close-range PS to the distant-light case.
Firstly (2) cannot be broken down into two convex problems (normal estimation,
followed by depth estimation). This is because the PS constraints depend on both
depths and normals. As such, it is a harder optimisation problem. However, it is
the fact that (2) depends on depths that allows us to recover absolute distances
to the camera (in mm), unlike distant-light PS.

2.1 Illumination Modelling

We now turn to modelling and calibrating the light source functions lk(·) and
wk(·). Our goal is to have accurate models, yet which can be calibrated easily and



optimally. We propose using an attenuating point light source, with a bivariate
polynomial which can model light fall-off caused by both distance and angular
attenuation. This is a flexible model and a generalisation of the inverse-squared
fall-off model [16], which we have found to be rather poor. The model’s param-
eters comprise firstly a light source centre: uk ∈ R3. The illumination vector at
any 3D point p is given by the unit direction lk(p) = (p − uk)/||p − uk||2.
The attenuation function is a joint function of the distance from p to uk:
d (p,uk) = ‖p− uk‖2, and the angular attenuation w.r.t. the light’s princi-
pal direction vk: ψ(p) = ∠(lk(p),vk). This angular attenuation is important to
model the spotlight characteristics of the light source. Here ∠ (·.·) denotes taking
the angle between two vectors. The attenuation function then writes as:

w
−1
k (p) =

∑S

s=1

∑T

t=1
W

k
std(p,uk)

s
ψ(p,vk)

t
(3)

Here Wk holds the kth light’s polynomial coefficients up to order (S, T ).

2.2 Light Calibration

Light calibration involves finding, for each coloured light source, the values
{uk,vk,Wk}. Typically for endoscopes the light sources remain rigidly fixed
in the camera’s coordinate frame, which means that calibration can be done in a
one-time offline process. We divide the calibration problem into first determining
the light centres {uk}, and then using these to determine the attenuation terms
{vk,Wk}. This 2-stage approach gives a convex solution to light calibration, and
so global optimality is guaranteed. The light centres uk can be found easily by
detecting and triangulating their positions on a reflective calibration target [14]
(Fig. 2(a)). To calibrate {vk,Wk} we use Eq. (1) to optimise these terms using
ground-truth training samples. The data is acquired using images of a diffuse
planar calibration target with a checker pattern printed on one side (Fig. 2(b)).
The pattern gives us the plane’s pose in each image. For each colour filter, we
gather a large set of training samples {(cr, cg, cb,n,p)}. Now, for a given value
of vk, Wk can be optimised via LLS. We thus calibrate by densely sampling vk
over the unit sphere, solving for Wk, and retaining the solution with minimal
least-squares error w.r.t. Eq. (1). We can select the best (S, T ) by minimising
the fitting error on a separate validation set. In practice it is usually unnecessary
to go beyond 4th order.

2.3 Reflectance Model Learning

For any tissue we wish to recover we also need an estimate of A. For K = 3 lights
this is only a small 3×3 matrix and can be determined with training data. There
are two main approaches one could take for this. The first is to learn A prior to
intervention for a range of tissue classes. The second is to assume the training
data can be acquired during intervention by some other means. Currently we
adopt this second approach, and place a small marker on the tissue (e.g. Fig. 4
(a-e)). By computing the marker’s pose, and sampling tissue intenities close to
the marker, we have the necessary data to compute A from Eq. (1).
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Fig. 2: Calibration of light source centres using specular reflection (a) and light
source attenuation using views of a lambertian planar target (b). For the pixel
marked at the cross, there may exist multiple depths which locally satisfy the
close-range PS constraints.

3 3D Reconstruction

The 3D reconstruction problem involves solving (2) which is a challenging non-
convex problem. Here we present an effective 2-stage approach to find a good
minimum. In stage 1 we first solve for depth at each pixel locally using only
that pixel’s colour information. When computed in isolation from other pixels
these solutions are however usually non-unique. In stage 2 these local solutions
are then resolved by solving depth globally across the image. At any pixel (u, v),
the intensities cr (u, v) , cg (u, v) , cb(u, v) provide us with 3 constraints on shape
according to Eq. (1). Locally, we have three unknowns, one for z (u, v) and two
for n (u, v). This is a polynomial optimisation problem whose number of solutions
depends foremost on the order of wk(·). We propose a fast method to find these
solutions as follows. We regularly sample depth in the range z̃ (u, v) ∈ [0 : zmax],
where zmax denotes the maximum working distance of the laparoscope (typically
150mm). Using Eq. (1), each sample is used to solve for a putative surface normal
ñ (u, v), which is a small convex sub-problem. We can then evaluate the solution
pair (ñ (u, v) , z̃ (u, v)) against the measured intensities predicted by Eq. (1), and
retain the solutions which are optimal. We illustrate this approach in Fig. 2(b-c).
In Fig. 2(b) a planar surface is 34.5mm from the camera’s optical centre. For
the pixel marked at the cross, we show in 2(c) on the x-axis the depth along the
pixel’s viewing ray. In green we show the angular error of the surface normal
estimated at that depth using Eq. (1). In blue we plot the prediction error of the
pixel’s intensity. Clearly, there is a 4-fold solution ambiguity, marked by red dots
with zero prediction error. The rightmost solution is closest to the true depth,
marked by a black line.

The sets of solutions computed at each pixel can be resolved in a second
process by enforcing surface continuity between pixels. This can be achieved
by constructing a Markov Random Field (MRF), whose nodes correspond to
pixels and edges connect neighbouring pixels. These edges enforce consistency
between pixels’ normal and depth estimates, and form a graph with sub-modular
pairwise interaction terms. We have found the MRF’s energy can be minimised
well with belief propagation and the solution gives us a reasonable initial solution
to the depth map. This is then refined by optimising the original problem (2). In
practice we discretised Ω using the pixel grid and iteratively refine z (u, v) with
nonlinear Gauss-Newton iterations.



4 Experimental Results

Ex-Vivo Experimentation. We have tested our approach ex-vivo using two or-
gans; a section of pig liver and a pig kidney. We have performed ground truth
evaluation by first scanning these surfaces with a Structured Light Scanner
(SLS). In Fig. 3(a,g) we show the kidney and liver ground truth surfaces. To
learn the organs’ reflectance models, we attached a small planar checker marker
to the organ to give us depth and normal information (Fig. 3(b,h)), and used
the non-specular tissue colour around the marker as the intensity training data.
We handled external laparoscope tracking using a mounted calibration target,
giving us the coordinate transform from the laparoscope’s view to the 3D SLS
surface. We then imaged the organs with the laparoscope at varying positions
(Fig. 3(c,d,i,j)). For each image, we manually segmented the organ from the
background to obtain Ω. In these experiments we did not use polarizing fil-
ters and specularities were handled with simple methods by detection based on
colour saturation. For any specular region, its pixel data does not contribute to
the first term in Eq. (2). 3D reconstruction was then performed. With our cur-
rent Matlab implementation this takes approximately 30s to process an image.
However, much can be parallelised so a GPU implementation would be signif-
icantly faster. We used the same value of λ for all images (which was set by
hand) and measured the absolute error in depth against ground truth. We show
the results for the four images below in Fig. 3(e,f,k,l). In general the surfaces
are reconstructed quite faithfully. Greater errors occur towards some boundaries
of the surface, which is due to surface inter-reflection from the background and
slight mis-alignments of the ground truth scan. Note in Fig. 3(l) the larger error
occurs at a region where the red channel becomes saturated, which corresponds
to losing a PS constraint.

In-Vivo Experimentation. We have also obtained some preliminary in-vivo ex-
perimental results by testing reconstruction on the liver of a live pig under
anesthetic. To acquire ground truth data our surgeon placed 5 4.5mm wide
checker-markers on the liver using surgical graspers1. This gives a sparse set of
ground truth depths and surface normals. Fig. 4(a-e) show a selection of im-
ages of the markers taken by the laparoscope. We used one of these markers to
learn in-vivo the liver’s surface reflectance model by sampling pixel intensities at
tissue locally surrounding the marker. To perform reconstruction, we took the
image domains Ω to be the entire image, but excluding the marker locations.
The 3D reconstructions are shown in Fig. 4(f-j), each corresponding to the input
image shown above it. We also render the laparoscope’s tip, indicating its abso-
lute distance to the surface. In green we mark the predicted surface normal at
each marker, computed from the gradient of the reconstructed surface. In total,
we have performed reconstruction for 30 images. Quantitative performance has
been studied by measuring the error in the predicted depths and normals of the
markers. In Fig. 4(k-l) we show the error distribution in both depth (in mm)
and surface orientation (in degrees).

1 We thank Dr. Revaz Botchorishvili for his kind help in acquiring the in-vivo data.



Fig. 3: Ex-vivo experimental validation of close-range PS

5 Conclusion and Future Work

In this paper we have aimed to answer an important open question: can PS be
used to successfully reconstruct surfaces in the close-range conditions of MIS?
Our preliminary results suggest yes. Focusing on laparoscopy we have extended
distant light PS to handle short-range lights, developed methods for calibration,
and an optimisation framework to achieve good solutions to depth. In contrast
to other active methods tried in MIS, our approach can be used with an existing
laparoscope with only minor modification. Unlike SfM, the approach handles tex-
tureless surfaces and does not require motion constraints. Unlike SfS, the method
is stable and we can compute absolute depth. There is still further research to
be done before it can handle unconstrained clinical conditions. Open challenges
include handling spatially varying reflectance, handling time-varying illumina-
tion caused by changes in brightness or exposure, to learn different reflectance
classes a priori, to handle tool occlusions, and to handle depth discontinuities
with robust smoothing priors. We will also investigate how the recovered 3D can
help solve the challenging problem of pre-operative/intra-operative registration.
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