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2 LASMEA, Université Blaise Pascal, France

3 CECS, The Australian National University, Australia

Abstract. We present a system for marking, tracking and visually aug-
menting a deformable surgical site by the robust automatic detection of
natural landmarks (image features) in laparoscopic surgery. In our sys-
tem, the surgeon first selects a frame containing an organ of interest,
and this is used by our system both to detect every instance of the organ
in a laparoscopic video feed, and to recover the nonrigid deformations.
The system then augments the video with customizable visual informa-
tion such as the location of hidden or weakly visible structures (cysts,
vessels, etc), or planned incision points, acquired from pre-operative or
intra-operative data. Frame-rate organ detection is performed via a novel
procedure that matches the current frame to the reference frame. Because
laparoscopic images are known to be extremely difficult to match, we
propose to use Shape-from-Shading and conformal flattening to cancel
out much of the variation in appearance due to perspective foreshorten-
ing, and we then apply robust matching to the flattened surfaces. Ex-
periments show robust tracking and detection results on a laparoscopic
procedure with the uterus as target organ. As our system detects the
organ in every frame, it is not impaired by target loss, contrary to most
previous methods.

Keywords: tracking, detection, laparoscopy, conformal mapping, de-
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1 Introduction

In laparoscopic surgery, one of the difficulties for surgeons is to correctly identify
the surgical site, such as the location of hidden structures and planned incision
points, in the camera’s image. This is especially significant in tumor resection,
when the tumor is occluded behind tissue. To resolve this, surgeons and radi-
ologists currently use pre-operative data such as Magnetic Resonance Imaging
(MRI), Computed Tomography (CT) or Ultrasound (US) images to help locate
the target structure in the image.
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It is estimated that there are 1,300 to 2,700 wrong-site surgeries annually
in the United States [12]. Similar problems may arise in laparoscopy because it
can be difficult for the surgeons to find the target site correctly, mainly due to
disorientation and the difficulty of mentally matching the laparoscopic view with
the pre-operative images. Solving the medical imaging problem of automatically
overlaying laparoscopic images with surgical target locations is an open, yet
highly important research goal. Not only would the solution benefit surgeons,
but also patients in reducing the likelihood of surgical errors and complications.

We present a new system to mark and track the surgical site in laparoscopic
images. The surgical site is first marked by the surgeon in the 2D input images
and in the reconstructed 3D surface video at an early stage of the laparoscopy.
Then, our system automatically detects the location of the surgical site during
surgery, and overlays the laparoscopic frames and reconstructed 3D surface video
with visual information. Detecting the location of the surgical site requires robust
feature matching and registration methods on nonrigid deformable surfaces. For
this feature matching and tracking, a new approach using Shape-from-Shading
(SfS) and conformal mapping is proposed and two robust methods are intro-
duced for mapping a polygon boundary of the uterus in the reference image into
the other frames by estimating a similarity transformation. Also, augmentation
of the laparoscopic video using affine Moving Least Squares (affine-MLS) is pro-
posed. We carried out experiments on in-vivo laparoscopic images captured by
a Karl Storz laparoscopy system. Our method shows robust feature matching,
tracking and augmentation results in laparoscopy.

Steps of Our Proposed System. Our proposed system takes steps such as
marking and tracking surgical sites, then augmenting the surgical target. First,
surgeons and radiologists examine pre-operative data such as MRI, CT and US
images and determine the surgical site. However, the surgical site is only known
in this pre-operative data in this stage. When a laparoscope is placed into a
patient’s body, surgeons and radiologists can see the surgical target and identify
the exact location of the surgical site by referring to the pre-operative data.
This identified location needs to be maintained during the surgery and it is
our primary outcome to detect it at runtime. To locate and track the identified
location of the target surgical site, a surgeon pauses a streaming video from
the laparoscopy system, and draws a polygon around the surgical target, for
instance, an ellipse surrounding a uterus. The 3D surface of the surgical target
reconstructed by our system is then viewed by the surgeon in order to locate
the surgical site in 3D. Next, the surgeon marks the surgical site on the 3D
surface, for instance, a 3D arrow, which is stored in our system for tracking
in the following frames. At this stage, anatomical landmarks can be used to
register the pre-operative data to the reference laparoscopic image. This process
of pausing and editing for augmentation in a laparoscopic image can be repeated
by the surgeon as many times as needed during the surgical procedure. From
this minor interaction by surgeons in the first image, our system computes the
positions of the surgical target in the rest of the images and displays the surgical
sites along with visual information such as boundaries of organs and 3D arrows in
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the 2D image or 3D view. As the system remembers the location of the surgical
sites and allows surgeons to find them quickly, surgeons are now free to view
monitor and check a patient’s database then easily continue the surgery without
referring to, or re-examining the pre-operative data to repeatedly identify the
surgical site.

Surgical Site Tracking in Laparoscopic Images. Feature matching is a
necessary first step, however, it is not straightforward as the target organ is
often deformable and many state-of-the-art feature-matching algorithms [8] in
computer vision are designed only for rigid objects. Our motivation comes from
the assumption that it is possible to map a reconstructed 3D shape into another
representation in a space which can be easier for feature matching. For map-
ping to another space, a conformal mapping is applied to the known 3D shape.
Conformal mapping is a popular method in computer graphics [6] as it can be
used to assign a texture onto a surface. This conformal mapping flattens out the
3D shape onto a plane while preserving angles locally. This is a nice property,
as given two conformally mapped flattened surfaces they should be related by
a local similarity transformation. In other words, two neighbouring points on
a flattened mesh can be transformed to two corresponding points on another
flattened mesh by a scale, rotation and translation. (Note that the similarity
transformation is valid only locally but not globally.) Therefore, feature match-
ing is done on the flattened images instead of the original input images, and we
used Pizarro and Bartoli’s feature matching algorithm [10] to incorporate the
local similarity, which is based on the SIFT [7] descriptor.

Once a set of matching points and the initial position of the organ are given,
tracking becomes a problem of finding the approximation by a global similarity
transformation. We assume that a set of local similarity transformations can be
approximated by a global similarity transformation, which means the deforma-
tion on the surface changes only a small part of the shape of the surface. Also,
the positions of the surgical targets tracked and overlaid on the original image
are obtained by using affine Moving Least Squares [11].

2 Related work

Mountney et al. [8] evaluated various feature descriptors on Minimally Invasive
Surgery (MIS) images and showed many feature descriptors do not work well.
Although they provide an approach to selecting the best method among their
evaluated algorithms and a Bayesian fusion method to increase accuracy and per-
formance, it is preferable to have a single algorithm to find matches instead of
running various feature descriptors since computing various feature descriptors
for Bayesian fusion consumes most of the computation time for a practical MIS
application. Su et al. [14] used augmented reality for stereo-laparoscopic images,
however, this is limited to a rigid surface and stereo camera based laparoscopy is
required to recover the 3D structure of the surface. Schaefer et al. [11] introduced
affine-MLS for image deformation. They showed that a proper deformation can
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be estimated from given key points on the surface mesh by a similarity transfor-
mation. Augmented Reality (AR) has been used in neurosurgery, otolaryngology
and maxillofacial surgery [13]. Nicolau et al. claim that AR systems applied to
MIS can increase the surgeon’s intra-operative vision by providing virtual trans-
parency of the patient, but they also emphasized that AR systems are not robust
enough since deformation of organs and human movement make registration dif-
ficult [9].

3 Proposed Method
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Fig. 1. System Overview. Three columns showing (a) Pre-operative Data, (b) The
Reference Frame and (c) The Current Frame. In a manual-preprocessing phase, regis-
tration is achieved interactively between (a) and (b). Then any surgical target planned
from (a), for instance regions of interest or planned incision paths to be visualised in
the laparoscopic images, can be transformed onto (b) via the interactive registration.
The second phase involves tracking the surgical target, transferring the target location
and augmenting visual information in subsequent laparoscopic images. The correspon-
dence between (b) and (c) is achieved automatically using our robust matching method.
This results in a set of robust feature matches. Determining the positions of the targets
in (c) can then be achieved by mapping their locations in (b) to (c) via feature-based
warping. Points p0 and p1 in two laparoscopic images I0 and I1 are back-projected by
Φ to the surfaces S0 and S1 as 3D points q0 and q1, respectively. These 3D points are
mapped to points r0 and r1 on planar surfaces F0 and F1 by a conformal mapping Ω.
Blue dotted lines indicate the boundary of the uterus, which is determined by surgeons
and radiologists from pre-operative data such as MRI, CT or US in the reference image
I0. The boundary and marked point in the reference frame I0 are tracked to the next
frame I1 automatically. Our goal for augmentation is thus to determine and visualise
the bounding region in I1, by performing image matching between F0 and F1.
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The general framework of our system is shown in Fig 1. Given a laparoscopic
image I0 as a reference frame, an image point p0 is a projection of a 3D point
q0 on the surface S0. This projection can be represented by Φ−1. Therefore, the
3D point q0 is q0 = Φ0(p0). It can be mapped to a point r0 on a flat surface
F0 by a conformal mapping Ω0. As a result, r0 = Ω0(q0) = Ω0(Φ0(p0)). Given
another frame image I1 and a point p1, in a similar way we may obtain the point
r1 on a planar surface F1 as r1 = Ω1(q1) = Ω1(Φ1(p1)). Assuming that image
pixel points p0 and p1 are a corresponding match, then the points r0 and r1 on
the flat surfaces should be a pair of matching points in local isotropy. In other
words, r0 and r1 are related by a similarity transformation locally. This is a key
motivation that constructs our system for tracking by detection in laparoscopic
images. Surgeons and radiologists use pre-operative data such as MRI, CT or
US to locate the uterus and surgical site. Then the position of the surgical site
is marked on the reference image I0 and 3D mesh surface S0. Afterwards our
system will detect and track the marked position of the uterus and surgical site
in every laparoscopic image frame.

Shape Reconstruction and Conformal Mapping. Given an image, the 3D
shape of the surface can be obtained from a monocular camera by the Shape-
from-Shading (SfS) technique as summarized in [15]. In this paper, we use a
real-time perspective SfS algorithm with a known light source calibration, de-
scribed in [1]. In the computer graphics community, there have been many studies
on surface manipulation and parametrization based on conformal mapping for
texture mapping [6,4]. It is also used for 3D surface classification in computer
vision [3]. With the assumption that SfS gives a correct shape reconstruction
for the surface, a conformal mapping of the 3D reconstructed surface preserves
angles on the flattened surface. Therefore, given two laparoscopic images and an
surface shape estimated by SfS, two flattened surfaces are obtained by conformal
mapping. They are related by local similarity transformations.

Feature Matching and Outlier Removal. For every incoming video frame,
we estimate the 3D surface S1 using the same SfS method as for S0, and flatten
it to give us image F1. We then detect features in F1 using SIFT, to give a
query feature set G1. We then perform robust, nonrigid matching between G0
and G1 using Pizarro and Bartoli’s feature matching algorithm [10]. It works by
matching features using descriptor similarity, and determines a high-probability
inlier set based on spatial agreement with respect to local warp models. However,
it is not completely outlier-free. We suppose that the boundary warp of the organ
between F0 and F1 can be coarsely approximated by a similarity transform. This
contrasts with the transformation of the boundary from image I0 and I1, which,
since these images comprise viewpoint changes, are likely to be more complex
than a similarity transform. We have tested two robust similarity transformation
estimation methods based on Horn’s absolute orientation [5]. The first is to
use matched features with RANSAC (Random Sample Consensus) [2] and the
second is to optimise a robust pseudo-huber norm cost function. Both methods
allow us to detect outliers (based on their matches conflicting with the similarity
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transform) which are then removed (we use a prediction error threshold). Once
the boundary of the organ is estimated in F1 its shape in I1 is estimated as
follows: first the vertices of the boundary in F1 are mapped into 3D space on S1
by barycentric interpolation. Then, they are projected onto I1 using the camera’s
projection function Φ to give the boundary of the organ in I1.

Surgical Target Mapping. Finally, we determine the positions of the surgical
targets in I1 as follows. First, we transform the inlier matches from F1 to I1. We
then use affine-MLS [11] to smoothly warp the target positions located on I0 to
I1, driven by the feature correspondences. This involves a single free parameter,
the affine-MLS bandwidth, which we have set to σ = 150 pixels in all of our tests.
Once in position, the locations of the surgical targets are marked and presented
to the surgeon, overlaid on top of the original input frame.

4 Experiments

We have carried out experiments on an image sequence in which a uterus is
to be cut by a surgeon in order to remove a myoma (uterine fibroid) inside
the uterus. As the myoma is not visible, surgeons and radiologists examine pre-
operative data such as MRI and CT to determine the location of the surgical
site, which will be the point of first-cut. An image sequence is captured by a
Karl Storz laparoscopy system and the size of image is 1048 × 576 pixels at 25
FPS. The number of captured frames is 2661 (1 min and 46 seconds). Samples
of the image sequence are shown in Fig 2-(Top Row). From the input images,
our SfS algorithm estimates the shape of the uterus as shown in Fig 2-(Middle
Row). Then, conformal mapping is applied to the shape to obtain a flattened
image at each frame as shown in Fig 2-(Bottom Row). These flattened images
are used for finding feature matches. These matches are used to estimate a global
similarity transformation for mapping the polygon boundary of the uterus at the
reference frame to the following image frames as shown in Fig 3. Assuming that
the surgeon selects frame 489 as a reference image, a polygon is drawn by the
surgeon around the boundary of the uterus. The polygon is then transfered to
other images when the video is resumed by the surgeon. Several frames of this
result are shown in Fig 4 and Fig 5.

In Fig 6, the incision path and surgical site are shown as 3D arrows and a
green curve, which are aligned on the surface of the uterus and augmented over
all frames. The 3D arrows are orthogonal to the surface of the uterus recovered
from SfS. Therefore, they provide useful information for surgeons to decide the
orientation of the blade to enter the uterus. In this experiment, we used an open
arc in Fig 6-(Bottom-right) as our planned incision path This was manually
marked by burning on the surface of the uterus, then overlaid in each subsequent
view in the sequence by mapping using the correspondence via affine-MLS [11].
A selection of augmented frames from the sequence is shown in Fig 6. A video
result is available at http://youtu.be/LiZKmcV_fRg. With our system, this
redundant burn mark is no longer necessary.

http://youtu.be/LiZKmcV_fRg
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Fig. 2. Samples of input images, 3D surface reconstruction and conformal
mapping. (Top Row) Frames number 489, 630, 733 and 790 (Left to Right). At frame
489, the uterus (an ellipsoid-like shape) is completely visible and it is a best candidate
as a reference frame. At frame 630, the uterus is occluded by a surgical tool and it is
deformed when pressed. At frame 733, only a half of the uterus is visible. At frame
790, the image is blurred by fast motion of the camera. (Middle Row) 3D surface shape
from SfS at frame 480, 630, 730 and 790. (Bottom Row) Flattened image by conformal
mapping of the 3D shape at frame 480, 630, 730 and 790.

5 Conclusion

In this paper, we presented a new method for tracking and augmenting surgical
targets in laparoscopic images. The system allows surgeons to mark the surgi-
cal site using pre-operative data in laparoscopic images. Our method utilizes
Shape-from-Shading to recover the 3D shape of the surface, and the 3D shape is
flattened by a conformal mapping which preserves angles on the surface. Feature
matching is carried out on the flattened images and a global similarity trans-
formation is applied to obtain a mapped boundary of the surgical target and
outliers are removed. The surgical target registration by an affine Moving Least
Squares warp made the surgical target can be localized in a laparoscopic image.
Real experiments conducted on a uterus in laparoscopic images show robust
tracking of the uterus and consistent surgical target augmentation. The method
obviates the necessity to mark the surgical site physically on the organ surface
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Fig. 3. Feature matching and tracking between flattened images. (Top-left) In
frames 489 and 490, a total of 179 matches are found and the cyan polygon in reference
frame 489 is mapped to a yellow polygon in the next frame 490. (Top-right) Matches
and tracking between frame 489 and 630. In total 22 matches are found. (Bottom-left)
11 matches are found between frame 489 and 733. (Bottom-right) Tracking failed as no
matches are found between frame 489 and 790.

Fig. 4. Frames with uterus tracking. (Top-Left) Reference frame 489 with a green
polygon drawn on the boundary of the uterus. (Top-Right) At frame 630, tracking of
the uterus is shown as a green polygon. (Bottom-Left) At frame 730, tracking is still
successful for the half visible uterus. (Bottom-Right) At frame 799, tracking fails because
of blurring in the image.
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Fig. 5. Tracking the uterus. Results of tracking a uterus from laparoscopic images
are shown. The boundary of the tracked uterus is indicated as a green polygon and a
message (target lost) is given when the system is searching for the uterus at the current
frame. Note that our system fails to track the uterus at frame 740, however tracking
resumes and finds the uterus successfully at frames 890 and 1,040.

Fig. 6. 3D augmentation in laparoscopy. (Top row and bottom first two columns)
These are sample images of 3D augmentation in laparoscopic images. A red (left) 3D ar-
row indicates the incision point, A yellow (right) 3D arrow shows the ending point, and
a green curve shows the surgical site for the surgeon’s first-cut. Our system augments
this 3D visual information by tracking the uterus over all frames. (Bottom-right) At
frame 2173, a surgeon made a burn mark on the surface of the uterus. This is not neces-
sary in our system. The video is available at the link: http://youtu.be/hvzE9VIAjPI.

http://youtu.be/hvzE9VIAjPI
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