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Abstract This paper presents a method for detecting a tex-

tured deformed surface in an image. It uses (wide-baseline)

point matches between a template and the input image. The

main contribution of the paper is twofold. First, we propose

a robust method based on local surface smoothness capa-

ble of discarding outliers from the set of point matches.

Our method handles large proportions of outliers (beyond

70% with less than 15% of false positives) even when the

surface self-occludes. Second, we propose a method to es-

timate a self-occlusion resistant warp from point matches.

Our method allows us to realistically retexture the input im-

age. A pixel-based (direct) registration approach is also pro-

posed. Bootstrapped by our robust point-based method, it

finely tunes the warp parameters using the value (intensity or

color) of all the visible surface pixels. The proposed frame-

work was tested with simulated and real data. Convincing

results are shown for the detection and retexturing of de-

formed surfaces in challenging images.

1 Introduction

Detecting a textured deformed surface in a single image is an

important fundamental and applied problem for video aug-

mentation, Non-Rigid Structure-from-Motion, material de-

formation analysis, to name just a few. Detection is here to

be understood as the ability to register an input image of the

deformed surface to a template image. The template image
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Fig. 1 Example of a template (left) and an input image (right) with

deformations and a self-occlusion (from [Bartoli, 2008].) This example

is used to illustrate the different steps and concepts of our methods.

is known and represents the surface of interest in a canonical

shape, usually flat. Figure 1 shows an example of a template

and an input image that we will use throughout the paper to

illustrate various concepts. Compared to the registration and

detection of rigid objects, for which robust, fast and mature

methods such as [Baker and Matthews, 2004] were devel-

oped, the detection of deformable objects still lags behind,

even though it received a growing attention over the past

few years [Bartoli and Zisserman, 2004; Chui and Rangara-

jan, 2003; DeCarlo and Metaxas, 1998; Gay-Bellile et al.,

2010; Hilsmann and Eisert, 2009; Pilet et al., 2008].

There are two kinds of approaches in the literature for

the registration of deformable surfaces: the pixel-based (di-

rect) approach, where the intensity discrepancy between the

images is used as a cue to compute the deformation, and

the feature-based approach, whereby features are detected,

matched, and used to compute the deformation.

The pixel-based approach has lead to many effective

registration methods for different kinds of deformable ob-

jects, such as human faces [DeCarlo and Metaxas, 1998]

or deformable surfaces [Bartoli and Zisserman, 2004; Gay-

Bellile et al., 2010; Hilsmann and Eisert, 2009; Pilet et al.,

2008]. In [Gay-Bellile et al., 2010] a robust and self-

occlusion resistant registration method was presented for
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surfaces, while in [Pizarro et al., 2008] a light-invariant color

discrepancy measure was used to attenuate the effect of illu-

mination change. However, pixel-based methods have limi-

tations: being iterative and ‘local’ they generally heavily rely

on the initialization. They thus are mostly used in off-line

video processing since they cannot self-recover after failure.

On the other hand, they can be bootstrapped, typically by a

feature-based method.

In the feature-based approach, the registration is com-

puted by minimizing the distance between matched features

in the template and the input image. These methods do not

generally need an initialization. However, their use has two

main challenges. The first one is to detect erroneous matches

(that any automatic feature matching method may make.)

The second challenge is to handle surface self-occlusions

since very few features are usually detected near the self-

occlusion boundary. The first challenge has received atten-

tion in the literature. An iterative robust real-time feature-

based surface detection method based on an M-estimator

was proposed in [Pilet et al., 2008]. This method shows ex-

cellent capabilities for removing outliers from wide-baseline

matches but, as it uses the global smoothness of the motion

field, it is defeated by surface self-occlusions which are nat-

urally ‘unsmooth’ along one direction. Some other methods

such as [Chui and Rangarajan, 2003] were specifically de-

signed to match points across soft deformations. They are

generally slow and do not cope with self-occlusions either.

The state of the art is missing a deformed surface de-

tection method that like [Pilet et al., 2008] would be able to

both handle wide-baseline and like [Gay-Bellile et al., 2010]

would be able to cope with self-occlusions. The keypoint-

based method we propose in this paper satisfies these re-

quirements. Our key idea to cope with self-occlusions is to

model the motion field as being piecewise smooth instead of

globally smooth as in previous work. We use local smooth-

ness to filter out erroneous matches. A novel self-occlusion

resistant warp estimator is then proposed, that estimates a

piecewise smooth warp, as required. In more details, our

contributions are:

– A method that detects and discard outliers (erroneous

point matches) based on smoothness on the local scale

only. Our method copes with large amounts of outliers,

beyond 80% in our experiments.

– A self-occlusion detection method, that finds which

parts of the template are self-occluded in the input im-

age. Our method forms a partial self-occlusion map,

containing the ‘important’ sub-part of the self-occlusion

for subsequent warp estimation.

– A point-based warp estimation method that prevents the

warp to fold in the presence of self-occlusions. This

method combines a data term, a smoother and uses the

partial self-occlusion map in a single round of convex,

linear least squares optimization. Contrarily to previous

work which discards warp smoothing in the orthogonal

direction of the self-occlusion boundary, we force the

warp to behave in a rigid affine manner over the self-

occluded area. This leads to a simple modification of the

usual bending energy term.

– A pixel-based warp estimation method that, boot-

strapped by the point-based registration result, finely

tunes the warp parameters. Our modified bending energy

term is here employed directly in place of the usual one.

Note that parts of our method were published in a shorter

conference version of this paper [Pizarro and Bartoli, 2010].

This paper is organized as follows. In §2 the problem

statement and background are presented. Our outlier rejec-

tion framework is then given in §3 followed by the self-

occlusion resistant warp estimation in §4. A pixel-based reg-

istration step is proposed in §5 to refine the warp parameters.

In §6, some results of automatic surface detection and retex-

turing are given. Conclusions are drawn in §7.

2 Problem Statement and Background

We first describe the inputs and hypotheses our algorithm

uses, and then a generic image deformation model or warp,

followed by a simple linear least squares point-based esti-

mation method.

2.1 Inputs and Hypotheses

We assume that point matches were established between the

template image T and an input image I (T (p) with p =
(x y)⊤ and I(q) with q = (u v)⊤ are pixel colors.) The

template shows the surface unraveled (flat in most cases.)

The surface deformation and viewpoint change may be large

in the input image. The surface may also undergo external

occlusions and self-occlusions. There exist several keypoint

detectors and descriptors such as SIFT [Lowe, 2004] and

SURF [Bay et al., 2008] for which a matching procedure

will, despite the significant changes in appearance between

the template and the input images, find matches. In [Lep-

etit and Fua, 2006] the authors proposed a wide-baseline

feature matching method based on artificially synthesized

texture exemplars for keypoints (this method was success-

fully used in [Pilet et al., 2008] for deformable surface de-

tection.) These methods usually produce a fair amount of

correct matches or inliers, but the matches almost always

also include erroneous matches or outliers.

The keypoints we use in this paper are detected and

matched with the SURF method as figure 2 illustrates. Note

that our surface detection method is however independent of

the type of keypoint detector being used. This provides two
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Fig. 2 Point matches between the template and the input images and

motion vectors superimposed on the template image. These N = 71

point matches were obtained with the SURF method [Bay et al., 2008].

matched sets of N points each, denoted Cp and Cq, which

may contain outliers:

Cp = {p1, · · · ,pN}, pi =
(

xi yi

)⊤
(1)

Cq = {q1, · · · ,qN}, qi =
(

ui vi

)⊤
. (2)

Point pi in T is matched with point qi in I.

Our aim is to find the inlier subsets Gp ⊂ Cp and Gq ⊂

Cq of unknown size n. In addition, we search for the global

warp function W(p, L) parameterized by the matrix L, that

minimizes a distance criterion between every point in pi ∈

Gp and its match qi ∈ Gq. Our basic assumption is that,

given the correct parameter vector, W maps any point in T

to its match in I, as figure 3 illustrates.

Fig. 3 Warp transfer of a template point p to a point q in the input

image. Both images are overlaid with a warp visualization grid. This

grid is fixed in the template and transformed to the input image to let

one visualize the warp’s behaviour.

2.2 Image Deformation Model

The image deformation model we use is a parametric warp.

There is a large variety of such functions in the literature.

Popular warps are those based on Radial Basis Functions

(e.g. the Thin-Plate Spline (TPS) [Bookstein, 1989]) and

those based on the tensor-product, called Free-Form De-

formations (FFD) (e.g. using the cubic B-spline [Rueckert

et al., 1999].) Our algorithm is not specific to a particular

type of warps, but in practice, the different steps of our algo-

rithm use the two types of warps mentioned directly above.

In order to give a general framework (that includes the

FFD and RBF warps amongst others) we use the generic

model of [Bartoli, 2008]. Let p ∈ R
2 be a point coordinate

vector in the template image. The warp W : R
2 × R

l×2 →

R
2 maps 2D points from the template to the input image and

depends on a set of l 2D control points c1, . . . , cl stacked in

the parameter matrix L ∈ R
l×2. The position of these con-

trol points specifies the behavior of the warp. The general

parametric warp is defined as:

W(p, L) = L⊤ν(p), (3)

with ν : R
2 → R

l some nonlinear lifting function which,

dotted withL, gives the warp’s value. For a detailed explana-

tion of the ν function for the TPS, see [Bartoli, 2008], where

a feature-driven parameterization of the TPS is developed.

In the FFD case we consider a regular grid of l = m × m

control points, covering a specific area of the template im-

age, and a modified grid of control points si,j = ci+m(j−1)

stacked inside L. The warp function is:

WFFD(p, L) =

3
∑

k=0

3
∑

l=0

Bk(v)Bl(w)si+k,j+l, (4)

where Bk, Bl are cubic B-spline interpolation coefficients

evaluated at the normalized coordinates (v w)⊤ of point p

(expressed with respect to the 16 closest control points.) The

lifting function ν(p) is thus composed of the B-Spline coef-

ficients for each point p. The FFD has compact support by

definition as the warped coordinates of every point is always

driven by the position of only 16 control points.

2.3 Linear Least Squares Warp Estimation

The parameter vector L is chosen so as to minimize a cost

function ǫ, composed of a data term ǫd, based on the av-

erage distance between the warped points in Gp and the

matched points in Gq, and a smoothing term ǫs that con-

trols the smoothness of the motion field. The data term is

thus a sum of squared residuals (MSR):

ǫd(L) =
1

n

n
∑

i=1

‖W(pi, L) − qi‖
2. (5)

This can be rewritten in matrix form as:

ǫd(L) =
1

n
‖AL − Φ‖2

F , (6)

where ‖ · ‖F is the matrix Frobenius norm and:

A⊤ =
(

ν(p1) · · · ν(pn)
)

,

and:

Φ⊤ =
(

q1 · · · qn

)

.
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We use the squared integral bending energy (approximated

by the second derivatives of the warp), simply dubbed the

bending energy as smoothing term1 ǫs:

ǫs(L) =

∫

R2

∥

∥

∥

∥

∂2W

∂p2
(p, L)

∥

∥

∥

∥

2

F

dp. (7)

For the TPS the bending energy has a closed-form [Duchon,

1976]. For the other kinds of warps, the integral in (7) can

be approximated by a Riemann sum and finite differences:

ǫs(L) ≈
∑

p

∥

∥

∥

∥

∂2W

∂p2
(p)

∥

∥

∥

∥

2

F

∆x∆y. (8)

In all cases ǫs can be written as a quadratic function of L

using a constant matrix Z:

ǫs(L) = ‖ZL‖2
F . (9)

Assembling the two terms with a smoothing weight µ to

form the cost function gives:

ǫ(L) =
1

n
‖AL − Φ‖2

F + µ2‖ZL‖2
F . (10)

Fixing the smoothing weight µ the optimal warp parameters

L are given in closed-form as:

L =
(

A⊤A + nµ2Z⊤Z
)−1

A⊤Φ = TΦ. (11)

The influence matrix T transforms the input image point co-

ordinates in Φ in the warp parameter matrix L.

3 Outlier Rejection

We first describe our method to use piecewise smoothness

to detect and reject outliers from the point matches. We then

give an analysis of the method’s computational complex-

ity and a set of experiments that allows us to choose the

method’s parameters.

3.1 Proposed Algorithm

We propose to remove outliers from the set of matches

Cp ↔ Cq by assuming that the surface is locally smooth

and that its local topology must thus be preserved.

Based on that assumption, we first form, for the set of

template image points Cp, a Delaunay triangulation T =

D(Cp). For each pi ∈ Cp there is a unique set, namely

QT (pi) =
(

pi1 , · · · ,piN(i)

)

, of N(i) neighboring points

induced by the triangulation T . The basic idea of our algo-

rithm is to exploit that, if the surface is locally smooth, the

set QT contains information about the position of pi in the

1 Each term in the integral is the norm of a valence-3 tensor.

template, given also qi and its neighbors (induced by T in

the input image) denoted QT (qi) =
(

qi1 , · · · ,qiN(i)

)

.

We denote T ′ the triangulation defined in the set Cq us-

ing the edges in T and the matching Cp ↔ Cq to define

the input image vertices.2 It is interesting to note that, even

in the absence of outliers, the triangulations T ′ and D(Cq)

do not necessarily coincide. This is due to surface deforma-

tion and viewpoint change (see figure 4 for an illustration.)

We always take T as the reference triangulation to define the

set of neighbors. For simplicity, we drop the reference to T

from the neighbor sets of pi and qi, simply writing them

Q(pi) and Q(qi).

Fig. 4 The Delaunay triangulation T = D(Cp) in the template is dis-

played as the left mesh in solid red. The induced triangulation T ′ in the

input image is shown in solid red in the right part of the figure. Using

dashed blue lines we show the differences between T ′ and D(Cq).

We propose to build a measure di in the template image

of how near point pi is to an estimate p̂i obtained from the

sets Q(pi) and Q(qi) and point qi:

p̂i = f(qi, Q(pi), Q(qi)). (12)

To formulate this relationship we use a general warp func-

tionW depending on a set of parameters L:

p̂i = W(qi, L), (13)

where L is obtained using the N(i) matches in Q(pi) ↔
Q(qi) and the influence matrix (11).

As will be seen in the experimental results that we re-

port in §3.3 the choice of a deformable model for function

f outperforms other choices such as a rigid projective trans-

formation. We use the euclidean distance di = ‖pi − p̂i‖ as

a decision variable to know how likely the match pi ↔ qi

is to be an inlier. An illustration is given in figure 5.

Our statement is the following: we consider pi ↔ qi

as a probable inlier if di < dTH for some chosen thresh-

old dTH . However it must be noted that the reverse im-

plication does not hold: if there were outliers in the set

2 In other words, T ′ is obtained by replacing every point pi by qi

in T and keeping the edges.
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Fig. 5 Computation of the distance di. A low value for di implies that

pi ↔ qi is an inlier. The opposite is not always true, as we explain in

the main text.

Q(pi) ↔ Q(qi), the distance di would be affected, with-

out giving a cue about the correctness of match pi ↔ qi.

The statement implicitly considers that the probability that

erroneous neighboring matches produce a small di is very

small, given that pi ↔ qi is an outlier, which in practice is

very reasonable.

Choosing the template image coordinates to evaluate the

distance di is reasonable as we usually select the template

to show the surface flat and fronto-parallel to the camera.

In addition, the scale of the surface in the template image

is known, which allows us to learn the threshold dTH from

simulated data (see §3.3.) If the input image were used to

compute di the threshold dTH would have to changed ac-

cordingly to the arbitrary and unknown surface scale and

deformation.

In order to tell apart inliers and outliers using di, we

first compute an initial set of highly confident, strong in-

liers, which have a small di value that will give the subsets

Gp ⊂ Cp and Gq ⊂ Cq. The other matches are grouped in

the complementary setsBp = Cp−Gp andBq = Cq−Gq.

We then use a second triangulation T̃ = D(Gp) using only

the inliers in Gp, which will be used to identify if the com-

plementary sets Bp ↔ Bq contain inliers surrounded by

outliers. The test criterion is based on the distance di com-

puted using the new triangulation. Each newly identified in-

lier pk ↔ qk is then introduced in the sets Gp = {Gp,pk}
and Gq = {Gq,qk}. Once the test has been applied to

the set of candidate inliers, the sets Gp and Gq contain the

matches we eventually label as inliers.

Our algorithm can be summarized with the following

steps:

1. Compute a Delaunay triangulation T = D(Cp).

2. Compute di for all matches i = 1, · · · , N in Cp ↔ Cq.

3. Mark a match pi ↔ qi as an inlier if di < dTH . The set

of strong inliers is denoted Gp ↔ Gq.

4. Compute a new Delaunay triangulation T̃ = D(Gp).

5. For each match pk ↔ qk in Bp and Bq:

(a) Update the triangulation T̃ to T̃ ∗ = D({Gp,pk})
and select the set of neighbors Q(pk) and Q(qk).

(b) Compute dk using the neighbor sets.

(c) If dk < dTH , update the inlier sets Gp = {Gp,pk}
and Gq = {Gq,qk}

6. Loop to step 4 until Gp and Gq stop growing.

3.2 Computational Complexity

The proposed method relies on the computation and re-

finement of Delaunay triangulations. The computational

complexity for obtaining the Delaunay triangulation of

a randomly distributed set of N points is bounded by

O(N log N). However the complexity of updating the tri-

angulation by adding or removing a new point is O(log N)

[Lischinski, 1994]. Let Ni and No be the number of (strong)

inliers and outliers inside the initial set of matches respec-

tively. It can be shown that uniformly distributed sets of

points have on average 6 neighbors in a Delaunay triangu-

lation. We thus suppose that computing the set of distances

di, i = 1, · · · , N can be done in O(N). An efficient way

of computing di for the TPS warp is given in the appendix.

The computational complexity of each step of our algorithm

is given in table 1.

Step Content Complexity

1 Compute T = D(Cp) O(N log N)

2-3 Compute di, Gp, Gq O(N)

4 Compute T̃ = D(Gp) O(Ni log Ni)
5-6 Update Gp and Gq O(No log Ni)

Table 1 Computational complexity of our outlier rejection algorithm.

We assume that steps 4 and 5 involves to check only No

points, as in most cases the majority of inliers is obtained

from the previous steps. The number of times step 5 must

be repeated is at most 3 in our simulations so it is constant

and does not affect the asymptotic complexity. The overall

algorithm complexity is thus O(N log N).

3.3 Learning the Value of the Parameters

The proposed method has several parameters such as the

threshold dTH and the warp function chosen to compute

the distance di. We report experimental results on simulated

data that allow us to learn these parameters. We are inter-

ested in checking the performance of both rigid (projective)

and deformable (i.e. TPS) warp functions as candidates to

be used in function f from equation (12). It is expected that

when the distance between keypoints is small enough, the
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rigid model works fine, as the surface can be locally approx-

imated by a plane.

Our evaluation method is as follows. Given a tem-

plate image showing the surface flat and fronto-parallel, we

choose a set of four input images, showing different surface

deformations. By manually selecting a set of point matches

between the template and each of the test input images, four

different surfaces were generated using an FFD warp with

l = 12 × 12 control points and µ = 0.55 (see figure 6.)

The test surfaces include two self-occlusions and two glob-

ally smooth deformations. By generating points randomly in

the template image and obtaining the warped coordinates on

each deformed surface it is possible to generate an arbitrary

number of point matches for testing the proposed algorithm.

To artificially generate outliers, we corrupt an arbitrary per-

centage of the generated matches with a uniform random

distribution.

Fig. 6 Different shapes used in the evaluation tests.

Figures 7.a, 7.b and 7.c show the ROC (Receiver Oper-

ating Characteristic) curves of the experiments for dTH and

against N = {49, 100, 225} matches. In the three cases the

same experiment is shown for 30% and 50% outliers. By

controlling the number of matches we implicitly change the

distance between points, which affects the expected perfor-

mance in the different possibilities for the warp. On each

ROC curve one may see the performance of the following

versions of the warp function f :

– ‘Projective’: a 2D homography.

– ‘TPS 3 × 3’: a TPS warp with l = 3 × 3 centers.

– ‘TPS 5 × 5’: a TPS warp with l = 5 × 5 centers.

The ROC curves are used in this paper to establish a

fair comparison between the different alternatives proposed.

Each point in a ROC curve is obtained as the average TPR

(True Positive Rate) and FPR (False Positive Rate) com-

puted in the experiments using a particular value of dTH

to detect outliers. Ideally a perfect method should discard

all outliers (TPR=100%) without discarding useful inliers

(FPR=0%.) Therefore, the best dTH that could be chosen in

a single ROC curve can be found for the maximum possi-

ble TPR leaving the FPR below a reasonable value. The best

TPR-FPR ratio can be used to compare different methods.

In the light of the results it is obvious that the larger

the number of matches the better the results. The TPS warp

clearly outperforms the homography in all tests. Surpris-

ingly even with many points, the homography is far in terms

of ROC from the TPS, which means that the deformable

warp better captures the local properties of the motion field.

With respect to the two different versions of the TPS, the

one with 5 × 5 centers performs slightly better than the one

with 3×3 centers. Despite the differences in all experiments

the value of threshold dTH = 15 pixels3 always leads to a

TPR of outlier detection above 90% producing always less

than 15% of FPR.

Figures 8.a and 8.b show the TPR against the percentage

of outliers for dTH = 15 pixels. It can be observed how

the proposed method is able to keep the TPR above 90%

for 90% of outliers. However this high rate is at the cost of

introducing too many false positives (more than 30%) for

more than 70% outliers.

In §6, our outlier rejection method will be tested on real

datasets. In these experiments we will use the TPS warp with

3 × 3 centers and dTH = 15 pixels.

4 A Global Self-Occlusion Resistant Warp Estimator

This section presents the method we propose for handling

warps with self-occlusions. Once the outlier-free set of

matches Gp ↔ Gq has been obtained, we compute the

global warp W(·, L) between the template image T and

the input image I. A warp is usually obtained by minimiz-

ing the average distance criterion between matches and a

smoothness penalty as in §2.3. However, the resulting warp

is constrained to be smooth, which implies that it can fold to

comply with self-occlusions. Folds in regular warps make

them many-to-many and we are interested in many-to-one

warps in order to render convincing visual retexturing. In

other words, the warp must ‘collapse’ the part of the tem-

plate which has been self-occluded in the input image onto

the self-occlusion boundary.

We propose a method with two stages. First, we compute

what we call a partial self-occlusion map, that is, a sub- but

sufficient part of the area in the template image T that suf-

fers from self-occlusion in the input image. It is detected

using an FFD warp computed from the matches Gp ↔ Gq.

Second, a new FFD warp is obtained that does not fold in

self-occluded areas. These two steps are described next. We

3 The average point distance is 43, 35 and 21 pixels for the N = 49,
N = 100 and N = 225 experiments, respectively.
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(a) ROC curves for N = 49 matches
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(b) ROC curves forN = 100matches
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Fig. 7 ROC curves for the threshold dTH against the different parameters of our outlier rejection method.
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Fig. 8 Experiments comparing TPR and FPR versus the probability of outliers for dTH = 15 pixels.

then give a short experimental section showing how to learn

the single method’s parameter.

4.1 Finding the Self-Occlusion Map

The detection of self-occluded parts from a 2D warp

presents several difficulties. Indeed, the warp can be quite

complex, including multiple folds. The main question to an-

swer is if an arbitrary point p in the template, warped to

point q = W(p, L), is in a self-occluded zone or not.

Considering the warp as a 2D orientable manifold, the

presence of a self-occlusion can be detected by looking at

the orientation at each point of the warp. The notion of ori-

entation for the warp coordinates can be obtained by consid-

ering the sign variations of the warp’s Jacobian with respect

to p, denoted by ∂W
∂p

(see figure 9 for an illustration.) The

warp’s Jacobian matrix evaluated at point p represents a lin-

ear approximation of the warp for small variations around p

and its warped coordinates q. Taking the first order approx-

imation of the warp in the vicinity of point p:

W(p + ∆p, L) ≈ W(p, L) +
∂W

∂p
(p, L)∆p, (14)

where∆p is a small increment in the spatial coordinates. By

renaming the termW(p+∆p, L)−W(p, L) = ∆q we get

the following linear relationship:

∆q ≈
∂W

∂p
(p, L)∆p. (15)

Note that for the FFD warp the Jacobian matrix has a closed-

form. According to equation (15), the warp’s Jacobian ma-

trix can be viewed as a general linear transformation be-

tween differential coordinates in the template (∆p) and the

input image (∆q). The Jacobian η(p) =
∣

∣

∣

∂W
∂p

(p, L)
∣

∣

∣
gives

us a clue about the orientation. If its sign is negative, it

means that the warped coordinates q are locally reflected

with respect to those of p. The reflection means that we are

looking at the other side of the orientable surface defined by

the warp at q, and thus that the surface is self-occluded. If

the sign of η(p) is positive, it means that at point p the warp

is not reflecting the coordinates and thus that point q could

be visible. However, as the warp is a many-to-many trans-

formation in case of self-occlusions, we cannot be sure that

point q is visible unless we check for all points in the tem-

plate region of interest R whose warped coordinates match

up with q and η(p) > 0. Figure 9 illustrates these concepts.

To sum up, independently of the nature of the warp con-

figuration and the multiplicity of possible folds, the follow-

ing statements are true for an orientable warp:

– A ‘small’ region around p with η(p) < 0 is always self-

occluded.

– A ‘small’ region around p with η(p) ≥ 0 can be either

visible or self-occluded. If there are no other points p

that have the same warped coordinates q then the point

is not self-occluded. The reverse statement is not true

as we need to establish a visibility order between points
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r ∈ R that have η(r) ≥ 0 and result in the same warped

coordinates q.

We propose to build a partial self-occlusion map by de-

tecting only those areas where η(p) ≤ 0, that we will re-

fer to as self-occlusions, although we may be missing those

points with η(p) > 0 that may also be self-occluded. We

show how to use this map to prevent the warp from fold-

ing without the need for finding all self-occluded pixels.

We obtain the partial self-occlusion map by using a dis-

cretization approach. Given the template image T , where the

surface appears without deformation, we first build a two-

dimensional regular partitionH of the surface with M ×M

cells. Each cell is indexed as

H(p̄) p̄ = (x̄ ȳ)⊤ ∈ {1, · · · ,M} × {1, · · · ,M},

where p̄ are the cell coordinates corresponding to point p in

the template image.4 We define H(p̄) = 1 if point q such

that p ↔ q is self-occluded (i.e. η(p) ≤ 0) in the input

image I and H(p̄) = 0 if q is visible. The partition H is

the sought partial self-occlusion map. It can be viewed as a

binary image where the self-occluded areas appear in black

(see figure 10.)

(a) Binary partial self-

occlusion map H

(b) Partial self-occlusion map

H overlaid on the template T

Fig. 10 An example of partial self-occlusion map.

The partial self-occlusion map H is in practice built by

computing the warp’s Jacobian at every cell of the map and

by defining the following factor in terms of the Jacobian ma-

trix’s eigenvalues λ1, λ2:

c = sign(λ1)sign(λ2)min(|λ1|, |λ2|). (16)

The factor c is a sensible choice as the smallest eigenvalue

gives us, in pixel units, the amount of shrinking in the di-

rection where the warp is collapsing due to self-occlusion, if

any. A point p is marked as self-occluded if c < δH where

δH is a small positive factor, which is chosen empirically

to detect self-occlusions ‘before’ they occur in sequential

processing (we have selected δH = 0.1 pixels for all ex-

periments.) Figures 11.a and 11.b show the mapH obtained

between two images for two different cases.

4 We obtain p by simply scaling p̄ or by using a 2D homography if

the template image needs rectification.

4.2 Self-Occlusion Resistant Warp Estimation

Once the self-occlusion map H has been obtained there are

several ways to prevent the warp W(·, L) between the sets

Gp ↔ Gq from folding.

In [Gay-Bellile et al., 2010] the authors propose to use a

‘shrinker’, an extra term in the cost function which penalizes

changes in the warp’s local folds. Such a term is nonlinear

in the warp parameters and requires an iterative algorithm to

search for the minimum of the resulting cost function.

We propose a simple approach that forces an FFD warp

to be quasi-affine in the regions marked in H. We show

that by over-smoothing the warp in the self-occluded areas,

the warp behaves locally like a rigid transformation, shrink-

ing rather than folding. We thus introduce a new cost func-

tion where the smoothing parameter is considerably larger

in those areas where H = 1 compared to the rest of the

‘smooth’ deformation areas. This approach, although sim-

ple, is very effective to avoid foldings and naturally shrinks

the warp, allowing one to use linear least squares optimiza-

tion. In [Hilsmann and Eisert, 2009] the authors propose

a very similar approach, where the smoothness penalty for

vertices in occluded regions of a triangular mesh is assigned

a higher weight. The authors apply the idea to iteratively ad-

just the surface to optical flow measurements in a variational

approach.

Although our method follows the same philosophy

as [Hilsmann and Eisert, 2009], in contrast it provides a

closed-form solution to the warp parameters given feature

correspondences. This is an important step to bootstrap di-

rect registration methods, where more sophisticated self-

occlusion resistant cost functions can be used, such as the

‘shrinker’ term of [Gay-Bellile et al., 2010]. As we will

show in §6, over-smoothing self-occluded areas performs

slightly worst compared to using a ‘shrinker’ in direct ap-

proaches.

We modify the bending energy ǫs of equation (8) as fol-

lows:

ǫ̃s(L) =
∑

p

κ(p)

∥

∥

∥

∥

∂2W

∂p2
(p, L)

∥

∥

∥

∥

2

F

∆x∆y, (17)

where κ(p) is:

κ(p) =

{

K if H(p̄) = 1

1 otherwise.
(18)

The constant parameter K > 1 is chosen using test experi-

ments with various kinds of self-occlusions as explained be-

low. The resulting smoothing term (17) can be formulated

as a sum-of-squared linear combination ZK of the warp pa-

rameters L:

ǫ̃s(L) = ‖ZKL‖2
F . (19)



9

Fig. 9 Two examples of warp folds and their impact on the orientation of the local coordinates of the input image. The example labelled as 2

corresponds to the surface generated from the input image shown in figure 1.

The closed-form (11) can thus be readily used to obtain the

warp by simply replacing Z by ZK . It must be noted that

in the absence of self-occlusion the smoothing term is the

same as the conventional bending energy (8).

Figures 11.c and 11.d show two different warps obtained

without detecting self-occlusions, while figures 11.e and

11.f show the equivalent self-occlusion resistant warp ob-

tained with our method. The partial self-occlusion mapH is

shown in figures 11.a and 11.b.

4.3 Selection of the Parameter K

In order to show the effect of the parameter K in the self-

occluded areas we select two test examples affected with

self-occlusion areas that are shown in figures 11.c (Example

A) and 11.d (Example B.) For both experiments we have

computed the warp parameters L and a partial self-occlusion

map H.

We propose an experiment where several values are

given to K (i.e. K = 1, . . . , 10). For each value of K we

compute new warp parameters LK using the modified bend-

ing energy (18), and givenH. For each LK we obtain a new

partial self-occlusion map, namely H̃K , whose number of

non-zero cells give us a way to measure the amount of fold-

ing produced by the warp parameters LK . Each partial self-

occlusion map H̃K is obtained with a value δH = 0, so that

it does not ‘anticipate’ self-occlusions.

It is expected that by increasing K, the number of self-

occluded (non-zero) cells tends to zero. In figure 12.c we

show the number of such cells in H̃K versus the value of K

for the two test cases. It can be observed that for K > 10
all cells get to zero, which means that the resulting warp did

not fold in self-occluded areas. In all our experiments we

choose the value K = 20.

(a) Augmentation of T with H (b) Augmentation of T with H

(c) Warp without self-occlusion

detection

(d) Warp without self-occlusion

detection

(e) Warp with self-occlusion de-

tection

(f) Warp with self-occlusion de-

tection

Fig. 11 Comparison between the warps obtained without and with the

partial self-occlusion map H.

5 Pixel-Based Registration Refinement

The feature-based approach presented in this paper allows

us to detect a deformed instance of the template provided

enough matches are given, while discarding outliers. The

registration accuracy obviously depends on the keypoint de-
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Fig. 12 Number of non-zero cells in H̃K versus the value of K. Ex-

ample A corresponds to figure 11.c and example B to figure 11.d.

tection and matching methods. Nevertheless, most of the

methods often lose many points near self-occlusion bound-

aries or highly deformed areas. In these cases the accuracy

of our proposed method decreases. We thus propose to use

a pixel-based (direct) registration approach to refine the sur-

face parameters given by our feature-based method. Pixel-

based registration uses pixel value differences to obtain the

warp parameters and therefore theoretically use all the infor-

mation available in the image to compute an accurate reg-

istration. In [Gay-Bellile et al., 2010], a pixel-based regis-

tration approach is proposed for deformable surface detec-

tion that includes self-occlusion reasoning. In contrast, the

method we propose has a simpler mechanism to deal with

self-occlusions, using our modified bending energy (17). In

§6 we show the differences between both approaches.

5.1 Defining the Cost Function

The pixel-based cost function we propose is composed of

a data-term ǫ̃d, that compares intensity differences between

the template and the warped image, and the smoothing term

ǫ̃s we proposed in equation (17):

ǫ̃2(L) = ǫ̃2d(L) + µ̃2ǫ̃s(L), (20)

with:

ǫ̃2d =
∑

p∈(R−H)

‖T (p) − I(W(p, L))‖2, (21)

whereR is the template region of interest (usually the whole

template image.) The euclidean norm used to compare pixel

intensities or colors can be replaced by a robust loss func-

tion such as the one used in [Gay-Bellile et al., 2010] so as

to robustify the cost against external occlusions and other

unmodeled phenomena. The region R − H represents all

pixel positions in the template region of interest that are

not self-occluded (i.e. where H(p̄) = 0). In those positions

where the self-occlusion map is non-zero the warped image

I(W(p, L)) is not well defined (see figure 13.)

5.2 Minimizing the Cost Function

A straightforward way to obtain the minimum of the cost

(20) is to use the Gauss-Newton iterative optimization ap-

proach. The warp parameters are additively updated at each

iteration (i.e.L = L+∆) for some increment∆. The Gauss-

Newton approximation of ǫ̃d is given by:

ǫ̃2d(L + ∆) ≈
∑

p∈(R−H)

‖T (p) − I(W(p, L)) − g(p, L)⊤δ‖2, (22)

where δ = vect(∆) is the update vector.5 The gradient vec-

tor g(p, L) factors in the image gradient vector ∇I and the

warp’s Jacobian matrix ∂W
∂L

, which is linear with respect

to L and constant. The Gauss-Newton method repeatedly

solves a linear least squares minimization problem in∆. The

normal equations are formed by stacking all gradient vectors

into matrix J and all image residuals in vector D, giving the

following approximation of the data term:

ǫ̃2d(L + ∆) ≈ (J δ − D)⊤(J δ − D). (23)

According to equation (19) the smoothing term can be

directly expressed as the following quadratic form in the

warp parameters (in vectorized form ℓ = vect(L)):

ǫ̃2s(L + ∆) =
(

(ℓ + δ)⊤K(ℓ + δ)
)

, (24)

where K = diag(ZK , ZK). Finally the complete cost func-

tion (20) is approximated by a quadratic function in δ:

(J δ − D)⊤(J δ − D) + µ̃2
(

(ℓ + δ)⊤K(ℓ + δ)
)

. (25)

The minimum of (25) with respect to δ can be computed by

nullifying its partial derivatives, as the solution to the sys-

tem:

Hδ = B, (26)

with:

H = J⊤J + µ̃2K B = J⊤D − µ̃2ℓ. (27)

Matrix J must be recomputed at each iteration as it depends

on the warp parameters, which implies that the Hessian H

must be recomputed and inverted too. The inversion process

can be done in a very efficient manner as matrix H is sparse

due to the limited support of the bicubic B-Spline basis func-

tion. Since the Gauss-Newton approach does not necessar-

ily guarantee that the registration error decreases at each it-

eration we provide the algorithm with a stopping condition

when the error increases. This condition can also be imposed

with a region-trust algorithm like Levenberg-Marquardt.

A brief algorithmic view of our registration method is

now given:

5 vect refers to the column-wise vectorization of a matrix.
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Fig. 13 Illustration of the pixel-based data term ǫ̃d, including the partial self-occlusion map H.

1. Initialize the warp parameters L using the feature-based

method presented in §3 (which also give the partial self-

occlusion map H.)

2. Precompute the bending energy matrixK and the warp’s

Jacobian matrix ∂W
∂L

, set n = 1.

3. Repeat

(a) Compute the warped image I(W(p, L)) and its gra-

dient vectors ∇I ; form J and D.

(b) Compute H and B from equation (27).

(c) Use a sparse solver6 to solve the linear system Hδ =

B.

(d) Reshape δ to ∆ and temporally update parameters

L = L + ∆, set n = n + 1.
(e) If the error ǫ̃2 increases with updated parameters

then reject the update and exit.

(f) If ‖δ‖ < ε or n ≥ nmax then exit.

This iterative algorithm may stop when the incremental

step δ is smaller than a predefined value ε, typically 10−8.

6 Experimental Results

This section shows the performance of both the outlier re-

jection method and the self-occlusion resistant warp estima-

tion for three datasets. Each dataset has a template image

and a sparse set of views of the deformed surface, taken un-

der different viewpoints and with different deformations, in-

cluding self-occlusions. We then give implementation and

timing details.

6 We use the ‘mldivide’ Matlab function.

6.1 Detection and Retexturing Results

The Comics dataset has 6 images of size 968 × 648, in-
cluding the template. The images present different kinds

of deformations including self-occluded surfaces and strong

deformations due to paper creasing. Figure 14.a shows the

template image with a warp visualization grid. Figures 14.c

to 14.e show the result of automatic surface detection based

only on keypoints, for different viewpoints, with strong self-

occlusions in figures 14.d and 14.e. Figures 14.f to 14.h

show the surface retextured. Below each image we give the

number of matched keypoints N , the number of outliers de-

tected No, the registration error ǫd (5) in terms of transferred

point distances (in pixels) and the registration (photometric)

error ǫr (in pixel intensity units [0− 255]), corresponding to

the mean difference between pixel values:

ǫr =
1

|R −H|

∑

p∈(R−H)

‖T (p) − I(W(p, L))‖. (28)

The same experiment is shown in figures 14.i to 14.n

after the pixel-based registration refinement step based on

the idea of over-smoothing the self-occluded pixels using

a modified bending energy term. Figures 14.o to 14.t show

the results of pixel-based registration using the shrinker term

proposed in [Gay-Bellile et al., 2010]. For this last batch of

figures, we only show the registration error ǫr.

In all images displayed in figure 14 the registration error

is small and the retextured images are visually convincing

even with self-occlusions. However, only a few keypoints

were detected near the self-occluded parts, which produced

artifacts, especially in figure 14.e. The pixel-based refine-

ment step is able to reduce the registration error ǫr in all
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cases, creating a more visually convincing registration (see

figure 15 for a close-up view of the retexturing for one im-

age of the Comics dataset.). It can be observed that the pixel-

based registration using a shrinker term has a lower registra-

tion error and gives visually more convincing results.

Figures 16.a and 16.b show surface detection with strong

deformations created by creasing the surface. As it can be

observed, some parts of the mesh fail to fit the surface, pro-

ducing greater registration errors than in figure 14. The er-

rors are produced by the lack of keypoints near some com-

plex foldings created in the paper. Still, in those parts where

enough points are found the retextured images shown in fig-

ures 16.c and 16.d are visually convincing. As in figure 14

the pixel-based refined versions of figures 16.e to 16.l are

able to reduce the registration error and are more visually

convincing. The pixel-based registration approach based on

using a shrinker term is slightly better than the approach us-

ing the over-smoothing penalty in all cases.

It can be seen that the top-left hand corner of the paper

surface shown in figure 16.b is not registered properly even

after pixel-based refinement. This example is especially dif-

ficult. The feature-based approach suffers from the lack of

features and smoothes the surface. Consequently, the self-

occlusion map estimated from the feature-based solution

does not detect the corner of the surface as a self-occluded

part. Then, the pixel-based approach is not able to tell the

difference between a self-occlusion and an external occlu-

sion for that part of the warp. In [Gay-Bellile et al., 2010]

the authors show that a direct registration approach with a

shrinker term is able to adapt to a video sequence where a

similar bending occurs in the corner of a paper. In that case

the continuous sequence allows the self-occlusion map to

be estimated iteratively at each frame, making the surface to

shrink properly at the corner.

Fig. 15 Close-up view of figure 14.g (left) where only keypoints were

used for registration, figure 14.m (middle) where pixel-based registra-

tion was used including over-smoothing penalty to self-occlusions and

14.s where a shrinker term is used in self-occlusions .

The T-Shirt dataset has 3 images of size 968 × 648 of

a textured t-shirt: the template and 2 input images with de-

Feature-based registration [N, No, ǫd, ǫr]

(a) (b)

(c) (d)

[218, 19, 2.81, 27.39] [246, 9, 1.48, 26.69]

Pixel-based registration [ǫr] with over-smoothing penalty

(e) (f)

(g) (h)

[23.07] [24.93]

Pixel-based registration [ǫr] with shrinker

(i) (j)

(k) (l)

[22.07] [24.90]

Fig. 16 Results of the proposed framework on the Comics dataset with

creased paper (see main text for details.)
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(a) Template

(b) Retextured Template

Feature-based registration [N, No, ǫd, ǫr]

(c) (d) (e)

(f) (g) (h)

[192, 10, 0.91, 16.11] [292, 17, 1.58, 19.77] [140, 20, 0.37, 33.75]

Pixel-based registration [ǫr] with over-smoothing penalty

(i) (j) (k)

(l) (m) (n)

[13.34] [16.72] [32.19]

Pixel-based registration [ǫr] with shrinker

(o) (p) (q)

(r) (s) (t)

[13.27] [16.36] [31.75]

Fig. 14 Results of the proposed framework on the Comics dataset (see main text for details.)
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formations. Figures 17.a and 17.b show the template image

augmented with the surface mesh and the retextured tem-

plate respectively. Figures 17.c to 17.f show the surface de-

tected with the vector [N,No, ǫd, ǫr], as for the previous

dataset. Figures 17.g to 17.n show the result of pixel-based

registration refinement and the new registration error ǫr with

both the over-smoothing penalty and a shrinker term. In both

cases pixel-based registration decreases the registration er-

ror. In this dataset there is no visible difference between the

shrinker and the over-smoothing terms.

The Graffiti dataset has 4 images of size 320 × 640, ex-

tracted from a video sequence and processed separately. Fig-

ures 18.a to 18.d show the template and 3 input images, and

the warp visualization grid. As in the other datasets we cap-

tion each figure of the retextured image with [N,No, ǫd, ǫr].

This dataset has no self-occlusion and shows accurate regis-

tration results without the need for pixel-based refinement.

In figure 19 we highlight two of the experiments where

the number of outliers found between the template and input

images is high. We render the matches for both template and

input images and show motion vectors superimposed on the

template. The percentage of outliers is indicated in the cap-

tion of figure 19. The values oscillate between 15% − 20%

of outliers.

6.2 Software Implementation and Timing

All experiments were carried out using a Matlab implemen-

tation of our algorithms. We give timing details for some of

the experimental conditions given in the paper in table 2.

The computer used for the test was a medium performance

Intel Core 2 Duo CPU at 2.2 GHz. We believe that a nearly

interactive rate implementation could be achieved with an

optimized code in a compiled programming language such

as C++ with the same platform and algorithms. The bottle-

neck is clearly the pixel-based refinement. It could be made

much faster using a number of improvements such as coarse-

to-fine processing.

7 Conclusions

This paper has presented the first method for detecting a de-

formed surface in a single image based on point matches

to a template that handles both wide-baseline and self-

occlusions. The paper contributes with a simple and effec-

tive method for automatically discarding outliers, based on

the assumption that the surface to detect is locally smooth.

Outlier removal is based on using relationships between

neighboring points. The experimental evaluation confirmed

that our method is reliable enough even with a high amount

of outliers in the matches (beyond 70% with a TPR of more

than 90% and a FPR of less than 15%) which is more than

(a) Figure 14.e matches with outliers

(b) Outlier-free matches (14% of outliers detected)

(c) Figure 18.b matches with outliers

(d) Outlier-free matches (18% of outliers detected)

Fig. 19 Matches and motion vectors superimposed for the experiments

shown in fig. 14.e and fig. 18.b.

necessary for real applications. Our outlier rejection method

has the advantage over other similar works that it can be

applied to self-occluded surfaces. The other contributions

of the paper is a simple method to detect self-occlusions

and to compute a self-occlusion resistant warp function –

based on either the point matches or a pixel-based cost. This

method allows us to perform convincing automatic retextur-

ing. We showed how bootstrapping our pixel-based regis-

tration engine with a point-based solution leads to a robust

wide-baseline algorithm giving accurate results. We believe

that, even more than in rigid registration where fewer param-

eters are sought, combining feature-based and pixel-based

methods is a sensible way of solving deformable registra-

tion problems.
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(a) Template

(b) Retextured Template

Feature-based registration [N, No, ǫd, ǫr]

(c) (d)

(e) (f)

[166, 13, 6.81, 7.3] [134, 23, 3.38, 7.9]

Pixel-based registration [ǫr] over-smoothing penalty

(g) (h)

(i) (j)

[6.9] [6.6]

Pixel-based registration [ǫr] with shrinker

(k) (l)

(m) (n)

[6.9] [6.6]

Fig. 17 Results of the proposed framework on the T-Shirt dataset (see main text for details.)

Experiment Phase Time

Comics dataset, figure 14.d

Outlier detection 1.94 secs

Keypoint-based registration 3.01 secs

Pixel-based registration (15 iterations) 16.98 secs

T-Shirt dataset, figure 17.c

Outlier detection 0.94 secs

Keypoint-based registration 2.95 secs

Pixel-based registration (15 iterations) 12.98 secs

Graffiti dataset, figure 18.d
Outlier detection 1.78 secs

Keypoint-based registration 2.86 secs

Table 2 Timing performance of our Matlab software implementation for the different experiments.

Efficient computation of the distances di with a TPS

The computation of the predicted point p̂i and consequently of the

value of di can be greatly simplified if the function f in equation (12)

is chosen to be a TPS. Following the feature-driven parameterization of

the TPS [Bartoli, 2008], the parametric warp shown in (3) is simplified

into the following expression:

W(p, L) = L⊤ν(q) = L⊤E⊤

λ lp, (29)

where Eλ is an (l + 3) × l matrix that depends on the template control

points coordinates c
p
1
, · · · , c

p

l
(usually chosen on a regular grid) and

on the parameter λ ∈ R, modeling the strength of internal smoothing.

The vector lp with l + 3 components is defined as follows:

lp =
“

ρ(‖p − c
p
1
‖2) · · · ρ(‖p − c

p

l
‖2) p⊤ 1

”

, (30)

where ρ(d) = d log(d) is the TPS kernel function. Using (29), the

matrix A used for computing the influence matrix is transformed into
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(a) Template (b) (c) (d)

(e) Retextured template (f) (g) (h)

[N, No, ǫd, ǫr] [231, 8, 2.55, 15.8] [198, 15, 1.76, 19.8] [164, 11, 0.72, 20.1]

Fig. 18 Results of the proposed framework on the Graffiti dataset (see main text for details.)

the following expression:

A⊤ = E⊤

λ (lp1 , · · · , lpn
) . (31)

By defining Ēλ as the first l rows of Eλ, the bending energy ǫs can be

written as:

ǫs = 8π

‚

‚

‚

‚

q

ĒλL

‚

‚

‚

‚

2

F

, (32)

which means that Z⊤Z = 8πĒλ in the influence matrix. The warp

function and also the influence matrix shown in (12) are simplified

since Eλ can be precomputed.

In the problem of computing each distance di we have two neigh-

boring sets Q(pi) and Q(qi) of points pi and qi respectively. In this

case we define a TPS warp function p = W(q, L) that goes from the

input image to the template. Therefore matrix L includes control point

coordinates in the coordinates of pi and the predefined control points

used in Eλ are defined as c
q
1
, · · · , c

q
n in the coordinates of qi.

We propose the following algorithm to efficiently compute the dis-

tance di:
1. Distribute the control points c

q
1
, · · · , c

q

l
uniformly in the interval

[0, 1] × [0, 1] and compute Eλ and Ēλ.
2. For all i = 1, · · · , N

(a) Normalize the set Q(qi) so that it lies inside the interval

[0, 1] × [0, 1], name it Q̄(qi).

(b) Compute the warp parameters L using the influence matrix

(3), the matches Q(pi) ↔ Q̄(qi) and the value of Eλ and Ēλ

previously computed.

(c) Warp point qi to get the predicted point p̂i using equation

(29).

(d) Compute the distance di = ‖p̂i − pi‖
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