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Abstract

It has been shown that a surface deforming isometrically
can be reconstructed from a single image and a template
3D shape. Methods from the literature solve this problem
efficiently. However, they all assume that the camera model
is calibrated, which drastically limits their applicability.

We propose (i) a general variational framework that ap-
plies to (calibrated and uncalibrated) general camera mod-
els and (ii) self-calibrating 3D reconstruction algorithms
for the weak-perspective and full-perspective camera mod-
els. In the former case, our algorithm returns the normal
field and camera’s scale factor. In the latter case, our al-
gorithm returns the normal field, depth and camera’s focal
length. Our algorithms are the first to achieve deformable
3D reconstruction including camera self-calibration. They
apply to much more general setups than existing methods.

Experimental results on simulated and real data show
that our algorithms give results with the same level of accu-
racy as existing methods (which use the true focal length)
on perspective images, and correctly find the normal field
on affine images for which the existing methods fail.

1. Introduction
The problem of 3D reconstruction of a deformable sur-

face from monocular video data has been well studied over
the past decade. In the template-based setup in particular,
where a reference 3D view of the surface is known, 3D re-
construction is carried out from 3D to 2D correspondences
established between the template and an input image of the
surface being deformed. Effective algorithms now exist for
the two key steps of image matching [11, 12] and 3D shape
inference [1, 2, 3, 5, 7, 8, 10, 14, 15, 16, 17]. Because the
reprojection constraints are not sufficient to achieve a sin-
gle solution, most work use deformation constraints such as
isometry [1, 2, 3, 5, 10, 14, 15, 16] and conformity [1, 7],
and various other priors such as a learnt shape space [17],
multiple local surface patches [15] and other visual cues
such a shading [8].

A common requirement of all methods from state of

the art is that the camera’s intrinsic parameters be known.
While this has initially been a reasonable assumption, being
able to self-calibrate the camera would grant 3D reconstruc-
tion much more flexibility. In rigid Structure-from-Motion,
camera self-calibration is well-understood. The most inter-
esting scenario, both in terms of stability and applicability,
is where all the intrinsics are known but the focal length
which is also allowed to vary in time [13]. This lets the user
to zoom in and out while filming.

This paper proposes a comprehensive framework for
3D reconstruction from a single uncalibrated image un-
der isometric surface deformation. In this context, most
existing methods use a fully calibrated perspective camera
model [1, 2, 3, 7, 8, 10, 14, 15, 16, 17] and are defeated
by affine imaging conditions. The reason is that they do
not fully exploit the differential surface constraints, and use
the so-called maximum depth heuristic [10], consisting in
maximizing the surface’s depth while bounding surface ex-
tension [2, 3, 10, 14, 15, 16]. Two exceptions are [1, 5]
which use a variational framework with a perspective and
an orthographic projection model respectively. In contrast,
our general variational framework applies to a general cam-
era model, whether calibrated or uncalibrated. It relates the
template to input image warp to the unknown surface em-
bedding. It leads to a general PDE for isometric 3D recon-
struction with the camera’s intrinsics as free parameters. We
establish that in the affine case, only the surface normal can
be computed but not the absolute depth, while in the per-
spective case, both the surface normal, absolute depth and
focal length can be estimated. We give two algorithms. Our
first algorithm is dedicated to the weak-perspective camera.
It computes the surface normal and the camera’s scale fac-
tor (the ratio between the camera’s focal length and the sur-
face’s average depth). Our second algorithm is dedicated to
the full-perspective camera. It computes the surface normal
and depth, and the camera’s focal length. Both proposed
algoritms are extremely fast.

Experimental results support the fact that focal length
self-calibration is feasible. A relative error of a few per-
cents can be reached in most camera/surface configurations,
leading to satisfying 3D reconstructions.



Paper organization. §2 reviews state of the art. §3 gives
our notation, the problem setup and its modeling. §4 de-
rives our general variational framework for isometric 3D re-
construction. §§5 and 6 specialize this framework to weak-
perspective and full-perspective projection respectively, and
give solution algorithms for 3D reconstruction including
camera self-calibration. §7 reports experimental results and
§8 gives conclusions.

2. State of the Art

Reconstructing a deforming surface in the template-
based setting has two main steps: input image to template
registration and 3D shape inference. The registration step
has been effectively solved using feature-based [11, 12] and
pixel-based approaches [12]. This paper specifically fo-
cuses on the 3D shape inference step under isometric sur-
face deformation [1, 2, 3, 5, 10, 14, 15, 16]. Most of these
methods use a convex relaxation of the original problem.
The most successful relaxation [2, 14] has been the max-
imum depth heuristic [10] that consists in maximizing the
surface’s depth under inextensibility constraints [2, 14] us-
ing Second-Order Cone Programming (SOCP). The fastest
results were however obtained by solving a variational for-
mulation exploiting the differential structure of local isom-
etry in the perspective [1] and orthographic [5] projection
cases.

All the previously cited methods make a fundamental as-
sumptions: the camera model is perspective projection and
its intrinsics are known (except [5] which uses orthographic
projection). These methods are defeated by affine imaging
conditions since they do not directly exploit the problem’s
full differential structure. In other words, they only com-
pute depth, which is not recoverable in affine imaging con-
ditions.

We generalize the previous variational formulations [1,
5] to an arbitrary projection function. We specifically
instanciate our formulation for weak-perpective and full-
perspective projection. In the former case, our algorithm
computes the scale factor and the surface normal. In the lat-
ter case, our algorithm computes the camera’s focal length,
the surface normal and depth. Our method is the first to
solve 3D deformable shape reconstruction while perform-
ing camera self-calibration.

3. Notation and Modeling

Our notation and modeling are illustrated in figure 1.
The template domain is written Ω ⊂ R2. The unknown
3D surface is parameterized by an isometric embedding of
the template, represented by the surface embedding func-
tion ϕ : Ω→ R3. The camera projection function is written
Π : R3 → R2. The known template-to-image warp func-
tion is written η : Ω → R2. Finally, the unknown surface

unit normal function is written ξ : Ω→ S3. We use the no-
tation Jf

def
= ∂f

∂p for the Jacobian-matrix function of function

f : Rd → Rd′ with Jf : Rd → Rd′×d.
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Figure 1. Modeling monocular template-based surface recon-
struction. The warp η is estimated at the image registration step.
Existing reconstruction methods compute the surface embedding
function ϕ assuming that the camera projection function Π is
known. In our framework, we estimate both ϕ and Π. This implies
estimating the weak-perspective camera’s scale or self-calibrating
the full-perspective camera’s focal length.

We have three basic constraints. First, composing the
surface embedding and camera projection gives the warp;
this is the reprojection constraint:

η = Π ◦ ϕ. (1)

Second, the surface embedding’s Jacobian matrix function
Jϕ : Ω→ R3×2 must be scaled orthonormal for the surface
deformation to be isometric; this is the deformation con-
straint:

1

λ
Jϕ ∈ Õ, (2)

where λ : Ω → R, λ > 0 is the known local scaling func-
tion1 and Õ is the set of (3× 2) column-orthonormal matri-
ces. Third, the first order partial derivatives of the reprojec-
tion constraint must agree; this is the differential constraint,
generalizing the Sub-Stiefel matrix constraint [4]:

Jη = (JΠ ◦ ϕ) Jϕ, (3)

where Jη : Ω → R2×2 and JΠ : R3 → R2×3 are the warp
and camera projection’s Jacobian-matrix functions respec-
tively.

4. General Isometric 3D Reconstruction
We start from the differential constraint (3), and append

the scaled unit surface normal λξ as the rightmost column
of this matrix equality:(

Jη λ(JΠ ◦ ϕ)ξ
)

= (JΠ ◦ ϕ)
(
Jϕ λξ

)
.

1For a developable surface λ = 1 while otherwise λ may be the local
scaling due to the 2D parameterization Ω obtained by flattening of a 3D
template [1].



We multiply each side of this equation to the right by its
transpose. Because the deformation constraint (2) implies(
Jϕ ξ

) (
Jϕ ξ

)>
= λ2I, with I the identity matrix (here

of size (3 × 3)), the equation is simplified, and gives the
general equation of isometric 3D reconstruction:

JηJ>η +λ2(JΠ◦ϕ)ξξ>(JΠ◦ϕ)> = λ2(JΠ◦ϕ)(JΠ◦ϕ)>.
(4)

This is a nonlinear PDE in the camera projection Π, the sur-
face embedding ϕ and its normal ξ. It is clear that ξ may be
derived from ϕ; however, relaxing this dependency leads to
a local and computationally fast solution [1]. Due to sym-
metry, there are only three distinct equations out of the four
equations of this matrix equality. This PDE must be solved
jointly with the reprojection constraint (1). Because of its
global and parametric nature, camera projection will turn
into a set of free unknown parameters when specializing
this PDE to a particular camera model.

5. Weak-Perspective Solution
We show how the general reconstruction equation (4) is

specialized and solved for weak-perspective projection.

5.1. Specializing the General Equation

The general affine camera’s projection function is
ΠA(Q) = KASAQ. In this equation SA = (I 0) ∈ R2×3

is a constant matrix and KA ∈ R2×2 is an upper triangu-
lar matrix containing the camera’s three intrinsics. We thus
obtain JΠA

= KASA, that we substitute in the general re-
construction equation (4) to get:

JηJ>η + λ2KASAξξ
>S>AK>A = λ2KASAS>AK>A.

Function ϕ disappears since the affine camera’s Jacobian is
constant. Defining ξ̄ : Ω→ R2, the function giving the first
two elements of the unit normal, as ξ̄ = SAξ, we get the
affine equation of isometric 3D reconstruction:

JηJ>η + λ2KAξ̄ξ̄
>K>A = λ2KAK>A.

For a weak-perspective camera, KA = αI where the un-
known scale α def

= f
d > 0 is the ratio between the cam-

era’s focal length f and the surface’s average depth d. This
leads to the weak-perspective equation of isometric 3D re-
construction:

JηJ>η + λ2α2ξ̄ξ̄> = λ2α2I. (5)

This is a polynomial first-order PDE with α ∈ R+ as free
parameter.

5.2. Solving

Equation (5) involves function ξ̄ and parameter α. The
latter is a free parameter involved globally over the domain

Ω by the PDE. Attempting to solve for ξ̄ and α simultane-
ously leads to a large and untractable polynomial optimiza-
tion problem. We propose a solution that first computes α
globally and then ξ̄ locally.

Solving for α. We rearrange equation (5) as λ2α2ξ̄ξ̄> =
λ2α2I − JηJ>η . Because the left-hand side of the equation
is a rank-1 matrix, we can write that the right-hand side’s
determinant vanishes, giving, with µ def

= α2:

det
(
λ2µI− JηJ>η

)
= 0. (6)

This shows that two solutions for µ could be easily found
from the eigenvalues of JηJ>η . However, we do not want to
solve for µ locally but globally, taking measurements into
account over the whole domain Ω, for stability purposes.
Expanding equation (6), we get the following degree-two
polynomial in µ:

λ4µ2 − λ2tµ+ g = 0, (7)

with t def
= tr

(
JηJ>η

)
and g def

= det
(
JηJ>η

)
. We define the

optimization problem to get an estimate of µ from all mea-
surements as:

min
µ∈R

∫
Ω

(
λ4µ2 − λ2tµ+ g

)2
dp. (8)

Nullifying the cost’s µ-derivative yields the following
degree-three polynomial:

2µ3

∫
Ω

λ8 dp− 3µ2

∫
Ω

λ6tdp

+µ

∫
Ω

λ4
(
2g + t2

)
dp−

∫
Ω

λ2tg dp = 0.

(9)

We finally solve for µ by keeping the real positive root min-
imizing the cost function2 and set α =

√
µ.

Solving for ξ. We rewrite equation (5) as λ2ξ̄ξ̄> = M

where M
def
= λ2I − 1

µJηJ>η . We simply use a rank-one
decomposition ζζ> of M, where ζ ∈ R2, that we com-
pute from a Singular Value Decomposition M = UΣU>

as ζ = 1√
σ
u, where u is the column of U associated to

the largest singular value σ. We therefore get two solutions
ξ̄ = ± ζ

λ . We finally use the constraint ‖ξ‖2 = 1, leading to

ξZ = −
√

1− 1
λ2σ to get two solutions:

ξ1 =

(
ζ

−
√

1− 1
λ2σ

)
and ξ2 = −

(
ζ√

1− 1
λ2σ

)
,

(10)
2At least one root of equation (9) is real positive. The quadratic (7)

opens upwards (because λ4 > 0) and its two roots are real positive (be-
cause t > 0 and g ≥ 0). Therefore, the integrand (8) is a positive quartic
that has two pairs of repeated real positive roots and is strictly decreasing
for µ < 0. The integral cost (8) has thus at least one real positive root.



where, because ξZ < 0, both possible normal are directed
towards the camera. Criteria such as surface integrability
or smoothness [3] can be used (through normal integration)
to recover a C1 shape up to scale while disambiguating the
normal field. This may however leave some convex/concave
ambiguities unresolved.

6. Full-Perspective Solution
We here show how the general reconstruction equa-

tion (4) is specialized and solved for full-perspective pro-
jection.

6.1. Specializing the General Equation

The general perspective camera’s projection function is
ΠP (Q) = 1

QZ
KPQ. In this equation KP ∈ R2×3 con-

tains the five camera’s intrinsics. We partition it as KP =(
K̄P q0

)
where K̄P ∈ R2×2 is an upper triangular ma-

trix containing the focal length f , the skew τ and the as-
pect ratio ρ, and q0 ∈ R2 is the principal point. We thus
obtain JΠP

= K̄PSP with SP
def
= 1

QZ

(
I − 1

QZ
Q̄
)

and

Q̄>
def
= (QX QY ). Substituting ΠP into the reprojection

constraint (1) we get:

η =
1

ϕZ
KPϕ =

1

ϕZ
K̄P ϕ̄+ q0

with ϕ̄> def
= (ϕX ϕY ). This leads to ϕ̄ = ϕZK̄−1

P (η −
q0). Substituting this expression in JΠP

◦ ϕ gives:

JΠP
◦ ϕ =

1

ϕZ

(
K̄P q0 − η

)
.

Finally, substituting this expression in the general recon-
struction equation (4) we obtain the full-perspective equa-
tion of isometric 3D reconstruction:

JηJ>η +
λ2

ϕ2
Z

(
K̄P ξ̄ξ̄

>K̄>P + ξ2
Z η̃η̃

>) =
λ2

ϕ2
Z

(
K̄P K̄>P + η̃η̃>

)
,

with η̃ = q0 − η. We further specialize this equation under
the assumption that only the focal length f is unknown and
the effect of the other intrinsics were undone. This leads to
K̄P = fI and q0 = 0. Setting γ = ϕ2

Z , we obtain:

γJηJ>η + λ2f2ξ̄ξ̄> + λ2ξ2
Zηη

> + fξZ
(
ξ̄η> + ηξ̄>

)
= λ2f2I + λ2ηη>. (11)

This is a nonlinear PDE with f ∈ R as free parameter.

6.2. Solving: Finding an Initialization

Equation (11) involves functions ξ and γ, and parameter
f . The latter is involved globally. The relationship between
ξ and γ is quite complex and we thus cannot directly ex-
ploit it to solve the variational equation efficiently. Indeed,

γ gives the depth and with the reprojection constraint, de-
termines function ϕ, whose first partial derivatives lead to
the normal function ξ.

We propose the following estimation procedure: (i) sam-
ple f over a range of admissible values, (ii) for each candi-
date f value, solve the equation of isometric 3D reconstruc-
tion (11) and (iii) keep the value of f which best satisfies
the global isometric constraint. This procedure makes the
solution of step (ii) pointwise, easily parallelizable on the
GPU and thus extremely fast. We sample 100 f values on
a log-scale from 102 pixels to 5× 103 pixels. Note that the
template camera’s focal length is generally unrelated to the
runtime camera’s (for instance with printed paper we use
the digital texture image as a template).

Solving for γ and ξ given f . We propose an alternative
solution to equation (11) to the existing closed-form [1].
Relaxing the constraint relating γ to ξ, equation (11) can
be viewed as a system of three polynomials of degree two
in four variables at each point p ∈ Ω, to which we add
the constraint ‖ξ‖22 = 1. Because of its special structure,
this system has at most four solutions. More specifically,
there are four solutions for the normal ξ̄ and two for the
depth γ. However, it has been shown that with this relax-
ation only one solution satisfies γ > 0 [1]. Without loss
of generality, we here assume λ = 1 (the surface is devel-
opable), but the method applies to an arbitrary local scale
function λ. The four considered polynomial constraints de-
pend on six monomials, ξ2

X , ξ2
Y , ξ2

Z , ξXξY , ξZ and γ. It can
thus be linearized by introducing the following four vari-
ables: ζ1 = ξ2

X , ζ2 = ξ2
Y , ζ3 = ξ2

Z and ζ4 = ξXξY . With
these, we obtain a linear system with four equations and six
variables. Our solution method finds the two-dimensional
linear subspace of solutions, and selects the four solutions
for ξ and the two solutions for γ from the quadratic con-
straints ζ1ζ2 − ζ2

4 = 0 and ξ2
Z = ζ3. We finally keep the

only solution such that γ > 0. We do not keep the two am-
biguous solutions for the normal field but rather recompute
it a posteriori from function γ.

Selecting the best f sample. The best f sample is se-
lected using global isometry as a criterion. The latter is
measured using the so-called Euclidean approximation to
geodesics. Let (p,p′) ∈ H ⊂ Ω2 be a pair of neighboring
template points. For this point pair we measure the amount
of surface extension or shrinking with respect to the tem-
plate as:

|δ(p,p′)− δ(ϕ(p), ϕ(p′))|,
where δ : Rd×Rd → R is the Euclidean distance function.
We then robustify the criterion by keeping the median value
overH:

F [ϕ]
def
= median

(p,p′)∈H
|δ(p,p′)− δ(ϕ(p), ϕ(p′))|. (12)



In practice we use K = 5 nearest neighbors to construct H
from the input point correspondences.

6.3. Solving: Direct Nonlinear Refinement

We finally propose a variational formulation of the prob-
lem and to solve it numerically:

min
ϕ,f

∫
Ω

‖η −ΠP ◦ ϕ‖22 dp + ν

∫
Ω

∥∥J>ϕ Jϕ − λ2I
∥∥2

F dp,

with ν ∈ R+ a weight on the isometry constraint, that we
here choose empirically. The surface embedding function
ϕ is represented as a linear interpolant of control points po-
sitionned on a regular grid. The problem is finally solved
using Gauss-Newton. We implemented two versions of the
direct nonlinear refinement. The first one uses the static
calibration value for f (and is equivalent to the nonlinear
method of [2]) while the second one estimates f numeri-
cally. The initial solution is provided by our focal length
sampling algorithm.

7. Experimental Results
7.1. Compared Methods and Measured Errors

We compared 8 methods: 5 use ground-truth static cali-
bration and 3 perform self-calibration. We measured three
types of error: the f -error (the relative absolute difference
between the true and the estimated focal lengths, in %);
the depth-error (the average depth discrepancy between the
true and the estimated surfaces, in pixels) and the normal-
error (the average angle between the true and the estimated
normal, in degrees – for the weak-perspective solution we
use the normal giving the smallest error). Note that for
the weak-perspective solution only the normal error is com-
putable. We implemented the registration step as follows,
unless stated otherwise. We first used SIFT [6] to obtain
putative keypoint correspondences from which we then es-
timate a Thin-Plate Spline warp η using a robust method
based on spatial consistency [12]. We always use the pixel
grid in the template to discretize the PDEs.

Methods using static calibration. It should be noted that
these compared methods assume the focal length to be
known. In the case of simulated data this is the groundtruth
focal length; it the case of real data it is obtained from static
calibration. STAT-PE is an iterative method using the max-
imum depth heuristic [10]. STAT-SA is a convex solution
using the maximum depth heuristic [14]. STAT-BR is a con-
vex SOCP solution using the maximum depth heuristic [2].
STAT-BA is an analytical solution using variational calcu-
lus [1]. STAT-RE is a nonlinear refinement method [2].

Methods performing self-calibration. We compared
three proposed methods. SELF-WP is the proposed weak-

perspective method of §5. SELF-FP is the proposed full-
perspective method of §6.2. SELF-RE is the proposed non-
linear refinement method of §6.3.

7.2. Simulated Data

We used a paper model [9] to simulate isometrically de-
forming surfaces. We randomly drew m points on the sim-
ulated surfaces and projected them with a perspective cam-
era. For each tested configuration, we averaged the results
over 50 trials. We varied the simulated focal length (de-
fault: 400 pixels), the number of keypoint correspondences
(default: 200) and the standard deviation of the gaussian-
distributed correspondence noise (default: 1.5 pixels). Our
results are displayed in figure 2.

The top row shows the f -error. We observe that SELF-FP
degrades with increasing focal length and correspondence
noise and improves with increasing number of correspon-
dences. However, the f -error is kept below about 15% and
is of a few percents for most simulated configurations. We
observe that SELF-RE is kept to less than 1% error for all
configurations. This is comparable with an excellent static
camera calibration. This means two things: first that SELF-
RE’s cost function leads to accurate estimates and second
that SELF-FP provides SELF-RE with an initialization that
allows it to reach an accurate estimate.

The middle row shows the depth error. As with the f -
error, we observe that SELF-FP degrades with increasing
focal length and correspondence noise and improves with
increasing number of correspondences. We observe that
SELF-FP is in the range of error of methods using static cal-
ibration. SELF-FP allows SELF-RE to converge to a solution
which is almost as accurate as STAT-RE, which, because it
uses static calibration, we can consider as a lower bound on
the error achievable by self-calibration.

The bottom row shows the normal error. We make the
same observations for SELF-FP as for the depth error. The
normal error is kept between 10–40 degrees. SELF-WP has
errors between 7–13 degrees. It gives normal estimates
which are almost always more accurate than SELF-FP’s de-
spite the significant amount of perspective in short focal
length simulated configurations. The curves for SELF-RE
and STAT-RE are indistinguisable and lie at around a few
degrees error.

The first column shows the result when changing the
simulated focal length. When it gets large the imaging func-
tion gets closer to parallel projection. Therefore, the accu-
racy of some methods based on the maximum depth heuris-
tic (STAT-SA and STAT-PE) degrades significantly. The focal
length and depth also become ill-constrained as only their
ratio can be measured, explaining why we observe that their
estimates by SELF-FP degrades. The surface normal how-
ever is still well-constrained, as can be observed from SELF-
FP’s normal estimates. This can be seen from equation (??):
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Figure 2. Experimental results with simulated data.

when f grows large the depth γ becomes ill-constrained but
not the normal ξ. We observe that the f -error and the depth
error for SELF-RE increase with the focal length but much
less than for SELF-FP, while the normal error is kept to its
lower bound provided by STAT-RE.

7.3. Real Data

We tested the above mentioned algorithms on several
real datasets. We show results for three selected datasets.

The 9-zoom dataset. This new dataset consists of 9 sets
of 3 still images each. Each image shows a deformation of
a paper sheet. Each set has a different but constant level
of zoom. They thus cover 9 levels of zoom, from small
to large. We use two examples from this dataset to illus-
trate the whole reconstruction pipeline with the key steps

shown in figure 3. These two examples respectively use
a short and long focal length. We now describe the short
focal length example in details. 1432 and 1462 SIFT key-
points [6] were extracted from the template and the input
image respectively. 798 putative correspondences were ob-
tained, and 698 were kept after spatial consistency was en-
forced [12]. A Thin-Plate Spline warp was then fitted to
the keypoint correspondences. The 3D reconstructions ob-
tained using static calibration and self-calibration are visu-
ally indistinguishable.

The bar-plot in figure 3 shows the true and estimated fo-
cal length as the level of zoom varies. From level 1 to level
5 (1831 to 3605 pixels) the f -error is kept below 10% for
both SELF-FP and SELF-RE. From level 6 to level 9 (4015
to 5670 pixels) the f -error grows up to 28% for SELF-FP.
It however allows SELF-RE to converge to a solution were



Zoom level 9 (long focal length 𝑓 ≈ 5670 pixels) 

Zoom level 1 (short focal length 𝑓 ≈ 1831 pixels) 

Figure 3. Results on the 9-zoom dataset.

the f -error ranges from a few percents (levels 6 to 8) to
13% (level 9). This is a reasonable accuracy given that
self-calibration is here performed from noisy keypoint cor-
respondences obtained automatically on a single image.

CVLab’s paper sequence dataset. This dataset with es-
timated groundtruth depth was kindly provided by EPFL’s
CVLab on their website. We show results for the first 90
frames of this video sequence showing a piece of paper be-
ing manually deformed. We used the SIFT correspondences
provided with the sequence. The focal length is fixed and its
groundtruth value is 528 pixels. Figure 4 shows the results
we obtained.

We observe on the left graph that SELF-FP produces a
depth error slightly larger that the other methods, but of
the same order of magnitude. On the other hand, SELF-RE
achieves a depth error comparable to methods using static
calibration. The middle graph shows that both SELF-FP and
SELF-RE overestimate the focal length by a few dozens of
pixels. The right graph shows that the f -error is kept below
12% for SELF-FP and below 8% for SELF-RE. The average
f -error is 5.8% and 3.1% for these two methods respec-
tively, which we consider as an accurate result.

The cap dataset. Results for this new dataset are in fig-
ure 5. The template here is in 3D since it is non-developable
(the cap cannot be isometrically flattened to a plane). The
input image shows the cap with a crease in the centre. The
groundtruth focal length from static calibration is 2040 pix-
els. We here followed a special reconstruction procedure in
two steps. Because the cap is a 3D object, is it never en-
tirely visible in an input image. Specifically, the textured
visible part of the cap is inside the dashed red curve in fig-
ure 5. We first reconstructed the visible part of the cap us-
ing template-based deformable 3D reconstruction. This was
based on 241 semi-automatically established keypoint cor-
respondences. We then transferred the hidden part of the
cap from the template by extrapolating the transformation

obtained for the reconstructed visible part. We observe that
the shape reconstructed by STAT-RE is visually extremely
similar to the one reconstructed by SELF-RE. The average
relative error to the groundtruth shape obtained by struc-
tured lighting is 0.60% and 0.74% for STAT-RE and STAT-
FP with standard deviation 0.51% and 0.64% respectively.
The estimated focal length was 1890 pixels for SELF-FP and
2118 pixels for SELF-RE, which means an f -error of 7.3%
and 3.8% respectively. We consider this as a very successful
result.

3D template Input image 

Reconstruction by SELF-RE Reconstruction by STAT-RE 

Figure 5. Results on the cap dataset.

8. Conclusion
The main conclusion of our paper is that focal length

self-calibration in template-based isometric deformable 3D
reconstruction is feasible. This is taking the level of flexibil-
ity of this type of methods a step further. Our initialization
algorithm facilitates accurate 3D reconstruction for small
to medium focal length values while our nonlinear refine-
ment algorithm handles small to large focal length values
extremely well, being as accurate as methods using static
calibration. When the focal length grows too large it cannot



Template (first frame) Frame 90 (last frame) 

Figure 4. Results on the paper sequence. See figure 2 for the graphs’ legend.

be computed. We showed how the surface normal can how-
ever still be accurately estimated with the weak-perspective
projection model. The proposed algorithms were imple-
mented in pure Matlab. They process a few frames per sec-
ond on a regular PC. Because they are highly parallelizable
(except SELF-RE), it is likely that a GPU-C/C++ implemen-
tation would process hundreds of frames per second. Future
work may address the well-posedness of f computation (a
trivial degeneracy for instance is a flat and frontoparallel
surface) and the conformal deformation case.
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