
Stratified Generalized Procrustes Analysis

Adrien Bartoli1 Daniel Pizarro2 Marco Loog3

1 Clermont Université, France

2 Universidad de Alcalá, Spain

3 Delft University of Technology, The Netherlands

Corresponding author: Adrien Bartoli

Adrien.Bartoli@gmail.com

Abstract

Generalized procrustes analysis computes the best set of transformations that relate matched shape

data. In shape analysis the transformations are usually chosen as similarities, while in general statistical

data analysis other types of transformation groups such as the affine group may be used. Generalized

procrustes analysis has a nonlinear and nonconvex formulation. The classical approach alternates the

computation of a so-called reference shape and the computation of transformations relating this reference

shape to each shape datum in turn.

We propose the stratified approach to generalized procrustes analysis. It first uses the affine trans-

formation group to analyze the data and then upgrades the solution to the sought after group, whether

Euclidean or similarity. We derive a convex formulation for each of these two steps, and efficient practical

algorithms that gracefully handle missing data (incomplete shapes.)

Extensive experimental results show that our approaches perform well on simulated and real data.

In particular our closed-form solution gives very accurate results for generalized procrustes analysis of

Euclidean data.

Keywords: shape, registration, procrustes, theseus, generalized.

Implementation: our generalized procrustes analysis toolbox which implements the methods we pro-

pose and methods from the literature in Matlab is freely available under the GPL licence. Download the

code from http://isit.u-clermont1.fr/∼ab/SGPAv1.0.tgz.

Contents 2

Contents

1 Introduction 4

2 Problem Statement and Mathematical Preliminaries 6

2.1 The Reference-Space Model . 6

2.2 The Data-Space Model . 7

2.3 More Modeling Details . 9

2.4 On the Relationship Between the Reference-Space and the Data-Space Models 12

3 Previous Work 14

4 The Stratified Approach 15

5 Affine Registration in the Reference-Space 17

5.1 Problem Statement . 17

5.2 Proposed Algorithm . 17

6 Similarity-Euclidean Registration by Upgrading 21

6.1 Computing the Upgrading Transformation . 23

6.2 Applying the Upgrading Transformation . 29

7 Experimental Results 29

7.1 Compared Methods and Error Criterion . 29

7.2 Simulated Data . 30

7.2.1 Simulation Setup . 30

7.2.2 Affine Generalized Procrustes Analysis . 30

7.2.3 Similarity and Euclidean Generalized Procrustes Analysis 33

7.2.4 Timing and Complexity . 33

7.2.5 Influence of the Initialization . 35

7.2.6 Relationship Between the Reference-Space and the Data-Space Models 38

7.3 Real Data . 38

7.3.1 The 2D-Face Dataset . 38

7.3.2 The 3D-Human Dataset: Procrustes and Theseus Analysis in Higher Dimensions . . 40

8 Conclusion 43

Contents 3

A Demonstrations 44

A.1 Solution to minS ‖LS‖F such that S>S = I . 44

A.2 Translational Gauge Constraints for the Reference-Space Cost 45

A.3 The Closest Special Orthonormal Matrix . 46

B Implementation: the Generalized Procrustes Analysis Toolbox 47

B.1 Main Function . 47

B.2 Simulating Data and Testing . 47

1 Introduction 4

1 Introduction

In many different problems, data analysis requires one to first compensate for a global transformation

between the different datasets or shape data. This is known as procrustes analysis in the statistics and shape

analysis literature (Dryden and Mardia, 1998; Gower and Dijksterhuis, 2004). Each shape datum is a set

of points. This analysis is called generalized procrustes analysis when more than two shape data are to be

registered. In this problem, one global transformation per observed shape has to be computed, so that the

shapes are mapped to a common coordinate frame whereby they look as ‘similar’ as possible. This process

is called also rigid registration. For example, it is typical in landmark-based 2D and 3D shape analysis to

compensate for a similarity (rotation, translation and scale factor) so as to normalize the shapes to be further

analyzed. The global transformation is usually modeled by one of the groups of Euclidean transformations

(1
2d(d + 1) degrees of freedom), similarity transformations (1

2d(d + 1) + 1 degrees of freedom) and affine

transformations (d(d + 1) degrees of freedom), with d the dimension of the shape data to be analyzed. The

classical approach to generalized procrustes analysis is to select one of the shapes as a reference shape, and

register each of the other shapes to the reference in turn. It is common to then alternate a re-estimation of

the reference shape, as the average of the registered shapes, with shape registration. We call this general

paradigm the alternation approach to generalized procrustes analysis.1 The paradigm of estimating both

the registrations and a reference shape is statistically grounded, and we shall use it in this paper.

We propose the stratified approach to generalized procrustes analysis. We initially published it in a

shorter conference paper (Bartoli et al., 2010). Our stratified generalized procrustes analysis approach draws

on recent results and practice from the 3D reconstruction or Structure-from-Motion community (Hartley

and Zisserman, 2003), whereby one estimates a so-called uncalibrated camera model and then upgrades or

self-calibrates it. Here, the uncalibrated model is the affine transformation group, and the calibrated model

is one of the similarity or Euclidean transformation groups. Our stratified approach has several advantages:

it processes data in batch, as opposed to the alternation approach, and gracefully deals with missing data

(incomplete shapes.) Our experimental results show that our methods perform well on challenging datasets.

This paper is organized as follows. We state the problem and give mathematical preliminaries in §2.

We review previous work in §3. Our stratified approach is outlined in §4, and its two main components,

namely affine generalized procrustes analysis and similarity-Euclidean generalized procrustes analysis are

respectively given in §§5 and 6. We report experimental results on simulated and real data on various

datasets in §7. We finally conclude in §8. The next two paragraphs summarize our contributions and give
1The alternation term comes from the Structure-from-Motion literature where there exist methods that alternate the esti-

mation of the camera motion with the estimation of the scene structure, see (Mahamud et al., 2001) for instance.

1 Introduction 5

our notation.

Contributions. The contributions we bring in this paper can be summarized as follow. First, we propose

an alternative formulation of generalized procrustes analysis: the data-space model, as opposed to the

classical reference-space model. Second, we propose a closed-form solution to affine generalized procrustes

analysis with missing data in the reference-space model. Third, we propose a method to upgrade or ‘convert’

the affine result into an initial similarity or Euclidean solution that can then be refined by means of nonlinear

least squares. This affine initialization followed by upgrading is what we call the stratified approach to

generalized procrustes analysis.

Notation. We write matrices in sans-serif fonts (e.g., S) and vectors in bold (e.g., Sj .) Scalars are

in italics lower case and transformations in italics upper case (see below.) Matrix inverse is written as

in A−1, transpose as in A> (also for vectors as in S>j), pseudo-inverse as in S† and the hat matrix as

Ŝ
def= SS†. We use an SVD (Singular Value Decomposition) based pseudo-inverse, applicable to non-square

and column-rank-deficient matrices.2 For a full-column-rank portrait matrix S, the pseudo-inverse is also

given by S† = (S>S)−1
S>. The operator diag constructs a diagonal or a block-diagonal matrix from a vector

or a list of matrices, respectively. The group of orthonormal matrices O(d) in dimension d is defined as

Q ∈ O(d)⇔ (Q ∈ Rd×d, Q>Q = I) where I is the identity matrix of appropriate size. The special group of

orthonormal matrices SO(d) is used to represent rotations in dimension d and is defined as R ∈ SO(d) ⇔

(R ∈ O(d), det(R) = 1). We use nnz to indicate the number of non-zero elements in a matrix. For u ∈ Rd,

we define the following two operators:

ν(u) def=


u>

. . .

u>

 ∈ Rd×d2
.

We write vect the row-wise matrix vectorization operator. The ‘all-one’ and ‘all-zero’ vectors are written

1 and 0. We define ‖u‖2 =
√

u>u as the vector two-norm of u and ‖U‖F
def=
√

tr(U>U) as the matrix

Frobenius norm of U.
2S† is the Moore-Penrose pseudo-inverse of S, that in practice is obtained using an SVD:

S
SVD→ UΣV> and S†

def
= VΣ†U>,

where the entries of the diagonal matrix Σ (assumed in decreasing order) are pseudo-inversed as σ† = 0 if σ < ε and 1
σ

otherwise,
with ε a small constant.

2 Problem Statement and Mathematical Preliminaries 6

2 Problem Statement and Mathematical Preliminaries

We now give a mathematical statement of generalized procrustes analysis that will later be used to derive our

approach and to describe previous work. We present both the data-space and the reference-space models. In

both cases, one has to estimate an unknown reference shape S>
def=
(
S1 · · · Sm

)
∈ Rd×m, with Sj ∈ Rd

a shape point, and n unknown global transformations T def= {T1, . . . , Tn}, Ti : Rd → Rd, i = 1, . . . , n, given n

shape data D>i
def=
(
Di,1 · · · Di,m

)
∈ Rd×m, with Di,j ∈ Rd a shape datum point. So as to model missing

data, the fact that some points may not be observed in some shape data, we define the binary visibility

variables vi,j ∈ {0, 1} with vi,j = 0 for a missing point and vi,j = 1, otherwise. We define α
def=
∑n

i=1

∑m
j=1 vi,j

the total number of observed shape points, βi
def=
∑m

j=1 vi,j the number of shape points observed in shape i

and γj
def=
∑n

i=1 vi,j the number of observations of shape point number j. Note that
∑n

i=1 βi =
∑m

j=1 γj = α

and that βi ≤ m, γj ≤ n and α ≤ mn.

While most previous work on standard and generalized procrustes analysis uses the reference-space

model, as will become clear in §3, our stratified methods will use both models to try and find convex

numerical solutions. The main difference between the two models lies in the cost function being minimized,

and thus the assumption made on the noise distribution: the data-space model assumes the noise to be

i.i.d. in the measurements (and is in this respect a generative model), while the reference-space model

assumes the noise to be i.i.d. in the transformed shape space. In terms of practical computation, the

two models are equivalent for Euclidean generalized procrustes analysis, and have different advantages and

drawbacks.

2.1 The Reference-Space Model

The reference-space model is illustrated by figure 1. In this model, one minimizes the discrepancy between

the unknown reference shape S and the registered shape data T−1
i (Di) for i = 1, . . . , n, under a set of problem

dependent constraints C̃ to avoid that the solution be degenerate. This model thus tries to maximize the

agreement between the shape data after they are aligned in a common coordinate frame, here the reference

coordinate frame. The minimization problem is stated as:

arg min
T ,S
R̃(T ,S) s.t. C̃(T ,S) = 0.

Assuming all shape points available in all shapes, then the reference-space cost is given by:

R̃(T ,S) =
n∑

i=1

‖T−1
i (Di)− S‖2F (1)

2 Problem Statement and Mathematical Preliminaries 7

Reference shape S

Observed

shapes

Generated

shapes

Transformations T¡1
1

T¡1
1 (D1) T¡1

2 (D2) T¡1
n (Dn)

Matching

D1
Dn

Reference-space model

D2

T¡1
2 T¡1

n

Figure 1: The reference-space model. The shape data are compared to the reference shape in the
coordinate system of the reference shape, that is to say, after registration. Minimizing the reference-space
cost is optimal in the sense of maximum likelihood if the residuals are Gaussian i.i.d. for the reference shape
points.

This is the cost minimized in standard generalized procrustes analysis. Missing data are simply modeled by

expanding cost (1) over the shape point index j = 1, . . . ,m and introducing the binary visibility variables

vi,j as:

R̃(T ,S) def=
n∑

i=1

m∑
j=1

vi,j ‖T−1
i (Di,j)− Sj‖22. (2)

2.2 The Data-Space Model

The data-space model is illustrated by figure 2. It is related to a generative modeling of the data. The reason

for the name ‘data-space’ shall become clear shortly. The motivation for this model is related to the physics

of imaging and sensing in general. A sensor can be theoretically modeled using an ideal process. In practice

however, a sensor outputs measurements subject to noise. These measurements will generally be described

as a combination of the theoretical sensor model and a model of noise. Being generative, our data-space

model follows this idea that the sensor noise occurs in the observations. It thus consists in basing the error

function on the discrepancy between the model-predicted shapes Ti(S) ∈ Rd×m and the observed shapes

Di ∈ Rd×m for i = 1, . . . , n. The error function must be minimized under a set of constraints C ensuring

that the solution be non-degenerate (an example of constraints is rank(S)− d = 0, where the operator rank

2 Problem Statement and Mathematical Preliminaries 8

Reference shape S

Observed

shapes

Generated

shapes

Transformations

T1 T2 Tn

T1(S) T2(S) Tn(S)

Matching

D1 D2 Dn

Data-space model

Figure 2: The data-space model. Minimizing the data-space cost is a generative approach. It is optimal
in the sense of maximum likelihood if the residuals (the error on the observed shape points) are Gaussian
i.i.d.

computes the rank of a matrix), as is discussed later in the paper. These constraints may also fix some

of the gauge freedoms.3 The number of gauge freedoms is the number of degrees of freedom of the global

transformation group being considered. The minimization problem is stated as:

arg min
T ,S
R(T ,S) s.t. C(T ,S) = 0.

Assuming all shape points available in all data shapes, then the data-space cost R is given by:

R(T ,S) =
n∑

i=1

‖Di − Ti(S)‖2F . (3)

This equation reveals the bilinear structure of the problem. As in the reference-space model, missing data

are simply modeled by expanding cost (3) over the shape point index j = 1, . . . ,m and introducing the

binary visibility variables vi,j as:

R(T ,S) def=
n∑

i=1

m∑
j=1

vi,j ‖Di,j − Ti(Sj)‖22. (4)

3The gauge is the coordinate frame used to represent the unknowns. It is changed by a gauge transformation, lying in the
gauge group.

2 Problem Statement and Mathematical Preliminaries 9

The data-space model is frequently used in model estimation from data, as for instance in the close problem

of Structure-from-Motion. It gives the Maximum Likelihood Estimate if the noise on the observed data is

i.i.d. Gaussian. It matches the definition of (Yezzi and Soatto, 2003) of registration based on the notion

of average shape. The data-space cost is gauge invariant: it does not depend on the coordinate frame

in which the reference shape S ∈ Rm×d and the transformations T are expressed. Let G : Rd → Rd be

any invertible transformation representing a gauge transformation: the set of transformations T ◦ G−1 =

{T1 ◦ G−1, . . . , Tn ◦ G−1} and reference shape G(S) =
(

G(S1) · · · G(Sm)

)>
leave the data-space cost

unchanged, as is easily verified.

The data-space cost (4) is generally nonlinear and nonconvex. Consequently, there does not exist a

general closed-form solution to the maximum likelihood problem for the data-space model. In the particular

case of affine registration with no missing data (i.e., all points observed in all shape data), there exist a

solution method that deals with any dimension and number of shape data, since this particular problem can

be cast as a rank-d matrix factorization problem. Even though there does not seem to exist a paper that

would describe this method in details, it seemed common practice to us, especially in Structure-from-Motion.

We also noted that some authors developed methods to handle missing data, for instance by filling-in the

missing parts of the measurement matrix (Aguiar et al., 2008). For all the other cases, one has to resort to

iterative nonlinear least squares optimization. This raises the problem of finding an initial solution lying as

close as possible to the global minimum of the data-space cost (4). Our stratified approach provides such a

‘good’ initial solution.

2.3 More Modeling Details

We now give more modeling details, in particular on the ambiguities and the number of points needed for

solving generalized procrustes analysis.

Shape reflection. The reflection effect happens when a shape datum is the reflection of another shape

datum. In practice, it causes the rotational part of the transformation, whether affine, similarity or Eu-

clidean, to have a negative determinant. At this point, we have to choose whether we want to allow or

prevent the shape data to be reflected by the estimated transformations. One can enforce non-reflexion

by forcing the determinant of some (d × d) matrices to be positive, which means order-d polynomial in-

equalities. We made the following choice: we let the affine transformations reflect the shape data while we

force the similarity-Euclidean transformations to be non-reflecting. The reason is that the affine case may

apply to general statistical data analysis, while the similarity-Euclidean case applies to shape data only. In

our stratified approach we will of course ensure that the affine transformations are non-reflecting prior to

2 Problem Statement and Mathematical Preliminaries 10

upgrading them to similarity-Euclidean transformations.

Transformations. A Euclidean transformation TE = (E; e) is represented by a matrix E ∈ SO(d) (the

rotation) and a vector e ∈ Rd (the translation.) It is applied to a point S ∈ Rd as:

S 7→ TE(S) def= ES + e. (5)

A similarity transformation TS = (ζ;E; e) has the same representation with a scalar ζ > 0 (the scale factor;

being positive it prevents reflections.) It is applied to a point S ∈ Rd as:

S 7→ TS(S) def= ζES + e. (6)

Finally, an affine transformation TA = (A;a) is represented by a matrix A ∈ Rd×d (the ‘rotational’ part)

and a vector a ∈ Rd (the translation.) It is applied to a point S ∈ Rd as:

S 7→ TA(S) def= AS + a. (7)

We note that the affine transformation can be written as:

TA(S) = ν(S)vect(A) + a.

An affine transformation factors in a purely affine transformation and a Euclidean transformation using QR

decomposition of its rotational part A:

A → QZ, (8)

where Q ∈ O(d) and Z ∈ Rd×d is an upper triangular matrix. If det(Q) = −1 switching the sign of the

last column of Q and of Zd,d ensures Q ∈ SO(d), i.e., that Q is a proper rotation matrix. The possible

reflection is then contained in matrix Z. In this decomposition, Z represents the ‘purely affine’ part of the

transformation and Q the Euclidean part, leading to:

TA(S) = QZS + a. (9)

We note that the purely affine transformations, whose rotational part is represented by an upper triangular

matrix, form a group.

Abusing notation, we use a letter such as T for the generic Rd → Rd transformation function, and use

2 Problem Statement and Mathematical Preliminaries 11

the same letter for the transformation parameters over which a minimization should be conducted. Sets

of transformations are written using calligraphic fonts such as T = {T1, . . . , Tn}. We also directly apply a

transformation to a whole shape S ∈ Rm×d as for instance S→ SE> + 1e> in the Euclidean case.

Minimum number of data points. It is clear that generalized procrustes analysis requires a minimum

number of n ≥ 2 observed shapes. While in practice we would like to apply a registration framework to

a redundant set of data points, it is worth deriving what the minimum number of data points permitting

registration is, and if there exist degenerate geometric cases. Generally speaking, each data point provides

d equations on the corresponding unknown shape. Let e be the number of degrees of freedom, or adjustable

parameters, for the transformation group being considered (for instance, e = d(d + 1) in the affine case.) In

the case of n = 2 shapes, we need at least e
d observed points shared by the two shapes (it is obvious that a

point seen in one shape but not in the other does no provide any equation.) Generalizing to an arbitrary

number of shapes, we conclude that each shape must share at least e
d observed points with another observed

shape. Finally, we would like to underline that there exist cases for which the equations are dependent,

and may lead to so-called degenerate configurations for which despite the number of points is theoretically

high enough, there is more than a single solution to the registration problem. We give two simple examples

of dependent constraints. The first one is straightforward. Three colinear points give 2d equations only,

and not 3d equations, as can be easily verified from the above given transformation models. The second

example is on the estimation of a single Euclidean transformation between two observed shapes with d = 3.

A straightforward use of the formulae shows that e = 1
2d(d + 1) = 6, and that therefore, e

d = 6
3 = 2 shared

points should be enough to estimate the Euclidean transformation. However, only 5 out of the 6 equations

provided by 2 points are independent. This can easily be seen by considering the rotation taking as axis

the line joining the two points (for the shape taken as target of the transformation.) A rotation around this

axis with an arbitrary angle can be applied to the computed transformation, leaving one degree of freedom

free. As a concluding remark, we recommend one to numerically check whereby a set of observed shape

points form a degenerate configuration, by directly inspecting the numerical conditioning of the systems of

equations that have to be solved at runtime.

Since in our stratified approach shown in table 1 we start off with affine registration in all cases, we

require the input data to always provide enough constraints for affine registration, which implies that a

subsequent similarity-Euclidean registration is well-constrained too.4

4Note however that the approach could be used with a number of points sufficient for similarity-Euclidean registration but
insufficient for affine registration. For that special case, one could compute a subspace of affine registrations, whose parameters
would be fixed in a second step by the orthonormality constraints of the similarity-Euclidean registration.

2 Problem Statement and Mathematical Preliminaries 12

2.4 On the Relationship Between the Reference-Space and the Data-Space Models

The reference-space and the data-space models both lead one to minimize a cost over the reference shape

S ∈ Rm×d and the set of transformations Ti, i = 1, . . . , n, respectively given by equations (2) and (4). Both

costs look similar:

Reference-space cost Data-space cost

R̃(T̃ , S̃) =
n∑

i=1

‖T̃−1
i (Di)− S̃‖2F R(T ,S) =

n∑
i=1

‖Di − Ti(S)‖2F

We here analyze what are exactly the differences between these two costs. In other words, we want to

characterize the differences between the minimizers T̃ ? and S̃? of R̃, and the minimizers T ? and S? of

R. For that purpose, we shall distinguish amongst the three types of afore-mentioned transformations:

Euclidean, similarity and affine.

Euclidean transformations. We instanciate the data-space cost with n Euclidean transformations TE,i =

(Ei; ei), i = 1, . . . , n:

R(TE ,S) =
n∑

i=1

‖Di − TE,i(S)‖2F .

Each term can be rewritten as:

‖Di − TE,i(S)‖2F = ‖D>i − EiS
> − ei1>‖2F = ‖E>i D>i − S> − E>i ei1>‖2F .

The last equality follows from Ei ∈ SO(d). Because T−1
E,i = (E>i ;−E>i ei), this leads to:

‖Di − TE,i(S)‖2F = ‖T−1
E,i(Di)− S‖2F .

This equation implies that both costs are identical (R̃(TE ,S) = R(TE ,S)). Therefore, both models share

the same solution T̃ ? = T ? and S̃? = S?.

Similarity transformations. We follow the same steps as in the Euclidean transformations case. Let

TS,i = (ζi;Ei; ei), we obtain for the model-space cost:

R(TS ,S) =
n∑

i=1

‖Di − TS,i(S)‖2F .

Each term can be rewritten as:

‖Di − TS,i(S)‖2F = ‖D>i − ζiEiS
> − ei1>‖2F = ζ2

i ‖
1
ζi

E>i D>i − S> − 1
ζi

E>i ei1>‖2F .

2 Problem Statement and Mathematical Preliminaries 13

The last equality follows from Ei ∈ SO(d) and ‖ζA‖2F = ζ2‖A‖2F . Because T−1
S,i = (1

ζi
; 1

ζi
E>i ;− 1

ζi
E>i ei), this

leads to:

‖Di − TS,i(S)‖2F = ζ2
i ‖T−1

S,i (Di)− S‖2F .

This equation implies that the two costs differ by the weight given to each shape data:

Reference-space cost Data-space cost

R̃(TS ,S) =
n∑

i=1

‖T̃−1
S,i (Di)− S‖2F R(TS ,S) =

n∑
i=1

ζi‖T̃−1
S,i (Di)− S‖2F

The weighting is directly given by the scale ζi.

Affine transformations. We introduce a set of affine transformations TA,i = (Ai;ai) in the model-space

cost:

R(TA,S) =
n∑

i=1

‖Di − TA,i(S)‖2F .

Each term can be rewritten as:

‖Di − TA,i(S)‖2F = ‖D>i − AiS
> − ai1>‖2F .

By using decomposition (9), giving Ai = QiZi with Qi ∈ SO(d), we obtain:

‖Di − TA,i(S)‖2F = ‖D>i − QiZiS
> − ai1>‖2F = ‖Q>i D>i − ZiS

> − Q>i ai1>‖2F .

Under this form, each term is similar to the corresponding reference-space term. The difference lies in the

upper triangular matrix Zi. It cannot be simply inverted as an orthonormal matrix since it would change

the value of the term. Because it represents the purely affine part of the transformation, we can state that

the more Euclidean the sought transformations, the closer the reference-space and data-space models. More

formally, assuming Zi ≈ I:

‖Di − TA,i(S)‖2F ≈ ‖Z−1
i Q>i D>i − S> − Z−1

i Q>i ai1>‖2F = ‖A−1
i D>i − S> − A−1

i ai1>‖2F .

Because T−1
A,i = (A−1

i ;−A−1
i ai), this leads to:

‖Di − TA,i(S)‖2F ≈ ‖T−1
A,i(Di)− S‖2F ,

and thus T̃ ? ≈ T ? and S̃? ≈ S?. In other words, a model can be approximated by the other one, with a

quality of approximation related to the amount of affine skewness.

3 Previous Work 14

3 Previous Work

The state-of-the-art on procrustes analysis is quite rich. We give it an overview in the context of statistical

shape analysis. Procrustes analysis finds the best procrustes transformations between sets of points. A

procrustes transformation is defined as a similarity, though it was originally defined as a Euclidean (or-

thonormal) transformation (Schönemann, 1966). Procrustes analysis has originally been defined for two

shapes only (Schönemann, 1966; Schönemann and Carroll, 1970), and was later extended to generalized pro-

crustes analysis, that deals with multiple shapes (Gower, 1975; Ten Berge, 1977). The two-shape problem

is also dubbed the absolute orientation problem (Horn, 1987). The algorithms in the literature are almost

all based on the idea of alternating the estimation of the transformations and of the reference shape. The

latter is initially taken as one of the shape data, and the transformations are estimated independently for

each shape datum, leading to the alternation framework. The algorithm terminates if the change in the

reference shape or its distance to the registered shape data is sufficiently small:

1. Initialize the reference shape S ← Di? as one of the shape data – the shape with the highest number

of points is usually chosen (i? = arg maxi βi)

2. For i = 1, . . . , n, Estimate the similarity Ti from S to the i-th shape datum, Endfor

3. Re-estimate the reference shape: S← 1
n

∑n
i=1 T−1

i (Di)

4. If the termination criterion is not met, go to step 2

Our termination criterion is met if the norm of the difference between between two consecutive reference

shapes is lower than 10−6. It should be noted that the alternation approach minimizes the reference-space5

cost (1). This general framework can be adapted to handle shape data where some points are missing, and

so to minimize the reference-space cost with missing data (2). Step 1 cannot initialize the whole reference

shape from a single shape datum. Since the registrations are still to be computed, it is not at this stage

possible to combine them, and the most ‘complete’ shape datum is used instead. While the registration

proceeds, missing points in the reference shape are filled in. It might not be possible to register some of the

shape data in the early iterations while the reference shape is getting completed. The alternation framework

being iterative, it is not guaranteed to converge to a global minimum of the reference-space cost and depends

on the initial reference shape chosen by the algorithm.
5While at step 2 each transformation can be estimated by minimizing a cost in the data-space or in the reference-space

without changing the solution (the two different costs just differ by a scale factor), it makes a difference at step 3 when re-
estimating the reference shape. Averaging the transformed shape data minimizes the reference-space cost conditioned on the
current similarities.

4 The Stratified Approach 15

The implementations of this general framework mostly differ on how they compute the data to reference

shape similarity transformations, by solving the absolute orientation problem. This computation heavily

depends on how the rotational part of the similarity transformations is represented, and what error criterion

is minimized. Iterative solutions were proposed in the 1950s and 1960s, as (Eggert et al., 1997) reports.

Closed-form solutions were then proposed using quaternions (Horn, 1987) and orthonormal matrices (Horn

et al., 1988; Umeyama, 1991). Dual quaternions were also used to represent both the rotational and trans-

lational parts (Walker et al., 1991). These algorithms provide closed-form solutions, which is a nice feature.

However, they minimize error criteria which are algebraic, and may not behave well in the presence of noise

in the shape data (Eggert et al., 1997). Since in practice the shape data are always corrupted by noise

or, even worse, may not at all satisfy the similarity transformation model, it is crucial that the registration

procedure handles noise and deviation from the estimated model. For that reason, the estimated closed-form

solution is often refined by iteratively minimizing some nonlinear, statistically well-founded solution, such as

the negative log-likelihood of the shape datum to be registered, conditioned on the reference shape. Various

solutions to the absolute orientation problem with noise-contaminated data were proposed (Arun et al.,

1987; Goryn and Hein, 1995; Kanatani, 1994; Matei and Meer, 1999; Ohta and Kanatani, 1998; Ramos and

Verriest, 1997). An integrated solution to multiple shape registration based on the above framework was

also proposed with a total least squares registration step (Krishnan et al., 2005; Wen et al., 2005). (Xiao

et al., 2006) recently proposed to simultaneous perform generalized procrustes analysis while estimating a

model for the deformable component between a set of shape data.

The stratified approach we propose is different from the alternation approaches where reference shape

estimation and shape datum registration are alternated. Alternation approaches need an initial solution

while our approach uses convex optimization and finds an initial solution in closed-form. Our approach

draws on ideas borrowed from stratified 3D reconstruction in Structure-from-Motion. It gracefully deals

with missing data and improves computational efficiency and accuracy.

4 The Stratified Approach

Our contributions in this paper are the stratified approach to generalized procrustes analysis and a set of

models and tools that implements it. The stratified approach makes it possible to efficiently register multiple

shapes, in any dimension and for the three aforementioned types of transformations (affine, similarity and

Euclidean.) Our framework has four main steps. The first two steps perform affine registration (initialization

and nonlinear refinement, respectively), and are needed in all cases, except registration without missing

data that is dealt with matrix factorization. The last two steps perform similarity-Euclidean registration

4 The Stratified Approach 16

(initialization from the affine registration and nonlinear refinement, respectively.) Our stratified framework

is outlined in table 1. The four main steps are described below:

1. Affine registration: reference-space solution (§5.) We give a closed-form solution that minimizes

the reference-space cost.

2. Affine registration: data-space refinement. The data-space cost can be efficiently locally mini-

mized from the reference-space solution using classical Orthogonal Distance Regression (Boggs et al.,

1989), as implemented in the context of Bundle Adjustment in Structure-from-Motion (Slama, 1980;

Triggs et al., 2000).

3. Similarity-Euclidean registration: initial solution (§6.) Given an affine registration of multiple

shapes, we show how both the transformations and the reference shape can be ‘upgraded’ to one of the

similarity-Euclidean registrations in closed-form. This entails one to resolve the purely affine part of

the internal gauge freedoms, and to project the affine transformations to the set of rotation matrices.

4. Similarity-Euclidean registration: iterative refinement. The data-space cost can be minimized

as in the affine case directly above adapted to the similarity-Euclidean registration cases.

Objective

Affine, similarity or Euclidean generalized procrustes analysis (registration of multiple matched shapes represented by d-
dimensional points.)

Inputs

The inputs are n shapes with m points. Visible and missing points are indicated by vi,j ∈ {0, 1}, where i = 1, . . . , n is the shape
index and j = 1, . . . , m is the point index.

Outputs

The outputs are the n sought transformations and the m points of the reference shape.

Algorithm

• Affine registration
If the data are complete (all points observed in all shape data, vi,j = 1 for i = 1, . . . , n and j = 1, . . . , m)
Factorization-based registration

Else
Initial registration with the reference-space model (§5)
Nonlinear refinement with Orthogonal Distance Regression

• Similarity-Euclidean registration
Check that the determinant of the rotational part of all the input affine transformations share the same sign
Upgrading from affine registration (§6)
Nonlinear refinement with Orthogonal Distance Regression

Table 1: The proposed stratified registration approach.

5 Affine Registration in the Reference-Space 17

5 Affine Registration in the Reference-Space

We define A def= {A1, . . . , An} to be the set of unknown affine transformations. An affine transformation Ai

is represented as a pair Ai = (Ai;ai) ∈ Rd×d×Rd. We present a closed-form solution to this problem in the

reference-space.

5.1 Problem Statement

We first introduce the inverse Bi = (Bi;bi)
def= (A−1

i ;−A−1
i ai) of the sought affine transformations (and the

set B def= {B1 . . . , Bn}), and instanciate the reference-space cost R̃ from equation (2) as:

R̃(B,S) def=
n∑

i=1

m∑
j=1

vi,j ‖BiDi,j + bi − Sj‖22.

The major advantage of the reference-space cost is that it is a sum of squares linear in the adjustable

parameters, and thus leads to a linear least squares optimization problem.

We now set the optimization problem to be solved as:

min
B,S
R̃(B,S) s.t. rank(S) = d. (10)

The non-degeneracy constraint we choose here is rank(S) = d. It is necessary to prevent the reference shape

to collapse, i.e., to avoid the trivial zero-cost solution S = 0 and A = {(0;0), . . . , (0;0)}. By deriving the

gauge properties of the reference-space model, we shall see shortly that while sensible and theoretically

well-founded, this rank-based non-degeneracy constraint needs in practice to be ‘strengthened’ to allow one

to solve for the reference-space model.

5.2 Proposed Algorithm

Deriving our algorithm takes several steps. We first investigate the gauge properties of the reference-space

model. We then formulate the problem in matrix form, and finally derive our closed-form solution.

Gauge freedoms and non-degeneracy. While the data-space cost is gauge-invariant, the reference-

space cost is not. Recall that for affine registration, the gauge group is the group of affine transformations.

We will show that the reference-space cost is ‘sub-gauge’ invariant. In other words, it is invariant to a

subgroup of the gauge group, namely, the Euclidean group, and that the cost function extrema are invariant

to the similarity group. Figure 3 shows that changing the gauge with the gauge transformation G gives, for

5 Affine Registration in the Reference-Space 18

the data-space model:

S→ G(S) and A → A ◦G−1,

and for the reference-space model:

S→ G(S) and B → G ◦ B,

as can easily be verified from figure 3. Plugging this gauge transformation into the reference-space cost

(2) also shows that it is invariant only to Euclidean transforms and preserves its extrema under similarity

transforms. In other words, the purely affine part of the gauge group changes the value of the reference-space

cost. As a consequence, it might make the reference shape to get shrunk to S = O (all point coordinates

equal 0) while solving the reference-space model, artificially making the cost to vanish. So as to prevent this

shrinking to happen, one has to enforce a strong non-degeneracy constraint, fixing the purely affine part

of the gauge group. The rank(S) = d constraint is however a weak constraint: it does not guarantee that

the reference shape is not near-degenerate. For that reason, we propose to use a stronger non-degeneracy

constraint. The idea is to force the reference shape to be as non-degenerate as possible, by enforcing its

covariance matrix to be the identity matrix. The non-degeneracy constraint thus becomes S>S = I. We

note that it implies rank(S) = d, and fixes the purely affine and scaling parts of the gauge group.

For pure convenience in our optimization algorithm, as shall become clear in the next section, we choose

to fix the origin of the coordinate frame at the centroid of the reference shape using the constraint S1(m×1) =

0(d×1). Problem (10) is rewritten with the gauge constraints as:

min
B,S
R̃(B,S) s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1).

Matrix formulation. We define the matrix X̃ ∈ Rp×d with p
def= (d + 1)n + m. This matrix contains the

unknowns as:

X̃>
def=

(
B> S>

)
with B>

def=
(

B1 b1 · · · Bn bn

)
. (11)

We use the notation R̃(X̃) def= R̃(B,S). We have to find X̃ by solving the following constrained optimization

problem, where matrix K ∈ Rα×p will be derived shortly (recall that α is the total number of observed shape

points):

min
X̃∈Rp×d

‖KX̃‖2F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1). (12)

5 Affine Registration in the Reference-Space 19

Reference

shape S

Transformation T

Generated

shape T (S)

Matching

Observed

shape D

Matching

Transformation T¡1
Registered

shape T¡1(D)

Data-space model

Reference-space model

Transformation T ±G¡1

Transformation G

Reference

shape G(S)

Transformation G

Transformation G

Figure 3: Comparison of the gauge properties of the data-space and the reference-space models
for affine generalized procrustes analysis. The data-space cost is gauge invariant while the reference-
space cost is sub-gauge-invariant, as explained in the main text.

An efficient minimization strategy is important so as to be able to cope with the potentially very large

number of adjustable parameters. The problem at hand however is fortunatelly very well structured and

‘sparse’. We first rewrite the reference-space cost (2) as:

R̃(X̃) =
n∑

i=1

m∑
j=1

vi,j

∥∥∥D>
i,jB

>
i + b>i − S>j

∥∥∥2

2
=

n∑
i=1

m∑
j=1

vi,j

∥∥∥∥∥∥∥∥∥∥
(
D>

i,j 1 −1

)
B>i

b>i

S>j


∥∥∥∥∥∥∥∥∥∥

2

2

.

We organize the residuals by shape datum first, and rewrite R̃ in matrix form. Matrix K ∈ Rα×p has the

following structure:

K
def=

(
KB KS

)
with KB

def=


KB,1

. . .

KB,n

 ∈ Rα×n(d+1) and KS
def=


KS,1

...

KS,n

 ∈ Rα×m,

5 Affine Registration in the Reference-Space 20

with:

KB,i
def=


Di,1 1

...
...

Di,m 1

 ∈ Rβi×d+1 and KS,i
def= −


1

. . .

1

 ∈ Rβi×m,

where only the ‘rows’ for which vi,j = 1 are instanciated in KB,i and KS,i.

It should be noted that matrix K is very sparse. Indeed, it is easy to see that the order of the number

of non-zero entries in K is related to the total number of observed shape points α times the dimension d:

nnz(K) =
n∑

i=1

(nnz(KB,i) + nnz(KS,i)) =
n∑

i=1

(βi(d + 1) + βi) = α(d + 2).

It might thus be possible to solve problem (12) using some direct sparse matrix factorization algorithm. This

would however have two drawbacks. First, problem (12) involves a linear least squares cost, but is under

nonlinear constraints. Handling these constraints breaks the efficiency of the sparse factorization algorithms.

Second, the problem is highly structured, thanks to the shape of matrices KB and KS . A general purpose

sparse matrix factorization algorithm would not take advantage of this block-structure. The closed-form

solution we describe below gracefully handles the nonlinear constraints, and is designed to take advantage

of the specific problem structure.

A closed-form solution. We rewrite problem (12) as:

min
X̃∈Rp×d

‖KBB + KSS‖2F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1). (13)

Temporarily fixing S, we get the minimizer for B as:

B? def= −K†BKSS. (14)

Thanks to the structure of matrix KB, the pseudo-inverse K†B can be computed very efficiently, as shall be

described shortly. Substituting the expression (14) for B? in the problem formulation (13), we get:

min
S∈Rm×d

‖ − KBK†BKSS + KSS‖2F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1).

Matrix K̂B
def= KBK†B is called the hat matrix. It allows us to rewrite the problem as:

min
S∈Rm×d

‖(I− K̂B)KSS‖2F s.t. S>S = I(d×d) and S>1(m×1) = 0(d×1). (15)

6 Similarity-Euclidean Registration by Upgrading 21

As discussed above, the reference-space solution is invariant to similarity transformations. Therefore, the

position constraint S>1 = 0 can be simply enforced by adding it to the cost, giving the problem:

min
S∈Rm×d

‖LS‖2F s.t. S>S = I(d×d) with L
def=

(I− K̂B)KS

1>

 ∈ Rα+1×m. (16)

A more formal demonstration is given in Appendix A.2. As opposed to the previous problem formulation

(12), one could now find the constrained minimizer S? using a simple SVD of matrix L, as proved in appendix

A.1. The procedure would be to form L by explicitly using a sparse matrix representation, and compute

its d least singular vectors to get S? using some sparse SVD package. Matrix K̂B can be formed block-wise

since KB = diag (KB,i) implies K̂B = diag
(
K̂B,i

)
. The complexity of computing K̂B is thus proportional to

the inversion of the symmetric matrices K>B,iKB,i ∈ Rd+1×d+1.

The solution we propose only uses regular (full) matrices, and goes deeper into exploiting the problem

structure. We first note that the right singular vectors of L and of W
def= L>L are identical. We thus rewrite

the problem as:

min
S∈Rm×d

‖WS‖2F s.t. S>S = I(d×d) with W
def= L>L ∈ Rm×m. (17)

The computational complexity thus depends on the number of model points m but not on the number of

shape data n. Matrix W ∈ Rm×m is given by:

W = 11> +
n∑

i=1

K>S,i(I− K̂B,i)KS,i,

since
(
K̂B,i − I

)> (
K̂B,i − I

)
= I− K̂B,i. Matrix KS,i just inserts rows and columns of zeros. Matrix W can

therefore be constructed very efficiently. The method in appendix A.1 is used to find the solution. Our

algorithm is given in table 2. Once S is computed from (17), B is simply found from (14) as:

(
Bi bi

)
= −

(
K†B,iKS,iS

)>
.

6 Similarity-Euclidean Registration by Upgrading

In this section we deal with the problem of initializing a similarity or a Euclidean registration from an affine

registration Ai = (Ai;ai), i = 1, . . . , n. In the Euclidean case, this requires one to find the registration

6 Similarity-Euclidean Registration by Upgrading 22

Objective

Affine registration of multiple matched shapes represented by d-dimensional points, with missing data, using the reference-space
model. The result is meant to be used as an initial guess to affine registration with the data-space model of table.

Inputs

The inputs are n matched shapes with at most m points each. Each shape is represented by a matrix Di, where i = 1, . . . , n is
the shape index. The size of matrix Di is the number of points observed in shape i times the dimension d (Di is just like a full
shape matrix, for which the rows corresponding to missing points were removed.) Each shape Di is represented in homogeneous
coordinates by the matrix D̄i = (Di 1). Visible and missing points are indicated by vi,j ∈ {0, 1}, where j = 1, . . . , m is the
point index.

Outputs

The outputs are the n affine transformations TA,i = (Ai;ai) ∈ Rd×d × Rd×1 and the reference shape in matrix S ∈ Rm×d with
S> = (S1 · · · Sm).

Algorithm

• For i = 1, . . . , n, Set K†B,i ←
`
D̄>i D̄i

´−1
D̄>i , Set K̂B,i ← D̄iK

†
B,i, Endfor

• Set W← 1(m×m)

• For i = 1, . . . , n { W+=
Pn

i=1 K>S,i(I− K̂B,i)KS,i }
Set k1 ← 1
For j1 = 1, . . . , m
If v(i, j1)
Set k2 ← 1
For j2 = 1, . . . , m
If v(i, j2)
If j1 = j2, W(j1, j2)+=1, Endif
Set W(j1, j2)–=K̂Bi(k1, k2)
Set k2 ← k2 + 1

Endif
Endfor
Set k1 ← k1 + 1

Endif
Endfor

Endfor

• Compute an SVD W
SVD→ UΣU>

• Set S? to the last d columns of U

• For i = 1, . . . , n
Set Bi ← 0(d×d+1)

Set k ← 1
For j = 1, . . . , m { Bi ← −(K†B,iKS,iS)

>}
If v(i, j)
For d1 = 1, . . . , d + 1, For d2 = 1, . . . , d, Set Bi(d2, d1)–=K†B,i(k, d1)S(j, d2), Endfor, Endfor
Set k ← k + 1

Endif
Endfor

Endfor

• For i = 1, . . . , n { Extracting the forward transformations }
Set Ai ← Bi

−1

Set ai ← −Aibi

Endfor

Table 2: Affine registration with the reference-space model. Implementation of our initial closed-
form affine registration algorithm in the reference-space model. The mathematical derivation is in §5.

6 Similarity-Euclidean Registration by Upgrading 23

Ei = (Ei; ei) such that Ei ∈ SO(d), i = 1, . . . , n. A trivial solution that comes to mind is to find each Ei by

projecting Ai to the closest orthonormal matrix. This however cannot be done as directly. Indeed, one has to

take into account the nature of the gauge. In the data-space model framework, we have seen that the gauge

is modeled by a transformation of the same nature as the registration that is to be computed. In other

words, the affine registration we compute is up to an unknown global affine transformation G = (G;g),

that we have to resolve (at least partly) so as to upgrade the registration to similarity-Euclidean. The

transformation upgrading equation is thus A→ A ◦G−1, and G is dubbed the upgrade transformation. We

start by expanding it to:

(Ai;ai) → (AiG
−1;−AiG

−1g + ai) ≈ (Ei; ei) with Ei ∈ SO(d), i = 1, . . . , n.

Only the rotational part provides constraints on the upgrade transformation. The translational part is

chosen as g = 0, and we thus get ei = ai, i = 1, . . . , n. The Euclidean upgrading problem is thus formulated

as:

find
G,E1,...,En

s.t. AiG
−1 ≈ Ei with Ei ∈ SO(d), i = 1, . . . , n.

Using the decomposition G = QZ of equation (8), where Q ∈ SO(d) and Z is an upper triangular matrix,

we can eliminate the rotational part Q of the upgrade transformation to get:

find
Z,E1,...,En

s.t. AiZ
−1 ≈ Ei with Ei ∈ SO(d), i = 1, . . . , n.

This problem does not have an exact solution. We solve it in two steps. First, we compute the upgrade

transformation Z. Second, we find the sought transformations Ei, i = 1, . . . , n. We note that this formulation

also holds but up to scale in the similarity case:

find
Z,E1,...,En,ζ1,...,ζn

s.t. AiZ
−1 ≈ ζiEi with Ei ∈ SO(d), ζi > 0, i = 1, . . . , n.

Note that in this case one can also impose a constraint on the scale of the upgrading – this will be done

during the first step of the algorithm. Our algorithm is summarized in table 3.

6.1 Computing the Upgrading Transformation

This problem looks similar to the one of self-calibration in Structure-from-Motion for the affine cam-

era (Quan, 1996). We follow the classical approach of discarding the shape and using the affine registration

parameters only to find the upgrading transformation. However, this leads to a much simpler and more

6 Similarity-Euclidean Registration by Upgrading 24

stable algorithm than in the Structure-from-Motion case. We will also sketch an alternative solution using

the shape to find the upgrading transformation, and will show that the two solutions are equivalent. We

tackle the Euclidean case first and then show how our solution can be extended to the similarity case.

Euclidean case. The rotational part must be special orthonormal: AiZ
−1 ∈ SO(d), giving the following

orthonormality constraints:

AiZ
−1Z−>A>i ≈ I and det(AiZ

−1) > 0, i = 1, . . . , n.

The affine registration does not make reflections between the inter-shape transformations; in other words,

it is consistently oriented. It means that sign(det(A1)) = · · · = sign(det(An)) = ω ∈ {−1; 1}. Since

det(AiZ
−1) = det(Ai) det(Z−1), the constraints simply become ω det(Z−1) > 0. This single constraint can

further be rewritten as sign(det(Z)) = ω leading to the following set of constraints:

AiYA>i ≈ I, i = 1, . . . , n (18)

Y = Z−1Z−> (19)

sign(det(Z)) = ω, (20)

In stratified self-calibration Y represents the Dual Absolute Conic, that contains the metric structure of

the 3D model (Hartley and Zisserman, 2003). In stratified generalized procrustes analysis Y also represents

a second-order surface in the reference-space and contains the Euclidean structure of the reference shape

(or the metric structure in the similarity case.) The problem directly above can be easily cast as a linear

least squares problem with a cost given by equation (18) under the bilinear equality constraints of equation

(19) and the degree-d inequality constraint of equation (20). Because they use projection matrices, linear

self-calibration algorithms use equation (18) only to solve for Y from the Ai, i = 1, . . . , n (Pollefeys et al.,

2004). Constraint (19) can be enforced a posteriori (Gurdjos et al., 2009). This is known to be a difficult

and sometimes unstable step.

We now show how to further rearrange the system of constraints (18), (19) and (20) so that all of them

can be satisfied by a simple linear least squares estimator. The main idea is, as in linear self-calibration,

to first compute Y and then extract Z based on equation (19) (using for instance the inverse of a Cholesky

factor.) We first show that constraint (20) can be ignored when solving for Y. If the solution Z? that is

extracted from Y does not satisfy (20) we can simply flip the sign of its last entry: Z?
d,d ← −Z?

d,d. This

way both (19) and (20) will be satisfied. We now show that, rearranging (18) using the fact that the Ai,

6 Similarity-Euclidean Registration by Upgrading 25

i = 1, . . . , n are square invertible matrices, (19) (which merely is Y ∈ S(d) i.e., that Y must be symmetric

positive definite) can be ignored as well. Rewriting (18) as:

Y ≈ A−1
i A−>i , i = 1, . . . , n,

we get the following constrained linear least squares problem:

min
Y∈S(d)

n∑
i=1

‖Y − A−1
i A−>i ‖

2
F ,

whose solution is simply:

Y? ← 1
n

n∑
i=1

A−1
i A−>i .

It is easily shown that Y? satisfies all the necessary constraints. In practice, noting that the Cholesky factor

of Y? have to be inverted to find Z?, we directly compute P
def= Y−1 and obtain Z? as the Cholesky factor of

P? to get the closed-form solution:

Z? ← chol

(
1
n

n∑
i=1

A>i Ai

)
.

Similarity case. In the similarity case the constraint (18) becomes AiYA>i ≈ ξiI, i = 1, . . . , n, for some

unknown ξi > 0 defined as the square of the transformation scale: ξi
def= ζ2

i . We fix the determinant of Y to

be some positive constant c to set the otherwise free global scale of the gauge. Defining ξ>
def= (ξ1 · · · ξn),

we get the constraints:

AiYA>i ≈ ξiI, i = 1, . . . , n (21)

ξi > 0, i = 1, . . . , n (22)

det(Y) = c > 0 (23)

Y = Z−1Z−> (24)

sign(det(Z)) = ω. (25)

We now propose a solution that will exactly satisfy the constraints directly above using a simple linear least

squares estimator, as in the simplest Euclidean case. We first rewrite the set of constraints using P = Y−1

6 Similarity-Euclidean Registration by Upgrading 26

Objective

Upgrading an affine generalized procrustes analysis to similarity or Euclidean generalized procrustes analysis. The result is
meant to be used as an initial guess for nonlinear similarity-Euclidean registration.

Inputs

The inputs are n affine transformations (Ai;ai), i = 1, . . . , n in dimension d. These transformations must have a consistent
orientation: they must satisfy ω = sign(det(A1)) = · · · = sign(det(An)).

Outputs

In the Euclidean-upgrading case, the outputs are n Euclidean transformations (Ei, ei) with Ei ∈ SO(d), i = 1, . . . , n. In the
similarity-upgrading case, the algorithm also outputs the transformation scales ζi > 0, i = 1, . . . , n. If the reference shape S is
known, it is only upgraded.

Algorithm

• Computing the upgrade transformation
Euclidean case:

Set Z ← chol

1

n

nX
i=1

A>i Ai

!
Similarity case:

Set Z ← chol

nX

i=1

d

s
1

det(A>i Ai)
A>i Ai

!
• Zd,d ← ω sign(det(Z))

• Applying the upgrade transformation
For i = 1, . . . , n
Set ei ← ai

Set AiZ
−1 SVD→ UΣV>

Set Ei ← UV>

Set ζi ← 1
d

Pd
k=1 σk (similarity case)

Endfor
Set S← SZ>

Table 3: Similarity-Euclidean registration by upgrading an affine registration. Implementation of
our closed-form upgrading algorithm. The mathematical derivation is in §6.

6 Similarity-Euclidean Registration by Upgrading 27

and φi
def= ξ−1

i as follows:

AiP
−1A>i ≈ φ−1

i I, i = 1, . . . , n (26)

φi > 0, i = 1, . . . , n (27)

det(P) = b > 0 (28)

P = Z>Z (29)

sign(det(Z)) = ω, (30)

with b
def= 1

c . We start using the same arguments as in the Euclidean case and drop constraint (30) that

will be enforced a posteriori when Z will be extracted from the computed P as a Cholesky factor. Defining

Fi = A>i Ai, i = 1, . . . , n we then proceed to rewrite the constraint (26) as:

P ≈ φiFi, i = 1, . . . , n.

Taking the determinant of both sides of the equation gives:

det(P) ≈ φd
i det(Fi),

and the solution:

φ?
i = d

√
b

det(Fi)
.

Since det(Fi) > 0 we get that φ?
i > 0, i = 1, . . . , n as required. Finally, the least squares solution for P is

obtained as:

P? ←
n∑

i=1

φ?
i Fi.

It is to be observed that with this expression, φi, i = 1, . . . , n implies that P? ∈ S(d). In other words,

enforcing the constraint (27) will as a consequence enforce the constraint (29). The value of b can be chosen

arbitrarily (in practice we choose b = 1.) The constraint det(P?) = b can be enforced by simply rescaling P?,

but it is not necessary since b represented the arbitrary global scale. The whole set of constraints (26)-(30)

can thus be enforced by a simple linear least squares estimate.

A derivation based on the reference shape. Instead of using the affine transformations as in the

previous self-calibration-like derivation, we propose to keep the affine shape S. What we know is that there

6 Similarity-Euclidean Registration by Upgrading 28

exists an upgrade transformation Z and orthonormal transformations Ei such that:

Di,j ≈ EiZSj + ai.

Let X ∈ Rnd×m be the centred measurement matrix,6 with entries Di,j − ai. We may rewrite the previous

equation in matrix form as:

X ≈ RZS> with X def=


D1,1 − a1 · · · D1,m − a1

...
. . .

...

Dn,1 − an · · · Dn,m − an

 and R def=


E1

...

En

 .

Given that S is column-orthonormal, S>S = I. We multiply each side of the equation to the right by S and

get:

XS ≈ RZ.

Since R is made of orthonormal matrices, we have that R>R = I. Multiplying each side of the equation to

the left by its transpose gives:

S>X>XS ≈ Z>Z = P. (31)

As in the previous solution we can compute P and then Z as a Cholesky factor of P. This solution is simple

and uses the data points instead of an algebraic criterion. However, one may wonder how different are the

two solutions. To answer this question, we consider the maximum likelihood transformation Ai given by:

Ai = min
Ai∈Rd×d

∥∥∥D>i − AiS
> − ai1>

∥∥∥2

F
=
(
D>i − ai1>

)
S.

The solution (31) can thus be rewritten as:

S>X>XS =
n∑

i=1

S>
(
Di − 1a>i

)(
D>i − ai1>

)
S =

n∑
i=1

A>i Ai,

which shows that the two solutions are the same provided that the affine registration is maximum likelihood

in the data-space model. Note that this also holds for the similarity case.
6So as to make the approach usable even if data points are missing, one uses a partly predicted centred measurement matrix

built by using for the missing data points their prediction from the reference shape and affine registration: Di,j ≈ AiSj + ai.

7 Experimental Results 29

6.2 Applying the Upgrading Transformation

Once the upgrading transformation Z is computed, one can then find the similarity-Euclidean transforma-

tions. This implies that one solves the so-called ‘orthonormal correction’ step, that is similar to classical

procrustes analysis of a pair of shape data. The solution is thus well-known.

We sought an orthonormal transformation Ei ∈ SO(d) ‘close to’ AiZ
−1. A classical solution to this

problem is to find Ei such that:

Ei = arg min
Ei∈SO(d)

‖Ei − AiZ
−1‖2F .

In the similarity case, one also has to find a scale factor ζi > 0 leading to:

(Ei; ζi) = arg min
Ei∈SO(d)

ζi>0

‖ζiEi − AiZ
−1‖2F .

It is known that the solution to this problem is Ei ← UV> where AiZ
−1 SVD→ UΣV> is an SVD and ξi is the

average of the singular values: ξi ← 1
d

(∑d
k=1 σk

)
where Σ = diag(σ1, . . . , σd). A demonstration is given in

Appendix A.3.

7 Experimental Results

We present experimental results comparing the proposed methods to existing ones using simulated and real

data and for various dimensions.

7.1 Compared Methods and Error Criterion

Each method being compared has a shortname in two parts. It first indicates the group of transformation

being computed (Aff for affine, Sim for similarity and Euc for Euclidean.) The second part of a method’s

shortname indicates the nature of the method itself (the algorithm being used.) The compared methods

are:

• Aff-Fct – affine factorization (for complete datasets only)

• Aff-Ref – the proposed affine closed-form reference-space solution described in table 2

• Aff-All – affine refinement in data-space

• Sim-Alt/Euc-Alt – the classical alternation method described in §3

• Sim-Upg/Euc-Upg – the proposed upgrading to similarity/Euclidean described in table 3

7 Experimental Results 30

• Sim-All/Euc-All – similarity/Euclidean refinement in data-space

The error criterion we measure is the data-space cost (4). We also measure the computation time.

7.2 Simulated Data

We first describe our simulation setup and then report our experimental results. The results are obtained

as RMS (Root Mean of Squares) over 100 random trials with the same simulation parameters.

7.2.1 Simulation Setup

We simulate shape data using a random reference shape and transformations. We here recall that our input

data are a set of shape data. Each shape datum is a set of points called shape points. Our simulation setup

has several parameters that we will vary in turn to assess the algorithms’ behaviour in various conditions.

Our description below includes the default value and range of variation of the simulation parameters. For

instance, m(50; [10, 50]) means that the number m of simulated shape points is 50 by default and will vary

from 10 to 50 in our experiments. Those m reference shape points are randomly drawn in an origin-centred

hyper-sphere of unit radius in dimension d(3; [1, 10]). We then generate n(5; [2, 50]) affine transformations

from d+1 control points each. We proceed by setting the control points in the reference coordinate frame as

the d canonical basis vectors and the origin. We then draw the n sets of control points at random in the unit

hyper-sphere and form the n sought affine transformations. So as to generate Euclidean transformations we

perform a QR decomposition as in equation (8) on the rotational part of each affine transformation and keep

the orthonormal part and the scale of the purely affine part only. Finally, we apply the n transformations

to the m reference shape points. We simulate noise and nonrigidity by adding normally distributed random

values with standard deviation σ. For rigid simulation we use lower σ2(.01; [0, .1]) values and interpret it

as noise. For nonrigid simulation we use higher values σ2(.1; [0, 1]) which can be thought of as deviation

from the estimated model, equivalent to nonrigid transformations applied to the shape points. We finally

simulate missing data by erasing some of the generated shape points with rate τ(.5; [0, .7]) (.5 means 50%

missing data.)

7.2.2 Affine Generalized Procrustes Analysis

The experiments we report in this section are meant to assess the quality of the affine part in our stratified

approach and thus will compare Aff-Fct, Aff-Ref and Aff-All.

The first set of experiments is intented to check if Aff-Ref followed by Aff-All manages to find the

optimal solution. We use Aff-Fct, which always finds the global minimum, as a reference, for complete

7 Experimental Results 31

datasets (τ = 0.) The results are shown in the four top rows of figure 4. We will simulate missing data in

a second step; however Aff-All means reference-space initialization followed by iterative minimization of

the data-space error. We simulated three kinds of data: Euclidean, affine and non-rigid.

In the Euclidean data case shown in the left column of figure 4 we observe that all three methods gently

degrade with increasing dimension d and noise σ while they are steady with respect to the number of points

m and number of shapes n. The error decreases with respect to the amount of missing data τ which is

logical since less data means less constraints to be satisfied to fit the data. What is very important in this

first batch of experiments is that, as will be confirmed by the other experiments, Aff-All always find the

optimal solution like Aff-Fct and that, more importantly, Aff-Ref gives a very close result in all cases.

This is very important since Aff-Ref is based on a closed-form solution. This can easily be explained:

Aff-Ref minimizes a reference-space error while the other two methods minimize a data-space error; with

Euclidean data both errors are very similar, and so the global solution to one closely matches the global

solution to the other.

In the affine data case shown in the middle column of figure 4 we first observe that Aff-All and Aff-

Fct always reach the same error. This means that Aff-All always finds the global minimum. The second

observation is about Aff-Ref. The results that this method obtains can be very similar or different to the

results obtained by the two other methods. Remember that Aff-Ref solves a convex approximation of the

original problem and is thus not supposed to reach the exact solution to the original problem. The solution

it finds is however not too far from the optimal one in general. It gently degrades with the dimension d and

the number of shape data n increasing but is about steady regarding the number of points m. It however

quickly degrades beyond a noise standard deviation σ of about 0.2 (20% of the shapes’ size) which is way

beyond typical real noise levels.

In the non-rigid data case shown in the right of figure 4 we can make similar observations as in the rigid

case regarding methods Aff-All and Aff-Fct: they both always converge to the global minimum. The

result of Aff-Ref however quickly degrades with respect to all parameters and could probably not be used

‘as is’; it is sufficiently reliable however to allow Aff-All to converge to the global minimum.

In figure 4, we also present results obtained when varying the amount of missing data in the rigid and

nonrigid cases. The results are shown in the two right-most graphs of figure 4. In this setup we cannot

run Aff-Fct since this factorization based method does not cope with missing data; only Aff-All and

Aff-Ref are thus compared. We observe that Aff-Ref resists to missing data quite well.

As a conclusion, we can say that Aff-Ref provides an initialization that allows Aff-All to reach the

global minimum of the cost function in all cases. This solution is extremely accurate for Euclidean data,

7 Experimental Results 32

Euclidean data affine data non-rigid data
affine analysis affine analysis affine analysis

er
ro

r
R

2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

AFF−FCT
AFF−REF
AFF−ALL

er
ro

r
R

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AFF−FCT
AFF−REF
AFF−ALL

er
ro

r
R

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

dimension d dimension d dimension d

er
ro

r
R

10 20 30 40 50
0

0.05

0.1

0.15

0.2

er
ro

r
R

10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

er
ro

r
R

10 20 30 40 50
0

0.5

1

1.5

2

number of points m number of points m number of points m

er
ro

r
R

10 20 30 40 50
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

er
ro

r
R

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

er
ro

r
R

10 20 30 40 50
0

2

4

6

8

number of shapes n number of shapes n number of shapes n

er
ro

r
R

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

er
ro

r
R

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

er
ro

r
R

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

noise σ noise σ noise σ

er
ro

r
R

0 0.2 0.4 0.6
0.13

0.14

0.15

0.16

0.17

0.18

er
ro

r
R

0 0.2 0.4 0.6
0.1

0.2

0.3

0.4

0.5

er
ro

r
R

0 0.2 0.4 0.6
0

1

2

3

4

missing data τ missing data τ missing data τ

Figure 4: Affine generalized procrustes analysis with simulated data. The graphs show the error
as a function of 5 different parameters. Each column is for a different simulation setup; from left to right:
Euclidean, affine and non-rigid transformations, as indicated at the top.

7 Experimental Results 33

which is a very important case in practice in 2D and 3D shape analysis.

7.2.3 Similarity and Euclidean Generalized Procrustes Analysis

Our experiments in this section are meant to assess the quality of the similarity and Euclidean part in our

stratified approach and thus will compare Sim-Upg, Sim-All and Sim-Alt, and the Euclidean equivalents.

Our goal is to see how our algorithms behave with respect to various factors, and how they compare to

classical alternation. Note that only dimensions d ∈ {2, 3} are tested. The experiments intend to check if

our algorithm Sim-All improves on the classical alternation Sim-Alt and the capability of Sim-Upg to

provide a reliable initialization.

For similarity data we show the result of similarity analysis in the left column of figure 5; very similar

results were obtained for Euclidean analysis and we thus do not include the corresponding graphs. We

observe that the results of Sim-All and Sim-Alt are close, but that Sim-All always gives a more accurate

result. The upgrading method Sim-Upg degrades slightly from dimension 2 to 3 and gently increases its

error against the number of shapes and noise, while it gets more accurate as the number of points increases.

The middle column of figure 5 shows the results obtained for similarity analysis of non-rigid data. We can

draw similar observations as in the rigid case. We also notice that Sim-Upg is very sensitive to the amount

of non-rigidity in the shape data. The results for non-rigid data and Euclidean analysis are shown in the

right column of figure 5. We make the same observations as for similarity analysis except that the error

stabilizes with increasing number of shapes instead of growing.

As a conclusion, we can say that Sim-Upg provides a good initialization to Sim-All. Classical alterna-

tion implemented by Sim-Alt performs nearly as well as Sim-All but is always less accurate. The same

conclusion holds for Euclidean generalized procrustes analysis.

7.2.4 Timing and Complexity

We monitored the average run-time for each method over the 100 random trials of each experiment. Note that

all iterative methods (alternation methods and nonlinear refinement with Orthogonal Distance Regression)

use the same termination criterion, based on thresholding the norm of the difference between two consecutive

estimates of the reference shape matrix. More specifically, the algorithms stop if this norm is lower than

10−6. We show the timings for the minimum and maximum value of each parameter in figure 6. In the affine

analysis case, Aff-All is generally the slowest method while Aff-Fct is always the fastest. Aff-Ref lies

inbetween. For similarity and Euclidean analysis and similarity data Sim-Upg and Sim-All (respectively

Euc-Upg and Euc-All) are the fastest two methods while the alternation method Sim-Alt (respectively

7 Experimental Results 34

similarity data non-rigid data non-rigid data
similarity analysis similarity analysis Euclidean analysis

er
ro

r
R

2 2.2 2.4 2.6 2.8 3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SIM−ALT
SIM−UPG
SIM−ALL

er
ro

r
R

2 2.2 2.4 2.6 2.8 3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

SIM−ALT
SIM−UPG
SIM−ALL

er
ro

r
R

2 2.2 2.4 2.6 2.8 3

0.35

0.4

0.45

0.5

0.55

0.6

EUC−ALT
EUC−UPG
EUC−ALL

dimension d dimension d dimension d

er
ro

r
R

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

er
ro

r
R

10 20 30 40 50
0

1

2

3

4

er
ro

r
R

10 20 30 40 50
0

0.5

1

1.5

2

2.5

number of points m number of points m number of points m

er
ro

r
R

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

er
ro

r
R

10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

er
ro

r
R

10 20 30 40 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

number of shapes n number of shapes n number of shapes n

er
ro

r
R

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

er
ro

r
R

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

er
ro

r
R

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

noise σ noise σ noise σ

er
ro

r
R

0 0.2 0.4 0.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

er
ro

r
R

0 0.2 0.4 0.6
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

er
ro

r
R

0 0.2 0.4 0.6
0.45

0.5

0.55

0.6

0.65

missing data τ missing data τ missing data τ

Figure 5: Similarity and Euclidean generalized procrustes analysis with simulated data. The
graphs show the error as a function of 5 different parameters. Each column is for a different simulation
setup and type of transformation, as indicated on the top. For similarity data, similarity and Euclidean
generalized procrustes analysis give similar results so we only show the results for similarity generalized
procrustes analysis.

7 Experimental Results 35

Euc-Alt) is generally the slowest. For non-rigid data however Sim-All and Euc-All are generally the

slowest methods; Euc-Alt is generally the fastest and Euc-Upg lies inbetween while Sim-Alt and Sim-

Upg are nearly equivalent, Sim-Upg being slighly faster. These timings were monitored with our Matlab

implementation of the algorithms; they could of course be substantially different for another implementation,

especially in a programming language such as C or C++. They nonetheless give an idea of the required

computation time for various cases. As a conclusion, we can say that the nonlinear refinement methods

Aff-All, Sim-All and Euc-All are generally the slowest in our implementation. The affine factorization

method Aff-Fct is very fast while the timings needed by the alternation methods Sim-Alt and Euc-Alt

depend on the type of data.

We now give an analysis of the theoretical complexity of the algorithms. Let κ be the number of

iterations performed by an iterative algorithm. Alternation methods have a complexity inO(κnd3), assuming

that solving for a single transformation has complexity O(d3). Aff-Ref has a complexity in O(m3),

since the SVD has the highest complexity. Upgrading methods have a complexity in O(d3), since the

Cholesky decomposition has the highest complexity. Finally, Orthogonal Distance Regression methods have

a complexity in O(κm(nd)3), assuming that sparsity is exploited over the reference shape. It is thus clear

that in our proposed stratified framework, the complexity is dominated by Orthogonal Distance Regression.

Therefore, the theoretical complexity of our stratified framework is O(κm(nd)3), higher than the complexity

of alternation methods which is O(κnd3). This confirms the conclusions we drew from the timing results.

7.2.5 Influence of the Initialization

We assessed to which extent Aff-Ref is beneficial to Aff-All as an initialization procedure for the non-

linear refinement. For this reason, we compared for all our experiments the nonlinear refinement initialized

by Aff-Ref, initialized by a random solution and by a simple combination of the shape data (see below.)

Those three methods are respectively denoted Aff-All, Aff-All-Rnd and Aff-All-Smp. We monitored

two quantities: the error R at convergence and the number of iterations required to reach convergence. The

initialization in Aff-All-Smp proceeds in two steps. Visible points are used to establish pairwise affine

transformations between the shape data. After transfer to some reference coordinate frames, all visible

points are then averaged to get the reference shape. Regarding the number of iterations, we obtained the

following results:

• Aff-All (refinement started from the solution of Aff-Ref): 7.46 iterations on average, standard

deviation 15.43

7 Experimental Results 36

affine data

affine analysis

non-rigid data

affine analysis

similarity data

similarity analysis

non-rigid data

similarity analysis

non-rigid data

Euclidean analysis

euclidean data

affine analysis

Figure 6: Timing results for all experiments on simulated data. For each simulation and analysis
scenario shown in one of figures 4 and 5 the timing (in ms) is shown for each of the 5 varied parameters
and each tested method for the two extreme parameter values: the timing for the minimum and maximum
value of the parameters are shown on the left and right batch of bars respectively.

7 Experimental Results 37

• Aff-All-Rnd (refinement started from a random solution): 19.15 iterations on average, standard

deviation 38.88

• Aff-All-Smp (refinement started from a simple initialization): 12.09 iterations on average, standard

deviation 25.32

We recall that the computation time is directly proportional to the number of iterations, and is thus on

average three times longer when a random initialization is used instead of Aff-Ref. Regarding the number

of iterations, we obtained the results shown in figure 7. We make the following observations. First, the

error for Aff-Ref is slightly but consistently lower than the error for Aff-Ref-Rnd and Aff-Ref-Smp.

Second, the computation time for Aff-Ref is always lower than for the two other initializations. Depending

on the parameter, it can be marginally or substantially lower. For instance, it is quasi-equivalent for the

runs with low noise level σ, and 3 orders of magnitude lower for large number of points m.

Figure 7: Influence of the initialization on simulated data. The first 5 graphs show the error as a
function of 5 different parameters, and for 3 different initializations of the nonlinear refinement. The last
(bottom-right) graph shows the timing (in ms) for each of the 5 varied parameters and each tested method
for the two extreme parameter values: the timing for the minimum and maximum value of the parameters
are shown on the left and right batch of bars respectively.

Our conclusions are that the proposed initialization method marginally improves the convergence of the

nonlinear refinement, but substantially decreases the number of required iterations and computation time.

7 Experimental Results 38

7.2.6 Relationship Between the Reference-Space and the Data-Space Models

We investigated the theoretical relationship between the reference-space and data-space models in §2.4. We

now present an experiment whose results are shown in figure 8 that illustrates this relationship. In this

experiment, the data shapes are randomly generated from a reference shape such that the average scale

discrepancy ζ varies from 1 to 2. Four methods are compared. Alternation methods Euc-Alt and Sim-

Alt minimize a reference-space error while Euc-All and Sim-All are the proposed methods minimizing

a data-space error. As theoretically demonstrated, Euclidean analysis methods Euc-All and Euc-Alt

consistently reach the same result. The error depends on the scale discrepancy. None of those methods

estimates scale, and the error thus increases with scale discrepancy. On the other hand, similarity analysis

methods Sim-All and Sim-Alt consistently reach a different result. Each method compensates for scale

discrepancies, and thus reaches an error approximately independent of the scale variations.

er
ro

r
R

1 1.2 1.4 1.6 1.8 2
0.41

0.42

0.43

0.44

0.45

EUC−ALL
SIM−ALL
EUC−ALT
SIM−ALT

scale ζ

Figure 8: Relationship between the reference-space and the data-space models on simulated
data. In this experiment the average relative scale ζ between the data shapes is varied from 1 to 2.

7.3 Real Data

We tested the six algorithms described in §7.1 on two real datasets in 2D, 3D and higher dimensions.

7.3.1 The 2D-Face Dataset

The goal of this experiment is to show how our algorithms behave on a real dataset in dimension d = 2.

The 2D-Face dataset contains n = 10 2D shapes of a face with m = 40 points obtained by fitting an Active

Appearance Model to a video. It was used in (Bartoli et al., 2008) for nonrigid Structure-from-Motion

with the hierarchical low-rank shape model. The tracked face is talking and its shape thus undergoes

local deformations. This dataset has missing data with τ ≈ .1 since when the face rotates it gets partly

self-occluded. Some sample images are shown in figure 9.

We ran different methods for generalized procrustes analysis. Figure 10 shows a graphical rendering of

7 Experimental Results 39

Figure 9: Sample images from the 2D-Face dataset. These images were registered using an Active
Appearance Model.

the results. The data-space error and timings are given below:

Method Error (pixels) Timing (seconds)

Aff-All 6.51 0.53

Sim-All 6.76 1.76

Sim-Alt 6.79 2.03

Euc-All 6.84 1.61

Euc-Alt 6.84 0.07

This confirms our results obtained on simulated data. Aff-All is very fast. Sim-All improves on the

classical alternation applied to a similarity: it is both faster and finds a solution with a lower error. Euc-

All gives the same error as Euc-Alt but is slower.

Transformed shapes
Reference shape

Shape 1
AFF−ALL
EUC−ALL
EUC−ALT
SIM−ALL
SIM−ALT

Figure 10: Results of generalized procrustes analysis on the 2D-Face dataset. Left: the reference
shape and all shape data transformed to the reference coordinate frame for the results of Aff-All. Right:
the first shape data with the transformed reference shapes for the 5 tested methods.

7 Experimental Results 40

7.3.2 The 3D-Human Dataset: Procrustes and Theseus Analysis in Higher Dimensions

The goal of this experiment is to show how our algorithms behave on real datasets in dimension d = 3 and

higher. The 3D-Human dataset contains n = 200 mocap 3D shapes for 5 subjects performing the same

action with m = 20 points which were extracted from the HumanEVA database (Sigal and Black, 2006).

This dataset has no missing data. It shows a walking subject and is thus significantly nonrigid. Some sample

shapes are shown in figure 11.

Figure 11: Sample images from the 3D-Human dataset. These images were extracted from the
HumanEVA database (Sigal and Black, 2006). Motion captured markers are shown as red points.

So as to be able to register the different subjects we take the following route. We will first construct a

simple linear deformable model for each subject with l deformation modes and an average shape. We will

then register the deformable models with generalized procrustes analysis in dimension 3(l + 1). We call this

second round of generalized procrustes analysis as generalized theseus analysis.7

Deformable modeling of each subject – 3D generalized procrustes analysis. We do not use a

subject’s index in this paragraph to keep the notation uncluttered and since the deformable modeling is done

independently on each subject. Inspired by the LRSM (Low-Rank Shape Model) which has been extensively

used in Non-Rigid Structure-from-Motion (Bregler et al., 2000) we approximate each shape D>i ∈ R3×m of

one subject’s walk as:

D>i ≈ ζiEi

(
S> +

l∑
k=1

εi,kC
>
k

)
+ ei1>. (32)

In this equation ζi, Ei and ei represent a global similarity transform and S is an average shape. The

deformations are modeled by the l configuration shapes coefficients εi,k ∈ R and the l deformation modes

7In Greek mythology Procrustes was a bandit who was stretching people or cutting off their legs so as to make them fit an
iron bed’s size. Theseus captured Procrustes and fitted him to his own bed.

7 Experimental Results 41

C>k ∈ R3×m. In Non-Rigid Structure-from-Motion by factorization this equation is rewritten as:

D>i ≈ ζiEiS
> +

(
εi,1ζiEi · · · εi,lζiEi

)
C>1
...

C>l

+ ei1>.

This shows that the centred measurement matrix is approximately (up to noise and deviation from the

model) of rank 3(l + 1). The factorization is however difficult to perform in practice since the first factor

matrix has a block structure which cannot be readily enforced in SVD (or any other matrix factorization.)

This introduces additional ambiguities (the number of which is in O(9l2)) that have to be resolved while

trying to enforce the block structure via the mixing matrix (Xiao and Kanade, 2006).

We here take a different route: we first estimate the global motion only using similarity generalized

procrustes analysis. We thus first compute S and the ζi, Ei and ei. We then undo the effect of global motion

on each shape datum and vectorize the matrix representation to get:

di
def= vect

(
1
ζi

E−1
i

(
D>i − ei1>

)
− S>

)
.

This allows us to rewrite the LRSM (32) as:

di ≈
l∑

k=1

εi,kck with ck
def= vect(C>k).

Stacking the n motion compensated and vectorized shape data di in a single measurement matrix gives:


d>1
...

d>n


(n×3m)

≈


ε1,1 · · · ε1,l

...
. . .

...

εn,1 · · · εn,l


(n×l)


c>1
...

c>l


(l×3m)

,

where the index of a matrix indicates its size. This problem can be easily solved by a rank-l factorization

of the left-hand side matrix. The ambiguities in this factorization are simple linear reparameterizations

and thus do not need to be resolved. In our experiments we kept different numbers of deformation modes:

l = 0, . . . , 3.

The following table shows the error obtained for the different similarity algorithms over the 5 different

subjects:

7 Experimental Results 42

Subject 1 2 3 4 5 All

Error (cm) for Sim-Alt 8.61 7.59 7.32 9.77 10.17 8.69

Error (cm) for Sim-Upg 21.26 27.75 16.73 15.74 21.58 20.61

Error (cm) for Sim-All 8.53 7.55 7.29 9.69 10.09 8.63

Error (cm) for the LRSM with l = 1 3.59 4.26 3.71 3.75 4.38 3.94

Error (cm) for the LRSM with l = 2 2.58 2.13 2.13 2.79 2.82 2.49

Error (cm) for the LRSM with l = 3 1.58 1.26 1.26 1.74 1.60 1.49

We observe that the alternation algorithm Sim-Alt gives good results, very close to our nonlinearly refine

solution given by Sim-All, while Sim-Upg, our closed-form solution, is able to provide an initial guess

which is obviously better than a random guess by still too coarse to be used as is. The LRSM gives lower

errors since it models deformations. We observe that the more deformation modes (the higher the value of

l), the lower the error, which is perfectly logical.

The average shape and first deformable mode for the different subject are shown in figure 12. We can

see that the main variations due to walking motion are well captured. However, we can also clearly see

inter-subject differences.

Reference shape S
S + 0.5 σ C

1

S + 1.0 σ C
1

S + 2.0 σ C
1

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure 12: The Low-Rank Shape Model computed for the 3D-Human dataset. The average shape
and the first mode of variation are shown for the 5 subjects.

Inter-subject deformable registration – generalized theseus analysis in higher dimensions. So

far, we obtained an average shape and l deformation modes for each subject. So as to do inter-subject

registration we have to compute transforms in both space and time. Indeed, nothing guarantees that the

average shape and the deformation modes match between the different subjects. Therefore, we represent

8 Conclusion 43

each subject’s spatio-temporal shape data as a matrix Γp ∈ R3(l+1)×m (with p = 1, . . . , 5) defined as:

Γ>p
def=

(
Sp C1,p · · · Cl,p

)
.

We then perform affine generalized theseus analysis by running our affine algorithm in dimension 3(l + 1).

We measure the RMS discrepancy between the original shape data Di and their prediction from the final

computed models, which is proportional to the negative log-likelihood:

Subject 1 2 3 4 5 All

Error (cm) for Aff-Fct with l = 0 10.53 7.61 7.34 10.73 11.09 9.46

Error (cm) for Aff-Ref with l = 0 12.46 7.90 7.83 10.33 11.34 9.97

Error (cm) for Aff-All with l = 0 10.53 7.61 7.34 10.73 11.09 9.46

Error (cm) for Aff-Fct with l = 1 4.36 4.41 3.96 4.42 4.86 4.40

Error (cm) for Aff-Ref with l = 1 11.66 4.57 4.18 4.13 4.82 5.87

Error (cm) for Aff-All with l = 1 4.36 4.41 3.96 4.42 4.86 4.40

Error (cm) for Aff-Fct with l = 2 2.94 2.43 2.48 3.10 3.28 2.84

Error (cm) for Aff-Ref with l = 2 3.63 2.80 2.66 3.15 3.28 3.11

Error (cm) for Aff-All with l = 2 2.94 2.43 2.48 3.10 3.28 2.84

Error (cm) for Aff-Fct with l = 3 1.70 1.30 1.33 1.83 1.69 1.57

Error (cm) for Aff-Ref with l = 3 2.21 1.58 4.75 3.67 1.88 2.82

Error (cm) for Aff-All with l = 3 1.70 1.30 1.33 1.83 1.69 1.57

It is clear that the more deformation modes the lower the error, as expected. Aff-Ref gives remarkably

good results, being slightly higher in error than the global minimum of the cost function, always found by

Aff-All and Aff-Fct.

8 Conclusion

We presented a novel approach to the generalized procrustes analysis problem that, inspired by similar tech-

niques in Structure-from-Motion, we called the stratified approach. Contrarily to the Structure-from-Motion

case, and especially in the affine to similarity and Euclidean upgrade step, we were able for generalized pro-

crustes analysis to give simple methods based on convex linear least squares optimization. Our approach

compares favorably with the classical alternation framework: our closest-form solutions are accurate, espe-

cially in the important case of Euclidean data. We thus believe that they make an important step in how

A Demonstrations 44

generalized procrustes analysis can be solved. Nonlinear refinement algorithms are always more accurate

than alternation and more widely applicable.

A Demonstrations

A.1 Solution to minS ‖LS‖F such that S>S = I

Let L ∈ Rq×d we want to show that:

arg min
S∈O(d)

‖LS‖2F = V̄,

with V̄ the last d columns of matrix V in the SVD L
SVD→ UΣV>. We write sk, k = 1, . . . , d the columns of S

(similarly for V with vk.) We rewrite the above problem as a set of nested problems:

min
S∈O(d)

‖LS‖2F = min
sd∈O(d)

‖Lsd‖22 + min
sd−1∈O(d), s>d sd−1=0

‖Lsd−1‖22 + · · ·

The last column sd is found first by computing the partial derivatives of the lagrangian:

Ld(sd)
def= ‖Lsd‖22 + λ(1− ‖sd‖22),

where λ is a Lagrange multiplier, giving:

L>Lsd = λsd.

This shows that sd is a right singular vector of L, and so sd = vk for some k ∈ {1, . . . , d}. The cost for vk

is ‖Lvk‖22 = σ2
k and8 we therefore choose sd ← vd to minimize the cost.

The other columns are then found in turn, as follows. Consider sd−1. The lagrangian is:

Ld−1(sd−1)
def= ‖Lsd−1‖22 + λ(1− ‖sd−1‖22) + µ(s>d−1sd)2,

and its partial derivatives are:

1
2

∂Ld−1

∂sd−1
= L>Lsd−1 − λsd−1 + µs>d sdsd−1 = 0.

Since s>d−1sd−1 = ‖sd−1‖22 = 1 this gives:

L>Lsd−1 = (λ− µ)sd−1.

8We have that ‖Lvk‖22 = ‖UΣV>vj‖22 = ‖UΣek‖22 = σ2
k‖uk‖22 = σ2

k where ek is a zero vector with one as its k-th component.

A Demonstrations 45

Similarly to sd we finally find that sd−1 ← vk for some k ∈ {1, . . . , d}, and choose sd−1 ← vd−1 to minimize

the cost and satisfy the constraints. Doing the same reasoning for all the remaining columns leads to S← V̄.

A.2 Translational Gauge Constraints for the Reference-Space Cost

The reference-space cost is translation invariant, which means that we can simply fix the translation part

of the gauge by adding a gauge constraint to the cost, as if it were a simple penalty. We chose to centre the

reference shape using S>1 = 0. Below, we prove that the original cost function is invariant to translations

of the reference shape. Note that a translation represented by vector g ∈ Rd applies to the reference shape

S as S → S + 1g> with 1 ∈ Rm.

Consider the minimization problem (15), and plug in the translational gauge transformation of the

reference shape mentioned directly above:

‖(I− K̂B)KSS‖2F → ‖(I− K̂B)KS(S + 1g>)‖2F .

This is expanded to ‖(I− K̂B)KSS+(I− K̂B)KS1g>‖2F . Consider the second factor. By construction, matrix

KS ∈ Rα×m is a stack of identity matrices to which some rows were removed, and thus KS1 = 1 ∈ Rα,

leading to:

(I− K̂B)KS1g> = 1g> − K̂B1g>. (33)

We have that K̂B = diag
(
K̂B,i

)
and KB,i = (Di 1). Denoting di = D>i 1, we get:

K̂B,i = KB,i

(
K>B,iKB,i

)−1
K>B,i =

(
Di 1

)D>i Di di

d>i m


−1D>i

1>

 ,

from which, defining Hi
def=
(
D>i Di − 1

mdid>i
)−1 we get:

K̂B,i1 =
(

Di 1

) Hi − 1
mHidi

− 1
md>i H>i

1
m

(
1 + 1

md>i Hidi

)

di

m

 =
(

Di 1

)0

1

 = 1.

This shows from equation (33) that (I−K̂B)KS1g> = 0 and that the reference-space cost is thus translational

gauge invariant: ‖(I− K̂B)KSS‖2F = ‖(I− K̂B)KS(S + 1g>)‖2F .

A Demonstrations 46

A.3 The Closest Special Orthonormal Matrix

We give an simple demonstration to find the closest special orthonormal E ∈ SO(d) matrix to a matrix M

with det(M) > 0 mimizing the cost C def= ‖E −M‖2F . Different solutions and proofs exist in the literature

((Horn et al., 1988; Schönemann and Carroll, 1970)); they are more involved than ours. We first plug the

SVD M
SVD→ UΣV> in the cost, and since U ∈ O(d) and V ∈ O(d) we get C = ‖H−Σ‖2F with H

def= U>EV and

Σ = diag(σ1, . . . , σd). We are left with the problem of finding the closest orthonormal matrix to a diagonal

matrix. Expanding the norm in the cost, we get C = ‖H‖2F + ‖Σ‖2F − 2vect(H)>vect(Σ) that we rewrite as:

C = d + σ1 + · · ·+ σd − 2(H1,1σ1 + · · ·+ Hd,dσd).

Given that H ∈ O(d) we have that Hk,k ≤ 1, k = 1, . . . , d. Noting that σk ≥ 0, k = 1, . . . , d, the solution

that minimizes the expression of C directly above is given by choosing Hk,k = 1, k = 1, . . . , d, leading to

H = I. We finally get the solution:

E = UV>.

It is to be noted that σk > 0, k = 1, . . . , d then det(Σ) > 0. Since det(M) > 0, U ∈ O(d) and V ∈ O(d) this

implies that det(E) = det(U) det(V) = 1 and thus E ∈ SO(d) as sought.

We now look into the demonstration of the scaled case, where we have to find both matrix E ∈ SO(d)

and a scale factor ζ > 0 such that the following cost S def= ‖ζE −M‖2F is minimized. As in the above case,

we use the SVD of M to get S = ‖ζH− Σ‖2F where H is defined as above. We expand the norm in the cost

as above and get S = ‖ζH‖2F + ‖Σ‖2F − 2vect(ζH)>vect(Σ) that we rewrite as:

S = dζ2 + σ1 + · · ·+ σd − 2ζ(H1,1σ1 + · · ·+ Hd,dσd).

The same argument as above directly leads to H = I (and thus E = UV>). This leaves us with:

S = dζ2 + σ1 + · · ·+ σd − 2ζ(σ1 + · · ·+ σd).

Setting the derivatives of S with respect to ζ to as to find the minimizer gives:

1
2

∂S
∂ζ

= dζ − (σ1 + · · ·+ σd) = 0,

and readily leads to:

ζ =
1
d

d∑
k=1

σk.

B Implementation: the Generalized Procrustes Analysis Toolbox 47

It is easily verified that ζ > 0 as required.

B Implementation: the Generalized Procrustes Analysis Toolbox

We created a Matlab toolbox that implements our proposed algorithms. We called it the generalized pro-

crustes analysis toolbox; it will be released under the GPL licence. Our toolbox offers a ready-to-use interface

for registering shape data using any of the described methods for affine, Euclidean and similarity transfor-

mations. It also includes the classical alternation approach for similarity and Euclidean transformations and

copes with incomplete shape data. Our toolbox is submitted as supplemental material – all our

experiments can thus be replicated very easily (see below).

B.1 Main Function

The whole set of algoritms is bundled in a single function called gpa. It has the following syntax:

T=gpa(D,V,options);

where D contains the shape data, V indicates the missing points and options specifies which algorithm to

use, the level of verbosity and the maximum number of iterations. The output T is a structure that contains

the computed transformations, the error for the different trials and the computational time for various steps

of the algorithms. Of course, a detailed help can be obtained by typing:

help gpa;

B.2 Simulating Data and Testing

All the experiments with simulated data that we reported in this paper can be replicated using an experi-

mental front-end function. It has a compact interface that generates data and then calls the gpa function.

This function is called genExperiment and has the following syntax:

genExperiment(options,name);

There is no output since the results will be saved in a file. options is a structure that defines the method

or methods that will be tested, the number of shape data, the dimension, the ratio of missing data, the

amount of added noise or of deformation between the shapes, the parameter that will be varied, the number

of random trials, the name of the file to save the results and the type of data (transformations) to be

generated. The second input parameter called name specifies the name of a file containing the results of an

experiment which is yet to be completed and from which the current experiment will be started.

References 48

As an example of usage of genExperiment, we give the piece of code that replicates experiment the

top-row noise graph shown in figure 4:

options.title=’exp1RMSvssigma’;

options.n=5;

options.d=3;

options.m=50;

options.tau=0;

options.sigma=sqrt(0.01);

options.varpar=’sigma’;

options.parvalues=linspace(0,sqrt(0.1),10);

options.iterations=100;

options.methods={’AFF-FCT’,’AFF-REF’,’AFF-ALL’};

options.transformations=’AFF’; % or ’EUC’ or ’SIM’

genExperiment(options);

The results will be saved in a file called exp1RMSvssigma.mat. If the experiment could not complete for

some reason it can be restarted from where it stopped by typing:

genExperiment(options,’exp1RMSvssigma’);

Of course, a detailed help for this function can be obtained by typing:

help genExperiment;

References

P. Aguiar, J. Xavier, and M. Stosic. Globally optimal solution to exploit rigidity when recovering structure

from motion under occlusion. In International Conference on Image Processing, 2008.

K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-D points sets. ieee Transactions on

Pattern Analysis and Machine Intelligence, 9(5):698–700, September 1987.

A. Bartoli, V. Gay-Bellile, U. Castellani, J. Peyras, S. Olsen, and P. Sayd. Coarse-to-fine low-rank structure-

from-motion. In International Conference on Computer Vision and Pattern Recognition, 2008.

A. Bartoli, D. Pizarro, and M. Loog. Stratified generalized procrustes analysis. In British Machine Vision

Conference, 2010.

References 49

P. T. Boggs, J. R. Donaldson, and R. B. Schnabel. ODRPACK: Software for weighted orthogonal distance

regression. acm Transactions on Mathematical Software, 15:348–364, 1989.

C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D shape from image streams. In

International Conference on Computer Vision and Pattern Recognition, 2000.

I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. John Wiley and Sons, 1998.

D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-D rigid body transformations: a comparison of

four major algorithms. Machine Vision and Applications, 9:272–290, 1997.

D. Goryn and S. Hein. On the estimation of rigid body rotation from noisy data. ieee Transactions on

Pattern Analysis and Machine Intelligence, 17(12):1219–1220, December 1995.

J. C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51, 1975.

J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. New York: Oxford University Press, 2004.

P. Gurdjos, A. Bartoli, and P. Sturm. Is dual linear self-calibration artificially ambiguous? In International

Conference on Computer Vision, 2009.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press,

2003. Second Edition.

B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical

Society of America A, 4(4):629–642, April 1987.

B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution of absolute orientation using

orthonormal matrices. Journal of the Optical Society of America A, 5(7):1127–1135, July 1988.

K. Kanatani. Analysis of 3-D rotation fitting. ieee Transactions on Pattern Analysis and Machine Intelli-

gence, 16(5):543–549, May 1994.

S. Krishnan, P. Y. Lee, J. B. Moore, and S. Venkatasubramanian. Global registration of multiple 3D point

sets via optimization-on-a-manifold. In Eurographics Symposium on Geometry Processing, 2005.

S. Mahamud, M. Herbert, Y. Omori, and J. Ponce. Provably-convergent iterative methods for projective

structure and motion. In International Conference on Computer Vision and Pattern Recognition, 2001.

B. Matei and P. Meer. Optimal rigid motion estimation and performance evaluation with bootstrap. In

International Conference on Computer Vision and Pattern Recognition, 1999.

References 50

N. Ohta and K. Kanatani. Optimal estimation of three-dimensional rotation and reliability evaluation. In

European Conference on Computer Vision, 1998.

M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch. Visual modeling

with a hand-held camera. International Journal of Computer Vision, 59(3):207–232, 2004.

L. Quan. Self-calibration of an affine camera from multiple views. International Journal of Computer Vision,

19(1):93–105, May 1996.

J. A. Ramos and E. I. Verriest. Total least squares fitting of two point sets in m-D. In Conference on

Decision and Control, 1997.

P. H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31:1–10,

1966.

P. H. Schönemann and R. M. Carroll. On fitting one matrix to another under choice of a central dilation

transformation and a rigid motion. Psychometrika, 35(2), June 1970.

L. Sigal and M. J. Black. HumanEva: Synchronized video and motion capture dataset for evaluation of

articulated human motion. Technical Report CS-06-08, Brown University, 2006.

C. C. Slama, editor. Manual of Photogrammetry, Fourth Edition. American Society of Photogrammetry

and Remote Sensing, 1980.

J. M. F. Ten Berge. Orthogonal procrustes rotation for two or more matrices. Psychometrika, 42(2):267–276,

1977.

B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. Fitzgibbon. Bundle ajustment — a modern synthesis.

In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, 2000.

S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. ieee

Transactions on Pattern Analysis and Machine Intelligence, 13(4):376–380, 1991.

M. W. Walker, L. Shao, and R. A. Volz. Estimating 3D location parameters using dual number quaternions.

Computer Vision, Graphics and Image Processing: Image Understanding, 54(3):358–367, November 1991.

G. Wen, D. Zhu, S. Xia, and Z. Wang. Total least squares fitting of point sets in m-D. In Computer Graphics

International, 2005.

J. Xiao and T. Kanade. A linear closed-form solution to non-rigid shape and motion recovery. International

Journal of Computer Vision, 67(2):233–246, March 2006.

References 51

J. Xiao, B. Georgescu, X. Zhou, D. Comaniciu, and T. Kanade. Simultaneous registration and modeling of

deformable shapes. In International Conference on Computer Vision and Pattern Recognition, 2006.

A. J. Yezzi and S. Soatto. Deformotion: Deforming motion, shape average and the joint registration and

approximation of structures in images. International Journal of Computer Vision, 53(2):153–167, March

2003.

