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One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative mor-
phology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal
patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed
tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive
surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of
the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-oper-
ative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future per-
spectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS
and new developments in 3D optical imaging, this is a timely discussion about technologies that could
facilitate complex CAS procedures in dynamic and deformable anatomical regions.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Today, numerous diseases are diagnosed or treated using inter-
ventional techniques to access the internal anatomy of the patient.
While open surgery involves cutting the skin and dividing the
underlying tissues to gain direct access to the surgical target, min-
imally invasive surgery (MIS) is performed through small incisions
in order to reduce surgical trauma and morbidity. The term laparo-
scopic surgery refers to MIS performed in the abdominal or pelvic
cavities. The abdomen is usually insufflated with gas to create a
working volume (pneumoperitoneum) into which surgical instru-
ments can be inserted via ports. As direct viewing of the surgical
target is not possible, an endoscopic camera (laparoscope) gener-
ates views of the anatomical structures and of the surgical instru-
ments. In contrast to open surgical procedures, MIS provides the
surgeon with a restricted, smaller view of the surgical field, which
can be difficult to navigate for surgeons only trained in open sur-
gery techniques. To compound the visual complexity of MIS, lapa-
roscopic instruments are operated under difficult hand-eye
ergonomics and usually provide only four degrees of freedom
(DoF) which severely inhibits the dexterity of tissue manipulation.

To improve the visualization capabilities of the surgeon during
MIS, recent developments in medical imaging and image process-
ing have opened the way for computer-assisted surgery (CAS) (Ya-
niv and Cleary, 2006; Cleary and Peters, 2010) in which computer
systems provide precise localization information about the patient
anatomy relative to the interventional instruments. The ergonom-
ics of the MIS operating room mean that there is a natural interface
between the surgeon and the patient as the surgical site is inher-
ently displayed on a digital screen. This alleviates the difficulty of
providing overlay with specialized hardware to visualize the com-
puted anatomical information over the surgical site as for example
in percutaneous procedures (Fichtinger et al., 2005).

One of the main difficulties to be addressed in soft-tissue CAS is
the fast, accurate and robust acquisition of the anatomy during
surgery. For Augmented Reality (AR) visualization of subsurface
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anatomical details overlayed on the laparoscopic video, intra-oper-
ative 3D data has to be registered non-rigidly to 3D pre-procedural
planning images and models. Tomographic intra-operative imag-
ing modalities, such as ultrasound (US), intra-operative computed
tomography (CT) and interventional magnetic resonance imaging
(iMRI) have been investigated for acquiring detailed information
about the tissue morphology. However, there are significant tech-
nological challenges, costs and risks associated with real-time im-
age acquisition in a surgical theatre or interventional radiology
suite with traditional instrumentation while providing images
with acceptable signal-to-noise ratio (SNR).

In MIS, an increasingly attractive approach involves 3D recon-
struction of soft-tissue surfaces using the endoscope itself by inter-
preting the properties or geometry of light reflecting off the
surfaces at the surgical site. Optical techniques for 3D surface
reconstruction can roughly be divided into two categories (Mirota
et al., 2011): passive methods that only require images, and active
methods that require controlled light to be projected into the envi-
ronment. Passive methods include stereoscopy, monocular Shape-
from-X (SfX) and Simultaneous Localization and Mapping (SLAM)
while the most well-known active methods are based on structured
light and Time-of-Flight (ToF). Both active and passive technologies
have found successful applications in a wide spectrum of fields
including domestic and industrial robotics, and the film and games
industries. Reconstruction of the patient anatomy for MIS, how-
ever, poses several specific challenges that have not yet been
solved. While many applications focus on the 3D reconstruction
of static scenes, the methods applied in MIS must be able to cope
with a dynamic and deformable environment. Furthermore, tissue
may have homogeneous texture making automatic salient feature
detection and matching difficult. The critical nature of surgery
means that techniques must have high accuracy and robustness in
order to ensure patient safety. This is particularly challenging in
the presence of specular highlights, smoke, and blood, all of which
occur frequently in laparoscopic interventions. New technologies
in the operating room also require seamless integration into the
clinical workflow with minimum setup and calibration times. Fi-
nally, miniaturization is a challenging issue because methods rely-
ing on triangulation (cf. Section 2), such as stereoscopy and
structured light, require a certain distance (baseline) between the
optical centers of the two cameras or the camera and the projector.
Reconstruction accuracy increases with the length of the baseline
and thus there is a tradeoff between compactness and reconstruc-
tion quality. Table 1 summarizes and compares the most well-
known 3D surface reconstruction techniques in MIS.
Table 1
Overview of 3D surface reconstruction methods reviewed in this paper: Stereoscopy (Ster
Localization and Mapping (SLAM), Structured Light (SL) and Time-of-Flight (ToF). The table s
active (i.e. require controlled light to be projected into the environment), whether they r
(additional hardware) and if a baseline is needed for reconstruction (cf. Section 1). Furtherm
Details can be found in the corresponding sections.

Method Active/
Passive

Requires
baseline

Additional
hardware

Depth range

Stereo Passive Yes Noa Depends on baseline

DSfM Passive Nob No Close range

SfS Passive No No Depends on light power and
camera sensitivity

SLAM Passive Yes No Depends on baseline
SL Active Yes Yes Depends on light power and

sensitivity
ToF Active No Yes Depends on modulation freque

and light power

a But requires stereo laparoscope.
b Just for template generation.
In this article we report a comprehensive review of the litera-
ture for optical 3D reconstruction in MIS that summarizes the
state-of-the-art for the different techniques and identifies the main
technical challenges as well as future perspectives for the field. Re-
cent reviews have discussed the role of computer vision in MIS
(Mountney et al., 2010; Mirota et al., 2011; Stoyanov et al., 2012)
and for surgical navigation (Baumhauer et al., 2008; Nicolau
et al., 2011; Cleary and Peters, 2010). With this paper, which
evolved from a tutorial on 3D surface reconstruction organized at
the 14th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2011, we address a
technical audience that is already familiar with the fundamental
concepts in surgical navigation and computer vision. In contrast
to previous papers that focus on the underlying basic principles
of surface reconstruction, we aim to provide a deeper insight into
the state-of-the-art in this field. In Sections 2–6, we review the rel-
evant literature on laparoscopic 3D surface reconstruction based
both on passive (Sections 2–4) and active (Sections 5 and 6) illumi-
nation techniques. Each reconstruction method is introduced by a
description of the working principle, a review of the state-of-the-
art of the technique as well as a summary and discussion in the
context of laparoscopic surgery. To relate the underlying technol-
ogy to CAS, we also present possible clinical applications for sur-
face reconstruction (Section 7) and conclude with a discussion of
the technical challenges and future perspectives toward clinical
translation (Section 8).
2. Stereoscopy

2.1. Introduction

The 3D spatial understanding capabilities of the human visual
system are heavily reliant on binocular vision and stereopsis (Marr
and Poggio, 1979; Marr, 1983). By observing a scene from two dis-
tinct viewpoints, parallax between the observations provides a
strong cue about the distance between the world and the observer.
Objects close to the eye have larger binocular parallax than those
further away and this can be used to infer metric distances by
using the geometry of triangles and a process called triangulation.
In MIS, stereo laparoscopes, as shown in Fig. 1a and b, have been
introduced to provide the surgeon with a 3D view of the operating
site because various studies have shown that the loss of depth cues
on 2D monitors impairs the surgeon’s control of the instruments
and that microsurgical tasks can be performed more easily with
eo), Deformable Shape-from-Motion (DSfM), Shape-from-Shading (SfS), Simultaneous
hows whether the methods are passive (i.e. only require images for reconstruction) or
equire modification of the hardware currently deployed in the clinical environment
ore, it provides general comments on depth range, lateral resolution and frame rate.

Lateral resolution Frame rate

� Image resolution Real-time
on GPU

Up to image resolution Not yet
real-time

Same as image resolution Real-time
on GPU

� Image resolution Real-time
Depends on complexity of patterning scheme (typically
0.1–1% of image resolution)

Real-time

ncy Up to 360 � 240 Real-time



Fig. 1. (a) Principle of 3D surface reconstruction based on stereo vision. A point on the soft-tissue surface, M, is projected to image points m1 and m2 on the two image planes
by the line-of-sight rays q1 and q2 respectively. With a geometrically calibrated device the line-of-sight ray for each image pixel is known. For two corresponding pixels in the
stereoscopic image pair, the metric position of surface points can therefore be recovered by computing the ray intersection. (b–d) Two images obtained using a stereo
laparoscope during robotic assisted surgery on the lung and an image of the device. (e) Disparity image obtained using the images in (b) and (c) with the algorithm reported in
(Stoyanov et al., 2010) where lighter colors are closer to the camera. (f) 3D motion of the surface in images (b) and (c) obtained between two time frames using stereoscopic
scene flow where warmer colors represent larger motion (Stoyanov, 2012a). (g) An overlay of the stereoscopic image pair illustrating parallax between the stereo views. (h)
Rectified stereo pair obtained during robotic beating heart surgery with two plots illustrating the correspondence problem. The two strips represent the image search space in
1D for a correlation window and the plots show the correlation metric for the window highlighted in the images above sliding along the search space. The left plot shows a
unique correct match in the similarity measure and the one on the right shows an incorrect one with multiple candidate matches.

1 The epipolar geometry describes the projective geometry relationships between
two views of a scene. Rectification is the process of transforming image pixel
coordinates to display the epipolar relationship as vertical alignment between the
two views (Faugeras, 1993; Hartley and Zisserman, 2003).
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depth perception (Taffinder et al., 1999). When a stereo laparo-
scope is used for surgery, computer vision techniques can be used
to obtain the tissue surface geometry from the pair of images as a
passive technique requiring no additional light or hardware to en-
ter the patient.

The basic principle of stereo reconstruction is illustrated in
Fig. 1a and can be broken down into the following steps: calibrat-
ing the cameras; acquiring multiple images of the scene; establish-
ing stereo correspondences of points in the images; structure
triangulation using the known geometric properties of the cam-
eras; and structure refinement using filtering or priors on the
shape of objects. Stereo relies on the parallax between different
observation points and the geometry of projection to intersect
line-of-sight rays of corresponding image pixels and compute the
3D position of the source point on the tissue surface. The process
requires knowledge of the camera parameters describing the
geometry of pinhole projection such that image pixels can be
back-projected to line-of-sight rays (Faugeras, 1993; Hartley and
Zisserman, 2003). The projection process can be expressed as a ma-
trix multiplication in each camera:

m1 ¼ P1M ¼ K1½Ij0�M and m2 ¼ P2M ¼ K2½Rjt�M

where points m1 and m2 are homogeneous vectors in pixel coordi-
nates and world point M is a homogeneous point in the metric coor-
dinate system. The intrinsic camera parameters are encapsulated by
matrix Ki and the camera pose in a reference coordinate system is
given by the rotation matrix R and the camera center t = �RC. Note
that one camera is usually chosen as the reference coordinate sys-
tem and hence has R = I and C = 0. All projection parameters can
be combined in one matrix P and are usually obtained in a pre-oper-
ative calibration procedure using calibration objects with precisely
known geometry (Zhang, 2000). Several toolboxes are available on-
line for performing this step (Bouguet, 2012; Stoyanov et al., 2012;
Sepp and Fuchs, 2012). Once calibration is known, the projection
equations can be rearranged to describe the direction of the rays
q1 and q2 shown in Fig. 1. The rays are unlikely to intersect at M
due to noise but an estimate of the 3D point can be obtained by
finding the midpoint of the shortest line between the two rays. Be-
cause structure triangulation is straightforward with calibrated ste-
reo cameras the main problem of stereo reconstruction is
establishing correspondence between the images. The
correspondence problem involves determining image primitives
(pixels or higher level features) across image pairs that are projec-
tions of the same point in 3D space. It is typically approached in
either a sparse manner where a number of salient regions (features)
are detected and matched using some strategy (Ullman, 1979) or as
a dense problem where correspondence is computed for every im-
age pixel (Barnard and Fischler, 1982). For calibrated cameras, it is
common to consider only dense techniques as stereo images can be
rectified to align vertically according to their epipolar geometry1

and hence reduce the search space for correspondence to 1D. The
dense correspondence problem is often referred to as computational
stereo. With rectified images its solution can be shown as a disparity
map (shown in Fig. 1e), which represents the parallax motion of
pixels.

2.2. State-of-the-art

To compute the disparity map, computational stereo algorithms
can typically be broken down into four stages as described by
(Scharstein and Szeliski, 2002): cost computation, cost aggregation,
disparity computation and optimization, and disparity refinement.
Early work in the field focused on local techniques with simple
winner-takes-all (WTA) strategies for selecting the disparity at im-
age pixels based on the cost function measuring the similarity be-
tween pixels or windows around pixels in the stereo pair (Barnard
and Fischler, 1982). While the limitation of local approaches is that
they fail to exploit regional constraints, recent works have shown
that even WTA can produce compelling results when combined
with biologically inspired cost aggregation (Nalpantidis and Gas-
teratos, 2010; Yoon and Kweon, 2006). Another approach to
enforcing more global constraints is through optimization of the
disparity cost function over image scan lines using techniques such
as dynamic programming (DP) (Criminisi et al., 2007) or over the
entire image using belief propagation (Tappen and Freeman,
2003), graph cuts (Kolmogorov et al., 2008) or variational methods
(Swirski et al., 2011). More recently, the disparity optimization and
refinement stages usually combine explicit processing for object
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recognition (Bleyer et al., 2011), region segmentation (Bleyer et al.,
2010) and fitting for structures such as planes (Yang et al., 2008)
which are common in man-made environments. While most algo-
rithms assume Lambertian reflectance to simplify similarity calcu-
lations, methods for handling view dependent specular highlights
have also been reported (Zhou and Kambhamettu, 2006). With
numerous algorithms reported each year, computational stereo is
a very mature method for 3D reconstruction from images, and
the above paragraphs have only outlined some of the main lines
of thought in the field as a full review is impractical and beyond
the scope of this article. The main remaining challenge is to build
robust systems that perform reliably in practical applications
where changes in the environment or imaging setup do not influ-
ence the quality of reconstruction. For a detailed perspective on
the state-of-the art in computational stereo techniques outside
surgery, the reader is referred to two comprehensive reviews of
the field up to 2003 (Scharstein and Szeliski, 2002; Brown et al.,
2003). For the most recent advances we refer the reader to the Mid-
dlebury Stereo Vision2 repository of data with ground truth and eval-
uation metrics which has served the community as a baseline for
algorithm performance over the past decade.
2.3. Application to laparoscopy

The first work reporting stereoscopic depth reconstruction in
MIS used a hardware implementation of a dense computational
stereo algorithm (Devernay et al., 2001). Using normalized cross-
correlation as a similarity metric for cost computation and a
WTA strategy without any global optimization the algorithm was
reported to operate at 1 Hz using field programmable gate arrays
(FPGA). Semi-global optimization using DP was developed in (Hag-
er et al., 2007) and used to register the depth map acquired during
surgery to pre-operative models in robotic partial nephrectomy (Su
et al., 2009). The run-time of the algorithm was around 10 Hz with
a central processing unit (CPU) implementation. Faster run-times
have recently been reported at around 30 Hz with a global or
semi-global optimization strategy in addition to bilateral disparity
filtering and meshing (Röhl et al., 2012). This method has been
used for registering endoscopic video images to biomechanical
models of the liver. Another technique also operating at near
real-time frame rates that uses local optimization to propagate dis-
parity information around correspondence seeds obtained using
feature matching as developed in (Stoyanov et al., 2005b) has also
been shown to perform well for endoscopic images (Stoyanov
et al., 2010). This method has the desirable property of ignoring re-
gions with highlights, occlusions or high uncertainty and has also
recently been extended to recover temporal motion as well as 3D
shape (Stoyanov, 2012a). An extension of the algorithm showing
reduced noise artefacts has also been presented (Bernhardt et al.,
2012). To boost the computational performance of reconstruction,
algorithms using the graphics processing unit (GPU) have recently
been reported (Kowalczuk et al., 2012; Richa et al., 2010; Röhl
et al., 2012). These approaches rely on executing computationally
expensive elements of the algorithm, such as cost computation,
simultaneously on multiple cores of the GPU.

In some MIS applications, a large part of the surgical field of
view (FoV) is composed of a single tissue surface, for example in
endoscopic beating heart surgery. For this application, several ste-
reoscopic techniques have been proposed for reconstructing the
cardiac surface shape and subsequently tracking its motion and
deformation using a geometric surface model as a smoothness con-
straint (Lau et al., 2004; Stoyanov et al., 2004). These approaches
do not solve the correspondence problem like conventional
2 http://vision.middlebury.edu/stereo.
computational stereo algorithms, but they do inherently recon-
struct the tissue surface shape from stereoscopic cues and can
incorporate motion models and constraints for handling specular
reflections and occlusions (Richa et al., 2008b; Richa et al., 2011).
The methods can be implemented using GPU parallelization to
achieve fast processing (Richa et al., 2011).

Table 1 summarizes some of the properties of stereo recon-
struction applied to laparoscopy. In general, the computational
performance of algorithms is dependent on image resolution.
Reconstruction accuracy is also dependent on the image resolution
as well as on the accuracy of the extrinsic and intrinsic camera
parameters which heavily influence the recovered depth (Kyto
et al., 2011). The accuracy of triangulation decreases with distance
away from the cameras as the relative baseline between the cam-
era centers and the reconstructed points becomes smaller. In stere-
oscopy, the baseline is inherently bounded by the diameter of the
laparoscope. The majority of stereo laparoscopes have a 10 mm
diameter and a resulting baseline of about 5 mm though the most
recent da Vinci� systems use an 8 mm scope. Experimentally, we
have experienced instability and large errors once the target tis-
sues are further away than a multiple of 10–15 of the baseline.
For images with Video Graphics Array (VGA) resolution, recent
quantitative results on silicone phantom models indicate that ste-
reo can achieve an accuracy of 1.5 mm (Röhl et al., 2012). This is
likely to improve with increased image resolution, although high
definition (HD), with its greater computational complexity pre-
sents a greater challenge than standard definition (SD) images,
for which algorithms reaching video frame rates can be imple-
mented. Nevertheless, frame rates for quarter-resolution HD
images running at 13 frames per second (fps) have been reported
with GPU support (Röhl et al., 2012).

2.4. Discussion

Computational stereo has been demonstrated as a feasible tech-
nique for 3D reconstruction from laparoscopic images on in vivo
clinical data. Currently, it is perhaps the most well-placed tech-
nique for translation into clinical practice because stereoscopic
hardware for both imaging and display is already used in the oper-
ating room, for example with the da Vinci� surgical system (Intu-
itive Surgical, Inc; Sunnyvale, CA, USA). Other stereo systems are
either already available or in development by Karl Storz Gmbh
(Tuttlingen, Germany), Richard Wolf GmbH (Knittlingen, Germany)
and ConMed Corporation (Utica, NY, USA) with more manufactur-
ers looking at entering the market in the near future. It is impor-
tant to note that stereo laparoscope systems developed in the
early days of MIS were not adopted into widespread clinical use,
most likely due to the poor ergonomics of headmounted display
systems. However, with recent developments in display technolo-
gies and the popularity of 3D video in the entertainment industry,
it is likely that the re-emergence of stereo laparoscope systems will
have a wider impact in surgical practice.

When a stereo laparoscope is used, computational stereo ap-
proaches do not require any amendment to the existing operating
room setup and do not alter the surgical environment or the clin-
ical workflow. The major challenge for 3D reconstruction from a
pair of laparoscopic images is the visual complexity of scenes in
MIS, which means that algorithms developed in the computer vi-
sion community do not always perform well without customiza-
tion, despite good performance on non-surgical data. Particular
difficulties in the clinical setting include specular highlights, which
are view-dependent and can be caused by interreflections as well
as multiple light sources. In many cases highlights can be detected
by simple filtering techniques but the variability in equipment,
anatomical appearance and procedure-dependent setup all com-
plicate the performance of such approaches (Gröger et al., 2005;

http://vision.middlebury.edu/stereo
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Stoyanov and Yang, 2005). Another challenge is calibration and
maintaining this during surgery. Often assumed to be fixed, cali-
bration parameters may change due to focusing on different depths
during the procedure or due to the coupling between camera heads
and laparoscope, which may not be entirely fixed in practice.
Methods to cope with focus changes have been reported but have
limited capabilities in practical use (Stoyanov et al., 2005a). Addi-
tionally, the robustness of computational stereo techniques is yet
to be determined, especially when smoke or blood are present in
the scene (cf. Fig. 10) or there are large occlusions due to the sur-
gical instruments. Indeed, a quantitative measure of algorithm
robustness is needed to evaluate the practical value of different ap-
proaches and to identify problem cases when a system dependent
on the recovered 3D information would be compromised and
potentially unstable or inaccurate.

While stereo is a practical approach it is also important to note
that the majority of MIS procedures are currently performed with
monocular scopes. This may change in the future with the develop-
ment of display technologies and systems that are ergonomic, do
not cause fatigue and can be observed comfortably from different
viewpoints. However, not all stereoscopes can be used for recon-
struction, as some techniques for producing stereoscopic images
rely on beam splitters and do not have a natural baseline between
the two cameras. Currently, such devices are not common due to
the limited working volume over which depth perception is com-
fortable for the operator. Another consideration is that the baseline
between the cameras reduces with the miniaturization of instru-
ments, which limits the capability of the system to compute 3D
information. Nevertheless, stereo techniques are promising and
can be combined with additional visual cues to recover 3D tissue
surfaces in vivo (Lo et al., 2008).
3 Isometric deformations preserve the geodesic distance on the deformed surface.
3. Monocular shape-from-X

3.1. Introduction

Computing the 3D shape of an environment observed by a sin-
gle moving camera has been a focus of research in computer vision
for decades. The main advantage of passive monocular techniques
is that they do not require hardware modification to standard lapa-
roscopes. These techniques take as inputs images directly acquired
by the laparoscope and output an estimate of the observed 3D
shape. Two types of passive monocular techniques are especially
important in the context of laparoscopy: Shape-from-Motion
(SfM) and Shape-from-Shading (SfS). They are illustrated in
Fig. 2a–e and g–i, respectively.

Deformable Shape-from-Motion SfM uses the apparent image
motion as a cue to recover depth. It is somewhat similar to stere-
oscopy, but with increased difficulty: in SfM, the camera displace-
ment is unknown and the observed surface could potentially
deform between the input images. Here we present template-
based Deformable SfM (DSfM), which, unlike ‘classical’ rigid SfM
(Hartley and Zisserman, 2003), handles surface deformations.
DSfM uses a 3D template and a single input image for 3D recon-
struction. Here the camera is geometrically calibrated and modeled
by a projection operator P : R3 ! R2. The basic principle of tem-
plate-based DSfM can be broken down into three main steps. First,
reconstructing a template: a 3D model of the observed shape in
some configuration. This can be done by any means, such as rigid
SfM, provided that multi-view correspondences can be established.
Second, finding correspondences between the template and the in-
put images. Third, finding a 3D deformation W : R3 ! R3 that will
fit the template to the input image, as illustrated in Fig. 2c. Step
one is done only once, but steps two and three are repeated for
every input image. Step three is the most important step; it
combines the camera projection with the unknown 3D deforma-
tion to predict the location m 2 R2 in the input image of a point
M 2 R3 on the template as:

PðWðMÞÞ ¼ m:

By applying this equation to the established correspondences be-
tween the template and the input images, the 3D deformation is
then estimated under some additional physical constraints, such
as isometry.3 Because it uses a single image, DSfM does not require
a baseline or motion.

Shape-from-Shading SfS follows a different route. It uses only
one image, and models the relationship between the observed pix-
el intensity and the surface normal; roughly speaking, the bright-
ness of a pixel is used to infer to what extent the surface is tilted
at this pixel. In this context, the light source and the camera’s
radiometric response are both calibrated. The former means that
the light direction and intensity are encapsulated in a known
vector L 2 R3; the latter means that a pixel’s color c 2 R3 can be
converted to an image irradiance ı 2 R. The basic principle of SfS
can be broken down in two main steps. First, constraints on the
surface’s normal N are formed for the input image. Second, these
constraints are ‘integrated’ to compute the depth at each pixel. Un-
der the Lambertian reflectance model the fundamental equation of
SfS relates the normal N of surface S to ı, as illustrated in Fig. 2g,
via:

ı ¼ qL>N:

In this equation q is the surface’s reflective power, referred to as al-
bedo. Step two recovers the depth by introducing it in the expres-
sion of N, and solving the above equation for all pixels
simultaneously.

3.2. State-of-the-art

Deformable Shape-from-Motion SfM has been solved over the
last few decades under the hypothesis that the observed scene
was rigid (Hartley and Zisserman, 2003). It was established that
both the camera displacement and the scene shape are recoverable
from image observations. However, if the camera displacement can
be computed using an external sensor, rigid SfM is then equivalent
to stereoscopy (with varying baseline). Rigid SfM has numerous
applications, for instance in robotics and the film industry, and is
also applicable in some laparoscopic procedures (Grasa et al.,
2011). However, the laparoscopic environment is generally
deformable, as Fig. 2d and h illustrates using a simple example
showing a tool exerting pressure on the surface of a uterus. Be-
cause SfM here relies on a single camera, the multiple input images
will show the observed shape in different states of deformation,
and have to be handled with DSfM (or ‘non-rigid’ SfM). DSfM has
been studied for about a decade (Bregler et al., 2000) and is an ex-
tremely challenging problem, which has not yet received a stable
general solution in the literature. To alleviate the difficulty, some
approaches use a template. This is a lot easier than the template-
free problem, which we do not describe here. The template-based
approach has initially been proposed for objects with simple mate-
rial properties such as sheets of paper (Perriollat et al., 2011; Salz-
mann and Fua, 2011). At run-time, the input image is first matched
to the template robustly using keypoints (Pilet et al., 2008; Pizarro
and Bartoli, 2012). Pixel colors (Garg et al., 2011; Pizarro and Bar-
toli, 2012) have also been successfully used to increase accuracy.
The template 3D shape is then deformed by combining two types
of energies: a data term forcing the 3D shape’s reprojection to
match the input image and a prior forcing the 3D shape’s
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Fig. 2. Passive monocular techniques: Deformable Shape-from-Motion (DSfM, a–e) and Shape-from-Shading (SfS, g–i). (a) Illustrates the principle of reconstructing the 3D
template shape T using rigid SfM, as the first step of DSfM. A point M projects along the line-of-sight rays q1, . . . , qn while the laparoscope moves, and gives rise to the image
points m1, . . . , mn, related by multiple-view constraints. (b) Shows an example of a reconstructed template. (c) Illustrates the principle of template-based deformation
computation: notice how the observed surface S is deformed with respect to the template shape T by the unknown 3D deformation W. Point M, projecting along the line-of-
sight ray q is observed at position m in the image. It is matched to the template, and thus constrains the 3D deformation relating the template shape T to the deformed 3D
shape S that is sought. (d and e) Show an example input image, overlaid with 37 keypoint matches, with the template T and the reconstructed 3D model. (f) Shows a
monocular laparoscope. (g) Illustrates the principle of SfS: the light L emitted by the laparoscope is reflected by a surface patch P. Traveling along the line-of-sight ray q, it is
then imaged at a pixel with color c in the image. SfS simply uses the fact that the brighter the pixel color c, the more fronto-parallel the surface patch P. (h and i) Show an
example input image and the obtained depth map rendered from a new viewpoint.
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deformation to match physical constraints. SfM typically achieves
reliable global shape recovery, but misses shape details in texture-
less areas (Cryer et al., 1995).

Shape-from-Shading SfS has been studied since the early sev-
enties (Horn, 1970). The vast majority of SfS methods only use
a single input image (Zhang et al., 1999). The color of a pixel
is a camera measurement of the interaction between the light,
the scene surface and its albedo. This interaction is modeled
by the scene reflectance function. As illustrated in Fig. 2g, the
shading cue exploits the scene reflectance function to relate
the normal of the shape and the observed intensity in the image.
Most methods make four fundamental assumptions: (1) the
scene contains only a single light source, whether directional
or proximal, (2) the scene’s reflectance is Lambertian (light is
reflected equally in all directions), (3) the shape’s albedo is
constant or known and ( 4) the shape is continuously differentia-
ble, and its projection does not create discontinuities. Using
assumptions (1)–(3), it is simple to derive an equation relating
the brightness of each image pixel to the angle between the
shape normal at this pixel and the camera’s depth axis. Because
the shape normal has two DoF (it is a direction in the 3D space),
this single per-pixel constraint is not sufficient to recover the 3D
shape uniquely. Assumption (4) is therefore used to relate the
normals of neighboring pixels, which provide the additional
constraints to recover the shape up to a few discrete convex/
concave ambiguities. Most SfS methods also assume that the
camera projection model is known, whether affine or perspec-
tive. They also assume that the light and camera’s radiometric
calibration was carried out properly (Rai and Higgins, 2008).
The light calibration can be done once for all. It requires one
to move a flat piece of white paper in front of the laparoscope,
preferably with little ambient light. The camera transfer function
is calibrated automatically by showing a flat color calibration
checkerboard to the laparoscope. In principle, recalibration is
necessary when the intrinsic camera parameters are changed
due to, for instance, changing white balance. In practice, it
happens at most once or twice per use. SfS generally recovers
shape details accurately, but estimates shapes that may be
globally distorted (Cryer et al., 1995).

Combining multiple cues A visual cue may be used on its own as
in SfM and SfS, but it may also be combined with others. Combina-
tion of SfM and SfS has already been proven to be useful for both
rigid (Cryer et al., 1995) and deformable surfaces (Moreno-Noguer
et al., 2010), although more work is required to find the optimal
solution, as discussed below (cf. Section 8). Another useful visual
cue, highly related to shading, is specularity (Collins and Bartoli,
2012). Specular image points can be easily detected because they
generally saturate the camera. At these points, the common Lam-
bertian shading constraints cannot be applied, but the shape’s nor-
mal can be set colinear to the light direction.

3.3. Application to laparoscopy

We present the application of first DSfM and then SfS to lapa-
roscopy. Current DSfM and SfS techniques used in laparoscopy re-
quire the intrinsic parameters of the laparoscope to be calibrated.
Both techniques have a close depth range (depending on the light
power and camera sensitivity for SfS) and lateral resolution of up to
image resolution. Their accuracy has been empirically shown to be
of the order of a few to a dozen millimeters. SfS runs in real time on
the GPU (for instance 23 fps for 720 � 576 images was achieved
(Collins and Bartoli, 2012)), and DSfM is expected to reach real-
time in the near future.

Deformable Shape-from-Motion In the context of MIS, rigid SfM
has primarily been applied in SLAM-based algorithms, as shown
in Section 4. The current research in applying DSfM to laparoscopy
mainly follows the template-based paradigm (Malti et al., 2011),
although the template-free low-rank shape model has also been
tested (Hu et al., 2012; Wu et al., 2007). The template-based work-
flow has two main phases. The first phase is to reconstruct the
template’s 3D shape using rigid SfM while the surgeon explores
the abdominal cavity. This is illustrated in Fig. 2a and b. At this
phase, the surgery tools have not yet been introduced into the pa-
tient, and the rigidity assumption holds for rigid and semi-rigid or-
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gans such as the uterus shown in Fig. 2. Note that this template
reconstruction method cannot be used for organs which naturally
deform, such as a beating heart. The second phase is to reconstruct
the current shape while the surgeon starts deforming the observed
tissues. This is the ‘active’ surgery phase. The current frame is reg-
istered to the template, and the observed 3D shape is recon-
structed. Fig. 2b and d shows images overlaid with keypoint
matches. The unpredictable elastic deformation of the tissues does
not allow one to learn a prior global deformation model, and one
has to resort to local models, which are more flexible. While the
isometric deformation assumption does not hold, convincing re-
sults were obtained under the conformal deformation model,
which preserves angles and allows for local isotropic scaling (Malti
et al., 2011). As an important feature for real-time processing, an
analytical solution exists to this problem (Bartoli et al., 2012). Fur-
thermore, the surface hidden by the tool can be recovered by
deforming the template, which may help registration with pre-
operative shape data. Fig. 2d and e shows a sample input image
and the corresponding estimated 3D shape.

Shape-from-Shading SfS can be applied to laparoscopy well,
mainly because the light source has a constant relative pose with
respect to the camera of the laparoscope (Wu et al., 2010; Yeung
et al., 1999; Okatani and Deguchi, 1997). Knowing this relative
pose is a key assumption in many SfS methods (assumption (1)
in Section 3.2). This specificity can be exploited by calibrating the
light source, and the transfer function of the camera (Rai and Hig-
gins, 2008). However, the shape of the light source differs between
laparoscopes. Fig. 2a shows an example of a light source with a
partially circular shape. A step forward has been recently made
by using a non-parametric light model (Collins and Bartoli, 2012)
which adapts to any light source shape.
3.4. Discussion

The state-of-the-art in SfM and SfS as used in the context of lap-
aroscopy demonstrates that they have complementary strengths
and weaknesses. Their advantage compared to other techniques
is that they can be used with almost any hardware (they do not
generally require modification of a standard laparoscope’s hard-
ware). Both methods may fail in the presence of unmodeled phe-
nomena such as bleeding, smoke and occlusions. However, they
both recover from temporary failure since they do not rely on
the previously estimated 3D shape. In SfM, one of the main open
problems is correspondence establishment. Indeed, laparoscopic
images tend to have poor or repeated structures, and thus defeat
current matching methods. In SfS, a strong limitation is caused
by the importance and amount of assumptions made on the imag-
ing process. One of the unsolved problems therefore concerns the
use of a more advanced model of the laparoscopic environment’s
Bidirectional Reflectance Distribution Function (BRDF). An inter-
esting avenue for future research is applying template-free DSfM
in the context of laparoscopy (Taylor et al., 2010; Russell et al.,
2011; Collins and Bartoli, 2010; Varol et al., 2009) and studying
its combination with SfS (Moreno-Noguer et al., 2010).
4. Simultaneous localization and mapping

4.1. Introduction

The process of estimating the 3D structure of an environment
from a moving camera and estimating the pose of the camera in
the environment is well studied. The previous section introduced
two techniques - SfM and DSfM – which use the frame-to-frame
motion of a camera to recover shape. These techniques typically
have offline or batch processing components which makes their
application to live surgical navigation challenging (cf. e.g. (Hu
et al., 2012; Malti et al., 2011)). SLAM, sometimes referred to as on-
line SfM, is a sequential and real-time technique for simulta-
neously estimating 3D structure (mapping) and camera pose
(localization). Unlike DSfM, it requires multiple images as input
and is based on the rigid body assumption. It is a general frame-
work that can be used with a variety of input sensors (monocular
and stereo cameras, laser range finders, structured light, etc.) and
has a particular focus on uncertainty handling.

SLAM systems have a state xt = (ct,M1, . . . , Mn) which holds the
camera pose ct = (t,R), consisting of a translation vector t and a
rotation matrix R and a set of n 3D landmarks Mi = (x,y,z) which de-
scribe the 3D structure of the environment at time t. The live cam-
era images are processed individually to update the state of the
system. At each frame, a new camera pose is estimated, existing
landmarks are re-observed and new 3D landmarks are added to
the state. The computational complexity of SLAM is dictated by
the size of the state (i.e. the number of landmarks) and not the
number of images (as in SfM). This formulation of the problem
makes it computationally feasible to sequentially estimate the
camera pose and 3D structure in real time.

Modeling image noise and uncertainty is a fundamental compo-
nent of SLAM. Sequentially updating the state with noisy observa-
tions of landmarks would lead to error propagation and an
inconsistent state. Uncertainty in the state is modeled by a full
covariance matrix. The state and covariance matrix are managed
and updated using a probabilistic framework where the joint pos-
terior density of the 3D landmarks and the camera pose is de-
scribed by the probability distribution P(xtjZ0:t, U0:t, x0) given the
observations Zi of visible landmarks and any control inputs Ui from
position sensors on the camera (e.g. accelerometer). The Bayesian
formulation of the problem give rise to a recursive framework
comprised of prediction, measurement and update steps illustrated
in Fig. 3.

In the prediction step, the pose of the camera is estimated using
a motion model. Motion models comprise a deterministic and a
stochastic element. The deterministic part is a prediction based
on a sensor measurement (e.g. Inertial Measurement Unit (IMU))
or on previous history of camera motion. The stochastic part is a
probabilistic model of the uncertainty in the predicted motion,
which may be derived experimentally. Given the predicted new
pose of the camera it is possible to project the 3D landmarks into
the image in preparation for the measurement and update steps.

The measurement or observation step solves the association
problem by establishing correspondence between 3D landmarks
and features in the image space. In vision SLAM systems, the 3D
landmarks may be associated to an image patch or template.
Matching the template in the image provides new measurements
of the location of the 3D landmarks relative to the camera. The
measurement can be made in the image space for monocular cam-
eras or in 3D for stereo cameras. A measurement model is defined
which relates the measurement to the state. Finally, the state is up-
dated using the predicted model, measurement model and the ob-
served measurements of the 3D landmarks. A wide variety of
solutions to the SLAM problem have been proposed.

4.2. State-of-the-art

SLAM was developed largely by the robotics community for
autonomous navigation with laser and sonar range finders, but it
has found camera (monocular and stereo) based applications in
computer vision and AR. Extensive research has been undertaken
over the past two decades, creating a large variety of solutions. A
comprehensive review can be found in (Durrant-Whyte and Bailey,
2006; Bailey and Durrant-Whyte, 2006). The most common proba-
bilistic frameworks are the Extended Kalman Filter (EKF), the



Fig. 3. Simultaneous Localization and Mapping (SLAM): (a–d) A passive monocular SLAM system incrementally building a model of the tissue surface and estimating the pose
of the camera. A point on the soft-tissue surface, Mi, is projected onto the image planes to the point mi by the line-of-sight rays qi. (a) A point m1 in the image is detected
(white box) and added to the map. (b) The camera moves and a new image is captured. The SLAM algorithm predicts the camera’s motion. According to the predicted motion,
the points in the map are projected into the image and a local search (green circle) is performed to match or measure the points. The SLAM state containing the pose of the
camera and the map are updated. (c) A new point m2 is detected and added to the map. (d) The camera moves and the SLAM algorithm repeats the predict, measure, update
loop to incrementally build the map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

L. Maier-Hein et al. / Medical Image Analysis 17 (2013) 974–996 981
Particle Filter and the Rao-Blackwellised Filter. Readers are direc-
ted to (Thrun et al., 2005) for detailed mathematical descriptions.
These frameworks provide the necessary tools to solve the SLAM
problem, however the practical application of SLAM remains chal-
lenging, and it is here where recent research has been focused.

The computation complexity of EKF SLAM is largely governed
by the number of landmarks in the state. Thrun et al. (2004) pro-
poses a sparsification method which represents the probability
density in information form. Components close to zero in the
normalized information matrix are ignored, leading to a sparse
representation which can be efficiently updated with little com-
promise in performance. Larger-scale maps can be built and up-
dated efficiently. An alternative to large-scale mapping is global
or local submapping. Submapping creates small computationally
manageable maps which are either linked to each other in a com-
mon global coordinate system or via a local relative transforma-
tion. In (Galvez-Lopez and Tardos, 2011) the authors propose a
method to create consistent local and global submaps by address-
ing the loop closing problem.

The Parallel Tracking And Matching (PTAM) (Klein and Murray,
2007) algorithm creates high-quality submaps by separating local-
ization and mapping and processing them on parallel threads on a
dual-core computer. Uncertainty in submaps is reduced by exploit-
ing limited batch processing without affecting real-time localiza-
tion. The PTAM system includes relocalization using randomized
lists. This enables it to recover from lost tracking caused by image
blurring, rapid camera motion or occlusion. Dense Tracking And
Matching (DTAM) (Newcombe et al., 2011) builds on this approach
to produce dense maps and robust camera localization. The ap-
proach builds dense photorealistic depth maps at selected key
frames. Camera localization is performed using whole image align-
ment with the dense models and does not rely on feature match-
ing. In current research, there is a trend towards online SFM and
hybrid SFM/SLAM systems which combine the benefits of local
batch processing with online localization (Klein and Murray,
2007; Newcombe et al., 2011; Mahmoud et al., 2012). Further ac-
tive research areas include loop closing, dynamic environments
and long-term mapping.

4.3. Application to laparoscopy

In MIS, SLAM approaches can be used to localize the pose of the
endoscopic camera and build a 3D model of the tissue surface
in vivo while the endoscope is navigated by the surgeon. The
in vivo organ model can be used for registration to a pre-operative
model. A fundamental component of AR or image guidance is
knowing the camera’s pose relative to the object or organ of inter-
est. Real-time SLAM provides two fundamental components of
CAS: 3D in vivo tissue model and camera pose estimation while
allowing camera movement.

Burschka et al. (2005) proposed using an approach called V-GPS
to create long-term SLAM-style maps/reconstructions for sinus
surgery using a monocular endoscope. A method is proposed for
estimating the scale of the 3D reconstruction which cannot be
recovered from a monocular camera. The scaled 3D reconstruction
of the rigid sinus is registered to a pre-operative CT to enable AR
overlay of critical subsurface anatomy. The system was reported
to run at 10 Hz with sub-millimeter registration accuracy on phan-
tom data.

An EKF SLAM approach was proposed (Mountney et al., 2006) to
build sparse 3D reconstructions of the abdomen and recover the
motion of a stereo laparoscope. With the addition of an image
pre-processing step, the system was used with low resolution ste-
reo fiber image guides (10,000 fibers) (Noonan et al., 2009) and
demonstrated reconstruction accuracy of less than 3 mm of error
on phantom data. Monocular EKF SLAM has also been proposed
for MIS (Grasa et al., 2011), combining randomized list relocaliza-
tion with RANSAC outlier removal for recovering from tracking fail-
ure. The system reports run times of around 12 Hz. It increases the
number of actively tracked landmarks, creating a denser recon-
struction which can be used for relocalization.

In EFK SLAM the reconstructed surface of the tissue is repre-
sented by the set of 3D landmarks. These landmarks can be meshed
and textured with images from the endoscope to create visually
more realistic tissue models (Mountney et al., 2009; Totz et al.,
2012). Such models are an approximation of the organ’s surface
and may contain inaccuracies. Combining sparse SLAM with dense
stereo techniques (Totz et al., 2011) creates more comprehensive
3D reconstructions without increasing the computational com-
plexity of SLAM.

The models discussed so far are based on the assumption that
the physical world is static. In anatomical environments such as
the nasal passage this assumption is held, however, in the abdo-
men, respiration causes tissue motion. In (Mountney and Yang,
2010) dynamic mapping is proposed where the tissue model de-
forms with periodic motion caused by respiration. The error in
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the estimated camera position was less than 2 mm for ex vivo data
and the system demonstrated accurate recovery of respiration
models.

Tougher evaluation of SLAM systems for MIS remains a chal-
lenge for the community. Optical tracking systems have been used
to obtain ground truth for camera motion, however these are still
subject to errors from tracking, camera calibration and hand-eye
calibration. Validation of the 3D reconstruction can use CT/MRI
phantom or ex vivo data for rigid environments and synthetic data
for non-rigid environments. No solutions have been proposed for
validation of in vivo non-rigid tissue. The SLAM systems described
above are sequential and capable of running in real time at up to
25 Hz, however the increased complexity of non-rigid modeling,
dense surface reconstruction and recovery from failure introduce
additional computational burdens.

4.4. Discussion

SLAM is a maturing technology and its use in MIS is attractive
due to its real-time capabilities and integration with existing lapa-
roscopic imaging equipment. The feasibility of SLAM has been
demonstrated for the MIS environment but there remain a number
of theoretical and practical research challenges in transferring this
technology to the operating room. A fundamental assumption in
SLAM is a rigid environment. Although this holds for some anat-
omy, fully non-rigid tissue motion is regularly observed in cardiac
and abdominal soft-tissue surgery. A theoretical framework must
be established for dealing with deformation caused by respiration,
cardiac motion, organ shift and tissue tool interaction. Periodic bio-
logical signals (respiration, cardiac motion) have been well mod-
eled in the medical imaging community and such models can be
incorporated into SLAM (Mountney and Yang, 2010). However,
complex tissue tool interaction and organ shift are likely to require
complex biomechanical modeling. Tissue cutting and removal is an
Fig. 4. Schematic for structured lighting detection using (a) a stereo, and (b) a mono came
experimental setup (Clancy et al., 2011b) for generating a unique color coded pattern of
white light imaging; (d) image of the structured pattern generated by this instrument and
of the references to color in this figure legend, the reader is referred to the web version
additional complication which remains an open research question.
SLAM’s real-time capabilities rely on establishing a set of 3D land-
marks which can be repeatably matched in the image over long
periods of time. Correct matching directly affects robustness and
reconstruction accuracy. In well illuminated, well textured MIS
environments SLAM has been shown to work well. The MIS envi-
ronment can be challenging and procedure-long tracking is chal-
lenging due to repetitive textures, large changes in lighting
conditions, specular reflections and deformation. Partial occlusion
due to tools, blood and smoke can generally be dealt with by using
outlier removal. Tissue surfaces without texture or detectable fea-
tures will require additional information from alternative ap-
proaches such as structured light or SfS algorithms.
5. Structured light

5.1. Introduction

Structured light techniques aim to recover the 3D surface infor-
mation of an object in a similar way to stereoscopy but using an
artificial pattern of light. The principle is again based on parallax
and the use of the geometry of triangles and triangulation, using
either stereo or monocular detection, as illustrated in Fig. 4a/b. In
the case of stereo camera detection, the use of artificial features
projected onto the surface of the tissue relaxes the requirement
in the stereoscopy methods described above to detect intrinsic tis-
sue features and properties to the tissue surface. If the artificial fea-
tures can be uniquely detected then the parallax between the
feature locations in the left and right stereo view may be used to
find the intersection point of the line-of-sight rays, which must
lie on the tissue surface. However, stereo detection using two cam-
eras is no longer a requirement with structured lighting methods,
and a simple trigonometric relationship can be established
ra, where the principal lines used for triangulation are highlighted in dark red. (c) An
high brightness through a narrow diameter probe as well as allowing simultaneous
(e) the reconstructed tissue surface that is generated in this case. (For interpretation
of this article.)
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between the projection system and a single camera. If the pattern
is known a priori together with the geometrical relationship be-
tween the light source and the imaging sensor (Robinson et al.,
2004; Brink et al., 2008), then the object’s surface position may
be accurately calculated based on the measurement of the defor-
mation of the light pattern. In this case the line-of-sight rays pro-
jected from the camera and the structured light source intersect at
the tissue surface. Similar to stereoscopy, this technique relies on
the knowledge of the intrinsic camera properties and the projec-
tion is a matrix multiplication for each camera or for the projection
device. Many different implementations of the structured lighting
method have been proposed and Salvi et al. (2004) have suggested
a classification for structured light patterns based on the coding
strategy, e.g. time multiplexing, direct codification and neighbor-
hood codification.

5.2. State-of-the-art

While the stereo vision problem is to detect image correspon-
dences, the structured light problem is to accurately detect (and in-
dex) the projected patterns in the presence of surface
discontinuities or spatially isolated surfaces. In the case of a stereo
camera detection system, the calibration and reconstruction issues
are very similar to the stereoscopy case described above, whereby
the intrinsic parameters and geometry of the camera system are
typically determined prior to operation using standard calibration
targets. In this case the resilience of the reconstruction then de-
pends on the ability to uniquely determine the location within
each image of the structured lighting pattern, usually a more
straightforward problem than relying on intrinsic tissue surface
features. If a striped pattern is used, it is necessary to find each
stripe index in relation to a reference position. However, there
are a number of methods that have been proposed to facilitate pat-
tern detection through the use of more complex coded patterns,
and a number of coding algorithms have been proposed in the lit-
erature (e.g. (Albitar et al., 2007; Pavlidis et al., 2007; Chen and Li,
2008; Kawasaki et al., 2008; Gorthi and Rastogi, 2010; Maurice
et al., 2011)); processing and display may be achieved in real time.
In the case of a mono camera detection, the challenge is to estab-
lish the relationship between the pattern generation and the cam-
era parameters, a process that is again generally achieved prior to
operation using a calibration target. The remaining challenges are
to apply these techniques in endoscopic formats, as detailed below
and in the discussion section.

5.3. Application to laparoscopy

In open surgery, a number of structured lighting instruments
have been proposed, including pattern projection systems using
data projectors for determining the skin surface profiles of patients
(Keller and Ackerman, 2000; Tardif et al., 2003) and for guiding
percutaneous punctures in interventional radiology (Nicolau
et al., 2008). The main challenge in structured lighting endoscopy
is the transmission of a sufficiently bright illumination pattern to
the tissue surface through the limited size of typical laparoscope
optical or working channels. Many endoscopic instrumentation
developers are exploring alternatives such as the use of laser tech-
nology (Clancy et al., 2011a), since optical coherence allows light to
be focused more easily into narrow delivery channels and diffrac-
tive and holographic optics can be used for pattern generation. One
laser-based approach used a laser spot scanning system that was
able to steer a small laser beam through a laparoscope imaging
channel such that a small point of light was translated across the
endoscopic image field using scanning mirrors (Hayashibe and
Nakamura, 2001; Knaus et al., 2006). The spot’s position was de-
tected by a separate laparoscope and millimetre depth accuracy,
although one disadvantage is that many images must be acquired
to build up a dense matrix of projected spots (Hayashibe et al.,
2006; Knaus et al., 2006). For faster image acquisition a miniature
Liquid Crystal Display (LCD) projector may be mounted within a
custom made laparoscope and a second laparoscope rigidly at-
tached with a high speed camera for imaging at up to 180 Hz (Ack-
erman et al., 2002). A similar concept was adapted for coloscopic
use by using a laser diode and a grating to produce a grid pattern
on the cervix (Wu and Qu, 2007). This projector was rigidly fixed
to a registered camera system that recorded the reflected images
to recover the three dimensional tissue profile. Systems that are
compatible with flexible endoscopy are less common. An early
example using the spot scanning approach scanned a focused laser
onto a flexible fiber image guide to transmit the scanned spot onto
the tissue surface (Haneishi et al., 1994). An extension of this tech-
nique used a laser to project line patterns on the near surface of a
fiber image guide that was small enough to be inserted into a flex-
ible endoscope (Hasegawa et al., 2002). Recently, a spectrally en-
coded spot projection pattern system was proposed that uses a
highly broadband laser source and a fiber bundle delivery system
to create a colored pattern of spots on the tissue surface (Clancy
et al., 2011a). This approach has the advantage of producing a high
brightness pattern as well as mitigating problems with tissue
occlusion since spectral coding gives each spot a unique wave-
length. A system for creating structured lighting within a lumen
was proposed by Schmalz et al. who use a 3.6 mm probe to create
a color-coded stripe pattern to solve the correspondence problem
(Schmalz et al., 2012). This instrument could also be used together
with a flexible endoscope and has been tested on ex vivo biological
tissue including real-time operation.

5.4. Discussion

The advantages of structured light systems are speed, accuracy
and robust 3D reconstruction of featureless objects (e.g. objects
with large smooth surfaces). Such systems have found widespread
applications for macroscopic detection and depth profiling of ob-
jects (volumes with 0.05–5 m side length), but they have not been
frequently applied during MIS due to a number of problems as de-
scribed in this discussion. One advantage of the structured lighting
techniques is that they do not rely on the automatic detection of
intrinsic features on the tissue surface as in stereoscopy, but in-
stead artificial, and potentially unique, features can be artificially
projected onto the surface. The size, density and dissimilarity of
the projected patterns then determines the performance of the
structured lighting system and its immunity to artefacts caused
by occlusions and changes in tissue texture. The limit of the feature
density for full spectroscopic projection and detection is the num-
ber of discrete measurements made, i.e. usually the number of pix-
els in the camera detection system. One disadvantage is the
requirement for triangulation, which means that the projection
axis must be offset from the imaging axis, or a stereo camera sys-
tem must be used. If only one endoscopic device contains both the
projection and imaging optics then this angle is necessarily small
and is likely to reduce further with the trend towards smaller
interventions. If two instruments are used then their alignment
must be fixed or determined for accurate results or a method of
live calibration must be proposed, which has not yet been demon-
strated for endoscopic use. The lack of a standard single commer-
cially available device for further testing of this approach is also
a limit, as the systems described here all use different approaches
and technologies with their own advantages and limitations. An
ongoing issue in endoscopy in general, and structured lighting
endoscopy in particular, is the challenge in transmitting enough
light to the tissue as devices become ever smaller. Xenon lamp
sources, light emitting diodes (LEDs) and lasers have all been
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investigated, and variously suffer from excess heating problems,
low etendue or undesirable spectral features (Clancy et al.,
2011a). The intensity of lighting is further compounded in struc-
tured lighting endoscopy because the devices that are used to cre-
ate the pattern reduce the intensity of the light, for instance
holographic devices or spectral filters both reject illumination
photons or reduce the transmission efficiency of the system. Struc-
tured lighting optics are also often difficult to miniaturize. One fi-
nal challenge is to create a unique and dense feature pattern, which
can allow a dense surface reconstruction. Most of the methods de-
scribed above are based on localization of distinct projected objects
on the tissue surface, which necessarily limits the overall feature
density to be at least nine pixels, but practically requires a larger
number. One future goal is to use a continuous spectral pattern
that can uniquely encode every pixel within the detector with a
different spectrum. Initial steps have already been taken towards
this goal (Schmalz et al., 2012). While most structured lighting ap-
proaches may be achieved in real time due to the limited number
of artificial features introduced, a full multispectral analysis may
require a longer image acquisition and analysis time.

6. Time-of-Flight

6.1. Introduction

The ToF technique is an active reconstruction method based
on measuring the time that light emitted by an illumination
Fig. 5. (a) Time-of-Flight (ToF) surface reconstruction based on continuous wave (CW) m
the reflected light is correlated with a reference signal in every pixel, yielding (b) an in
respiratory liver motion simulator). The range map can be converted to a surface bas
denoising filter (e). (f) First prototypical ToF endoscope developed by Richard Wolf GmbH
(Images (a)–(e) courtesy of Alexander Seitel and Sven Mersmann (Div. Medical and Bi
GmbH).)
unit requires to travel to an object and back to a detector.
Even though the human visual system does not incorporate
a comparable component, similar range detection can be found
in nature; for example, bats use ToF-based range detection in
the ultrasonic domain. Recently, the ToF principle has been
the basis for the development of new range-sensing devices,
so-called ToF cameras, which acquire dense range images with
high update rates and without a scanning device. There are
two main approaches currently employed for measuring the
run-time of emitted light (Lange, 2000): Pulsed modulation is
the most obvious method, because it directly measures the
ToF of an emitted pulse of light. It was first used for studio
cameras (Iddan and Yahav, 2001) and was later developed
for miniaturized cameras (Yahav et al., 2007). Continuous
wave (CW) modulation, the most commonly applied method
in the medical field, utilizes modulated, incoherent light, to
measure the phase difference / between emitted and reflected
light (Hostica et al., 2006; Oggier et al., 2005; Xu et al., 1998).
A range image is typically obtained by determining the
distances to the object(s) under observation in all image pixels
in parallel using so-called smart pixels realized in Complementary
Metal Oxide Semiconductor (CMOS)/Charge-coupled Device
(CCD) technique. The basic principle is depicted in Fig. 5.
The scene is commonly illuminated with intensity-modulated
near infrared (NIR) light emitted from one or more illumina-
tion units, and / is determined by an on-chip correlation of
the reflected signal with a reference signal. Based on the
odulation: Intensity-modulated light is emitted by an incoherent light source, and
tensity image and (c) a range image of the observed scene (here: human liver in a
ed on the calibrated intrinsic camera parameters (d), preferably after applying a
. (g) RGB image of a kidney and corresponding ToF intensity (h) and range (i) image.
ological Informatics, DKFZ). Image (f) courtesy of Hubert Völlinger (Richard Wolf
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measured phase difference /, the distance in a pixel is then
obtained by:

d ¼ c4pfm:

where c � 3 � 108 m
s is the speed of light and fm is the modulation fre-

quency of the emitted light. Commonly, fm � 20 MHz, yielding an
unambiguous distance measurement range of 0:5 1

20 MHz c ¼ 7:5 m.
Unlike most approaches described above, the ToF technique

does not rely on some kind of correspondence search and does
not require a baseline. Hence, ToF cameras are potentially very
compact devices which deliver real-time range information at high
frame rates (typically 20–40 Hz). Currently, they feature moderate
image resolution of up to 360 � 240 px.

6.2. State-of-the-art

In principle, any application requiring range information at high
update rates can benefit from ToF cameras. Examples include geo-
metric reconstruction of static scenes (Huhle et al., 2008), building
of 3D maps for mobile applications and robotics (May et al., 2009),
interaction control, e.g. for touch-free navigation for 3D medical
visualization (Soutschek et al., 2008) as well as image segmentation
(Wang et al., 2010), e.g. used for AR applications (Koch et al., 2009).
In the context of biomedical applications ToF cameras have been
used as an imaging modality for respiratory motion gating (Schaller
et al., 2008) and patient positioning (Placht et al., 2012; Schaller
et al., 2009) in radiotherapy as well as for building patient-specific
respiratory motion models (Fayad et al., 2011; Wentz et al., 2012).

ToF cameras are still evolving, and a lot of work is currently de-
voted to understanding the sources of errors and to minimizing
them, as well as to model their effect for camera simulation (Foix
et al., 2011). Foix et al. (2011) provides an overview of ToF related
errors, classifying them into systematic errors, which can be com-
pensated for by calibration, and nonsystematic errors, which are
typically reduced by filtering. The authors identified five different
sources of systematic errors:

� Wiggling error: Due to irregularities in the modulation process,
the infrared light emitted cannot be generated as theoretically
planned (generally sinusoidal) in practice. This results in an
error that only depends on the measured depth and typically
follows a sinusoidal shape (Rapp, 2007). This error can, for
example, be corrected on the basis of reference data using
look-up tables (Kahlmann et al., 2007) or error correction func-
tions such as B-splines (Lindner and Kolb, 2006).
� Intensity/Amplitude-related error: Depth measurements depend

heavily on the intensity measured in a pixel. The error can be
corrected in a similar manner to the wiggling error, i.e. using
error correction functions. In (Lindner and Kolb, 2007), a bivar-
iate correction B-spline function is used to simultaneously cor-
rect the intensity and the systematic error. As this approach
requires a large number of reference ground truth measure-
ments, Lindner et al. (2010) further proposed a decoupled cali-
bration approach.
� Integration time-related error: Depth measurements also depend

on the so-called integration time, i.e., the exposure time of the
sensor for acquiring a single range image. As stated by Foix
et al. (2011), the main reason for this effect is still the subject
of investigation. Some authors proposed performing the depth
calibration with a set of integration times of interest (Foix
et al., 2011), while others modeled the error as a constant offset
(Kahlmann et al., 2006; Lindner and Kolb, 2007; Rapp, 2007).
� Built-in pixel-related errors: There are several pixel-related

errors, resulting from different material properties and the
readout mechanisms, that result in an offset per pixel that can
be stored in a correction table (Foix et al., 2011).
� Temperature-related errors: As internal camera temperature
affects depth processing, depth values suffer from a drift in
the whole image until the camera temperature is stabilized. A
common approach to compensate for this error is thus to allow
a warm-up period (typically about 40 min. (Foix et al., 2011)).

Due to the above-mentioned systematic distance errors, ToF
camera calibration not only requires a standard lateral calibration
to determine the intrinsic camera parameters (Beder et al., 2007;
Lindner et al., 2010), but also an additional calibration procedure
to compensate for depth errors. Further challenges to be addressed
include so-called flying pixels (i.e. pixels that observe regions with
discontinuities in depth), overexposed/saturated pixels, motion arte-
facts, multi-path reflexions and scattered light, as well as non-uniform
illumination. Foix et al. (2011) provide a comprehensive overview
of the majority of these errors as well as the methods proposed
to compensate for them.

6.3. Application to laparoscopy

The first ToF-based endoscope was proposed by Penne et al.
(2009). A commercial ToF camera (PMD[vision]3k-S, PMD Technol-
ogies, Siegen, Germany) with a lateral resolution of 48 � 64 was
combined with a rigid standard endoscope optics. The standard
LED-array illumination units of the ToF camera were replaced by
a fiber-coupled high-power laser diode connected to the illumina-
tion fiber bundle of the endoscope. In a subsequent study, a new
generation ToF camera (CamCube 2.0, PMD Technologies) featuring
a higher resolution of 204 � 204 was used in a similar setup (Groch
et al., 2011). The reconstruction error, determined with CT refer-
ence data, was of the order of magnitude of 4 mm. Recently, the
company Richard Wolf GmbH (Knittlingen, Germany) introduced
their first ToF endoscope, shown in Fig. 5f. It features both a white
light source as well as a ToF illumination unit and simultaneously
generates range images, corresponding gray-scale amplitude
images and standard definition RGB images at a frame rate of about
30 frames/s.

6.4. Discussion

The major advantages related to ToF are the registered depth
and intensity data at a high frame rate as well as the compact de-
sign without scanning component or baseline. In contrast to open
procedures, laparocopic interventions have a small working vol-
ume and thus require a relatively small depth range. Although
the ToF endoscopes proposed so far operate at modulation fre-
quencies similar to those offered by standard ToF cameras, which
need to ensure unambiguous depth ranges of several meters, high-
er modulation frequencies could be applied to improve measure-
ment precision (Lange, 2000). Another advantage is that errors
caused by background illumination can be neglected due to the
controlled environment.

On the negative side, the ToF technique requires additional
hardware to be integrated in standard medical equipment and cur-
rently still suffers from severe systematic distance errors and
noise. Due to the challenge in transmitting enough light to the tis-
sue, the SNR in endoscopic ToF images and thus the measurement
precision in camera direction (Lange, 2000) is very low. In theory,
the systematic errors can be compensated for by a calibration pro-
cedure performed once before clinical use. However, this requires
acquisition of a large amount of reference data in a high-dimen-
sional space incorporating pixel ID, distance, amplitude,
integration time and temperature. A practical approach involves
assuming a constant temperature after a warm-up period, a con-
stant integration time that can be chosen in an application-specific
manner, and a pixel offset that is independent of distance,



Fig. 6. Concept of dynamic view expansion (Mountney and Yang, 2009).
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integration time and amplitude. The remaining error can then be
compensated by determining the calibration parameters as a func-
tion of measured distance and amplitude, either in a coupled or in
a decoupled approach (Lindner et al., 2010). Generation of the
calibration parameters, however, is still cumbersome and the sim-
plifying assumptions lead to larger errors. It has been shown, for
example, that the temperature-related error does not remain con-
stant after a warm-up period (Mersmann et al., 2012). Further-
more, a warm-up period of at least half an hour can lead to
problems with respect to clinical workflow integration.

Major challenges to be addressed in the context of laparoscopic
surgery further include scattered light, multi-path reflexions and
tissue penetration. The light scattering effect is caused by multiple
light reflexions between the camera lens and its sensor and causes
a depth underestimation over the affected pixels (Foix et al., 2011).
The amount of interference increases with a decreasing distance to
the objects under observation, which makes this error important in
the context of laparoscopic surgery. Multi-path errors result from
the interference of multiple light reflections captured at each sen-
sor’s pixel. (Foix et al., 2011). These errors occur mainly with con-
cave objects, which makes them highly relevant in the context of
endoscopic applications. First attempts of compensating them
have recently been published (Dorrington et al., 2011; Fuchs,
2010). Finally, infrared light may penetrate into the tissue, thus
leading to an overestimation of depth.

As a consequence of all of these issues, the reconstruction accu-
racy of the first prototypical ToF endoscopes, which yield maxi-
mum errors >1 cm (Seitel, 2012; Groch et al., 2011) is not yet
sufficient for clinical application. Yet the increase of performance
of ToF-devices in recent years and the growing number of applica-
tions in various areas clearly shows that upcoming ToF cameras
will feature even more advanced characteristics. Due to the
potential for realizing extremely compact ToF devices, it can be
Fig. 7. Example of 2D (a) and 3D (b) telestration. On the left image, the coronary artery h
the right or left eye. 3D telestration can be performed using a dual console setup, where
arrow to demonstrate anatomic features.
expected that the number of medical applications in the coming
years will increase.
7. Clinical applications

While every surgical procedure has its own specific require-
ments common challenges exist across laparoscopic surgery as a
whole. Surgeons wish to avoid damaging critical structures, such
as nerves and blood vessels, that are beyond the exposed tissue
surface. Real-time detection of tumor margins or tissue character-
ization in situ can have an immediate impact on surgical outcomes
in terms of both oncologic control and quality of life by allowing all
malignant tissue to be removed. Surface reconstruction techniques,
while not offering a solution, are an enabling technology in order to
achieve these goals through CAS and advanced imaging capabilities
during surgery. This section gives an overview of some potential
application areas of 3D surface reconstruction, namely view
enhancement (Section 7.1), AR guidance (Section 7.2), and biopho-
tonics (Section 7.3).

7.1. View enhancement

The limited FoV and the absence of 3D vision are some of the
most important difficulties of MIS because vision is the primary
sensory feedback from the surgical site. To avoid visual-spatial dis-
orientation, the concept of dynamic view expansion has been pro-
posed based on optical flow (Lerotic et al., 2008) and
subsequently extended to incorporate SLAM for more robust per-
formance (Mountney and Yang, 2009). It allows the exploration
of complex anatomical structures by providing 3D textured models
of the anatomy based on a sequence of endoscopic images, as
shown in Fig. 6. This method has recently been extended to allow
full 3D mapping of the extended view (Totz et al., 2012), which can
both enhance the appearance of the enlarged image and support
orientation correction schemes in flexible endoscopic systems for
reaching difficult anatomical sites (Warren et al., 2012). A similar
system for observing wide-angle 3D on external monitors has also
been reported with preliminary results (Bouma et al., 2012). For
monocular endoscopes view enhancements by mosaicing has been
recently demonstrated in bladder procedures where constraints on
the shape of the bladder can be used to construct the expanded
view (Soper et al., 2012).

A different enhancement is the use of 3D reconstruction to al-
low visual aids to be inserted into the FoV much alike to modern
media sports reporting and commentary. Real-time annotation
over the MIS video of the surgical site can support both surgical
training as well as intra-operative guidance (Ali et al., 2008). A tele-
strator is a device that allows its operator to draw a freehand
as been outlined using the da Vinci� touch screen display and is displayed on either
the robot master manipulators not involved in instrument control can utilize a 3D
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sketch over a video image. In telemedicine, it has recently been de-
ployed with the latest da Vinci� Si surgical system and used to
annotate anatomical details in medical images observed during
surgery (cf. Fig. 7). An important application of telestration tech-
nology is the positioning of visual guides for training in the skills
suite and mentoring purposes in the operating room. The position-
ing of these visual annotations within the surgical FoV when
observed with stereoscopic displays such as the da Vinci� console
requires 3D information from the surgical site to ensure that the
projected overlay markers within the stereoscopic display align
correctly and appear at the right depth to the surgeon. With tem-
poral tracking in 3D it is also potentially possible to synthesize a
view of the operating field that stabilizes particular points of inter-
est on the tissue surface. This concept has been investigated for
motion compensation in robotic beating heart surgery where
robotic instruments may potentially be synchronized with the
computed surface motion (Stoyanov and Yang, 2007).

7.2. Intra-operative registration for augmented reality guidance

In CAS, visual assistance to the physician is typically provided
by displaying the spatial relationship between anatomical struc-
tures and medical instruments, located, for example, by a tracking
system. The term registration refers to the alignment of pre-opera-
tive patient-specific models to intra-operatively acquired data. It
may be used to augment the surgeon’s view by visualization of
structures below the tissue surface (Nicolau et al., 2011) (cf.
Fig. 8). While computer-assisted open surgery generally requires
the application of additional imaging modalities to acquire intra-
operative anatomical information, the advantage of MIS is that
the endoscope itself can be applied for this purpose.

While numerous methods have been proposed for multi-modal
image registration in general (cf. e.g. (Pluim et al., 2003; Markelj
et al., 2010; Glocker et al., 2011)), literature on registration in com-
puter-assisted laparoscopic interventions is relatively sparse. In
fact, most methods related to registration of endoscopic image data
have been developed in the context of cardiac surgery (e.g. (Falk
et al., 2005; Figl et al., 2008; Mourgues et al., 2003; Szpala et al.,
2005)), skull base and sinus surgery (e.g. (Burschka et al., 2005;
Mirota et al., 2009, 2011)), spine surgery (e.g. (Wengert et al.,
2006)) and interventional radiology (e.g. (Deguchi et al., 2003; Del-
igianni et al., 2006)). In the interventions addressed, organ motion
is generally rigid and/or periodic. In the context of laparoscopic
surgery, several authors (cf. e.g. (Marescaux et al., 2004; Mutter
et al., 2010; Nozaki et al., 2012; Pratt et al., 2012)) proposed man-
ual alignment of pre-operatively and intra-operatively acquired
Fig. 8. Augmented Reality (AR) visualization during a prostatectomy provided by
the marker-based computer-assisted surgery (CAS) system proposed in (Simpfen-
dorfer et al., 2011).
images. The majority of (semi-) automatic approaches for register-
ing the endoscopic image data with 3D anatomical data acquired
pre- or intra-operatively are either marker-based (Baumhauer
et al., 2008; Falk et al., 2005; Ieiri et al., 2011; Marvik et al.,
2004; Megali et al., 2008; Mourgues et al., 2003; Simpfendorfer
et al., 2011; Suzuki et al., 2008) or use external tracking devices
that are initially calibrated with respect to the imaging modality
(Ukimura and Gill, 2008; Konishi et al., 2007; Shekhar et al.,
2010; Feuerstein et al., 2008; Konishi et al., 2007; Feuerstein
et al., 2007; Leven et al., 2005; Blackall et al., 2000)). In an alterna-
tive approach, reconstructed surface data may be used to perform
the registration with pre-operative models (Audette et al., 2000).
Comprehensive reviews on shape matching in general have been
published by the computer vision community (cf. e.g. (van Kaick
et al., 2011)). Regardless of the application, shape matching meth-
ods can be classified into two categories: Fine registration methods
that assume a rough alignment of the input data, and global match-
ing methods that establish correspondences between the input
shapes without any prior knowledge on their poses relative to each
other. In the medical domain, the surface matching methods pro-
posed concentrate on fine registration, given a manually defined
rough alignment of the data (cf. e.g. (Benincasa et al., 2008; Cash
et al., 2007, 2005; Clements et al., 2008; Dumpuri et al., 2010; Ma-
ier-Hein et al., 2010, 2012; Rauth et al., 2007)).

To the authors’ knowledge, all shape-based intra-operative reg-
istration methods presented for laparoscopic interventions so far
are rigid and rely on the Iterative Closest Point (ICP) algorithm
(Besl and McKay, 1992; Chen and Medioni, 1992) or one of its
many variants (Lamata et al., 2009; Rauth et al., 2007; Su et al.,
2009).

7.3. Biophotonics

Optical imaging modalities, known as biophotonics, that inter-
pret the interaction between light and tissue to acquire informa-
tion about the tissue’s structural and functional characteristics
are emerging as very promising for in vivo acquisition during sur-
gery (Iftimia et al., 2011) (cf. Fig. 9). Measuring 3D tissue surface
shape and motion during surgery has important implications for
emerging biophotonics modalities (Stoyanov, 2012b). Often bio-
photonics techniques have physical limitations that impede the
practical FoV and the in vivo imaging of tissue that may be under-
going physiological motion. By acquiring 3D information about the
tissue shape there are possibilities to overcome these limitations
using registration algorithms for expanding the FoV, aligning
images of moving tissues and using 3D information to support
the interpretation of photometric tissue properties. Two biopho-
tonic modalities that illustrate this potential and are used clinically
are multispectral imaging and confocal laser endomicroscopy (CLE).

Multispectral imaging involves the acquisition of multiple
images at different illumination wavelengths to build a complete
spectrum of the tissue’s response to light. Analysis of the spectral
response has been shown to allow the identification of chromoph-
ores in the tissue and potentially provide tissue characterization
capabilities. In imaging of the brain during neurosurgery, the
modality can show functional information at the cortical surface
that is equivalent to functional MRI (fMRI) (Chen et al., 2011a).
However, a significant challenge in the acquisition of a stack of
multispectral images is that both the camera and the target tissue
can move during the image acquisition process. This can cause sig-
nificant misalignment of the multispectral image stack and re-
quires correction to enable effective spectral processing where
the signal at different wavelengths is spatially aligned. Optical
reconstruction and motion tracking in 3D using white light has
been shown to be a promising approach to aligning the multispec-
tral data for specific points on the tissue (Clancy et al., 2010, 2012).



Fig. 9. Biophotonics application: The use of endogenous or exogenous fluorescence can be used to provide additional anatomic information to the surgeon regarding critical
structures to avoid, or pathologic anatomy to remove. In this example, the location of a porcine ureter is rather difficult to visualize in the white light image (a), while the
fluorescing ureter is quite easy to discern (b). Images courtesy of Intuitive Surgical, Inc. (Sunnyvale, CA, USA).
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In intra-operative neurosurgery, non-rigid surface tracking has also
been used to remove physiological motion induced by blood flow
at the cortical surface (Stoyanov et al., 2012).

Probe-based CLE (pCLE) is an imaging modality that has been
shown to enable in vivo histopathology by showing the cellular
structure at the tissue surface in real time during surgical or diag-
nostic interventions. Imaging with pCLE has been shown to be
effective for in situ diagnosis for Barrett’s Esophagus, colorectal le-
sions and for monitoring bilio-pancreatic structures.4 While effec-
tive at acquiring microscopic images at the tissue surface, a
difficulty with pCLE is that the area of imaging is restricted to the
site in contact with the probe’s tip. To overcome this FoV problem
many methods for linking pCLE images using mosaicing techniques,
which have similar aims to view enhancement methods, have been
proposed (Vercauteren et al., 2005). Mosaiced images can potentially
be mapped in the correct place in the surgeon’s view of the operating
field if the 3D surface of the tissue shape is known. Such methods
can highlight locations where optical samples have been acquired
as biopsy (Mountney and Yang, 2009). Another problem with pCLE
images is that evidence linking pathologies to certain visible pCLE
patterns is still limited and even manual examination of the images
by endoscopists is not certain. This can be formulated as a recogni-
tion problem and 3D information at the biopsy site could potentially
enhance automated recognition techniques.

Besides these exemplar techniques, there are many other appli-
cations of biophotonics methods that may also benefit from in vivo
3D surface reconstruction, including fluorescence spectroscopy, opti-
cal coherence tomography, diffuse reflection spectroscopy, fluores-
cence lifetime imaging and photoacoustics imaging. A more
ambitious underlying consideration is that the 3D geometry of
the tissue surface provides information about the way that inci-
dent light penetrates and scatters within the tissue and in the fu-
ture this could be used to support interpretations of the light
interaction in biophotonic modalities.
8. Discussion

Intra-operative imaging techniques for obtaining the shape and
morphology of soft-tissue surfaces in vivo are a key enabling tech-
nology for advanced surgical systems. In this review paper, we
have discussed optical methods, which are currently an appealing
modality for recovering 3D geometry from the surgical site without
invasive instruments or exposure to harmful radiation. Table 1 pro-
vides an overview of the methods we have presented and com-
pares their capabilities. The main advantages of passive methods,
such as stereoscopy, SfX and SLAM is that they can be used with
standard laparoscopic equipment and can therefore be tested in
4 http://www.maunakeatech.com/.
the clinical setting at the present time. However a current
drawback is that passive methods require intensive processing
and are thus computationally demanding. Furthermore, passive
techniques, while based on the principles of biological vision sys-
tem, cannot currently achieve their robustness, and failures when
reconstructing homogeneous areas are common for those methods
that rely on correspondence search. In contrast, active techniques
require additional light to be introduced at the surgical site and
as a result can deliver dense depth maps at high update rates be-
cause they do not rely on natural features. Their limitations are a
result of the required hardware equipment adaptation, though
these may be overcome more easily with the emergence of scopes
housing multiple optical channels. To date, however, neither pas-
sive nor active reconstruction methods have found widespread
use in the clinical setting. In the following paragraphs, we summa-
rize some of the key areas of future development required to move
the new technologies from the laboratory into the hospital with
the ultimate goal of improving patient care:

8.1. Robustness

For translation into clinical practice, reconstruction methods
must prove to be robust in the presence of dynamic, deformable
and complexly illuminated environments, featuring specular high-
lights, smoke and blood as well as medical instruments that oc-
clude the patient anatomy or even interact with the tissue. In
this context, definition of a strategy to validate the performance
of each method in challenging situations is required. So far, quan-
titative validation of the different reconstruction methods have
typically been performed under (close to) ideal conditions using
phantoms or explanted organs. To address this issue, some of the
authors of this paper have performed a comprehensive evaluation
study to assess and compare the robustness of different recon-
struction techniques. Different hardware and algorithms were ap-
plied to acquire in vitro data from different organs with various
shape and texture and in the presence of blood and smoke (cf.
Fig. 10). The study, which will be published in the near future, con-
cluded that none of the state-of-the-art reconstruction methods
yielded accurate reconstruction results under all conditions. As
achieving high accuracy that is invariant to the widely varying clin-
ical challenges is practically not likely in the short term with any of
the methods reviewed here, potential clinical applications should
closely state performance requirements.

8.2. Sensor fusion

The different reconstruction methods reviewed here provide
different, often complementary advantages, as already shown by
Groch et al. (2011) for laparoscopic interventions as well as by Be-
der et al. (2007) and Ringbeck (2009) in the non-medical context.

http://www.maunakeatech.com/


Fig. 10. Reconstruction challenges arising in MIS: In the presence of blood and smoke, stereo algorithms fail to establish correspondences between pairs of images due to
homogeneous texture or occlusion. (a) Photograph of liver with blood and (b) corresponding surface obtained with a stereo reconstruction algorithm. (c) Endoscopic image of
liver tissue with smoke and (d) corresponding surface obtained with a stereo reconstruction algorithm.
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For example, stereo approaches perform best on textured objects,
while structured light and ToF yield the best results on
homogeneous objects. Consequently, sensor fusion could poten-
tially combine the advantages of different sensor types and is
therefore an important research field for improving the robustness
of surface reconstruction. In the non-endoscopic context, the ap-
proaches proposed so far have focussed on combining ToF sensors
with one or more RGB cameras with the purpose of increasing
depth accuracy (Zhu et al., 2011; Fischer et al., 2011; Huhle
et al., 2010; Gudmundsson et al., 2008) or resolution (Henry
et al., 2010; Yang et al., 2007; Chan et al., 2008) or improving cam-
era pose estimation (Castaneda et al., 2011; Henry et al., 2010;
Streckel et al., 2007). Other approaches combine stereo and SfS
(Blake et al., 1986; Cryer et al., 1995; Jin et al., 2008; Wöhler and
D’Angelo, 2009; Wu et al., 2011) or active range scanning and SfS
(Böhme et al., 2010; Herbort et al., 2011).

Fusion concepts for the endoscopic context have found less
attention in the literature to date. From a practical point of view,
the following issues must be considered in this context. Firstly,
combination of different sensors requires methods for synchroniz-
ing and calibrating the modalities with each other. Furthermore,
combining two of the methods that require additional hardware
for surface reconstruction (e.g. stereo and ToF) would further in-
crease the complexity and size of the setup. Also, active methods
could potentially interfere with each other. As a consequence of
these issues, all of the approaches to fusion of 3D surface recon-
struction methods in the endoscopic context combine one of the
reviewed methods with a method that requires only the RGB
images as input (e.g., SfX or SLAM). In this case, the hardware setup
remains the same, and only the run-time of the algorithm is in-
creased. Some approaches use several stereo image pairs, acquired
over the time, in order to obtain a more accurate pose estimation
than with monocular SLAM (Mountney et al., 2006) or to create a
denser surface (Totz et al., 2011; Röhl et al., 2012). Earlier works
explored the combination of monocular visual cues such as shad-
ing with stereoscopic cues (Lo et al., 2008) to overcome the limita-
tions of stereo in homogeneous regions by exploiting the relative
information recovered from shading. Recently, by calibrating the
pose of the light source relative to the cameras, specular reflections
were used to resolve some of the ambiguity in scale and relative
position of shading techniques (Scarzanella, 2012). To our knowl-
edge, the first and only approach to fusion of active and passive
methods in the context of laparoscopy has recently been intro-
duced by Groch et al. (2012) who chose a probabilistic graph cuts
based approach to fusing dense noisy point sets obtained from a
ToF endoscope with a sparse but accurate point cloid reconstructed
with rigid SfM. In general, more work needs to be investigated to
determine the best approach to sensor fusion. In terms of clinical
workflow optimization, combination of different monocular tech-
niques could be especially interesting. One way would be to recon-
struct the albedo for each pixel of the template in DSfM. This would
be used with the shading model to predict the input image’s pixel
colors. The 3D deformation would then be recovered by
minimizing the per-pixel difference with the actual input image.
Overall, more general fusion frameworks should be investigated
especially with increasing attempts at utilizing different visual
cues in MIS, such as defocus (Chadebecq et al., 2012) or speculari-
ties (Scarzanella, 2012).

8.3. Real-time performance

Although all of the reconstruction methods proposed can be
implemented in real time on the GPU, performance remains an
important issue in practice. This is particularly essential when con-
sidering a clinical application that requires 3D information in order
to guide the surgeon or to augment the capabilities of the
nstruments. For image-guidance real-time performance should
be sufficiently fast to maintain video frame rates without lag or
impedance to the normal visualization of the surgical site. The
hardware loop to perform overlay of such information is practically
feasible but requires customized equipment. Usually, video hard-
ware created for broadcasting has been adapted for intra-operative
use. Despite acceptable performance, lag remains an issue, and this
is compounded by other computational tasks such as registration
or biomechanical modeling, which are currently not real-time in
general. In the case of robotic control loops, where measurements
are used for example to synchronize with the physiological motion
of tissues, much higher run times are required to avoid aliasing the
motion signals (Ginhoux et al., 2005). Currently, these cannot be
achieved for dense parts of the operating field of view in HD video
due to the data throughput and computational demands, but pre-
dictive models could potentially be a solution.

8.4. Clinical workflow integration

Often, clinical studies tend to favor CAS over the conventional
procedures in terms of accuracy or radiation exposure (Yaniv and
Cleary, 2006), however, the majority of systems have not yet en-
tered clinical practice. The lack of acceptance for clinical use is
partly due to a suboptimal integration of the proposed systems
into the clinical workflow. A CAS system should not add time or
complication to a procedure, but be unobtrusive and simple to
operate and should be linked to an ergonomic user interface. In this
context, 3D reconstruction methods face various challenges. For
active technologies where additional equipment must be intro-
duced into the operating theatre or into the anatomy, significant
challenges are miniaturization, integration and regularization for
clinical use. Passive techniques bypass some of these problems
but must prove to be robust when textural information is not al-
ways available for certain tissue types (cf. Fig. 10). Seamless inte-
gration of the presented techniques into the clinical workflow
further requires minimum setup and calibration times and real-
time performance during surgery. In this context, online calibration
of optical devices without calibration objects remains an unsolved
technical challenge, though some preliminary work has been re-
ported (Stoyanov et al., 2005a). A potentially more informed
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approach would be to use the known shape of objects in the surgi-
cal field of view, such as instruments, for calibration. Model-based
approaches for instrument detection are required for this to work
in practice and some preliminary studies have shown promising
results, though calibration is assumed to be known with these
methods (Speidel et al., 2008; Pezzementi et al., 2009).

8.5. Non-rigid surface registration

While interventions on sufficiently rigid structures may require
only an initial registration at the beginning of the operation, soft-
tissue interventions rely on fast, non-rigid registration methods
in order to account for the continuously changing morphology of
the organs. Unlike approaches based on manual interaction,
markers, or calibration of an image modality to the endoscope
(cf. Section 7.2), shape-based registration is potentially well-suited
for non-rigid registration. Despite many influential publications in
surface matching in general (cf. e.g. (Bronstein et al., 2011; Funkh-
ouser and Shilane, 2006; Gelfand et al., 2005; Lipman and Funkh-
ouser, 2009; Wang et al., 2010; Windheuser et al., 2011; Zeng
et al., 2010; Zhang et al., 2008), the only fully-automatic non-rigid
approaches to intra-operative registration of range data in abdom-
inal procedures have been applied in open surgery (dos Santos
et al., 2012) and do not provide real-time performance. To avoid
the computational demands of repeating the registration process
over time, an alternative registration approach involves continu-
ously updating an initially performed registration via tissue track-
ing using the endoscopic image information acquired during
surgery. This is typically achieved with iterative strategies such
as optical flow (Horn and Schunck, 1981; Lucas and Kanade,
1981), which are based on the knowledge of the location of a fea-
ture in the previous frame to constrain a search for the correspond-
ing feature in the next frame, assuming a small degree of motion
and intensity coherence. Iterative strategies have been combined
with predictive models of feature localization based on prior
knowledge of anatomical periodicity, machine learning approaches
and predictive filtering (Ginhoux et al., 2005; Ortmaier et al., 2005;
Bachta et al., 2009; Bogatyrenko et al., 2011; Richa et al., 2010;
Giannarou et al., 2012; Mahadevan and Vasconcelos, 2009; Puerto
Souza et al., 2011) and have been extensively used in laparoscopic
images with varying degrees of success (Sauvee et al., 2007; Elha-
wary and Popovic, 2011; Ortmaier et al., 2005; Yip et al., 2012).

8.6. Biomechanical modeling

While rigid registration algorithms allow computing the pose of
internal organ structures based on surface information, this sparse
sensor information is often insufficient for compensating soft-tis-
sue deformation inside the organ. In the context of the sparse data
exploration problem (Miga et al., 2011), accurate non-rigid registra-
tion can be solved by incorporating a priori knowledge about the
mechanical properties of the tissue via biomechanical modeling.
Using elasticity theory, the approach can be formulated as a
boundary value problem with displacement boundary conditions
generated from intra-operative sensor data. In general, the finite
element method (FEM) is used to solve the resulting set of partial
differential equations. In several neurosurgical applications, this
approach has been successfully applied to compensate the brain
shift with intra-operative images (cf. e.g. (Chen et al., 2011b; Wit-
tek et al., 2007; Clatz et al., 2005; Skrinjar et al., 2001)).

In contrast to neurosurgery, there are only a few studies on
abdominal or laparoscopic interventions that adapt this concept
to date (Simpson et al., 2012; Peterlk et al., 2012; Suwelack et al.,
2011a; Miga et al., 2011; Pratt et al., 2010; Dumpuri et al., 2010;
Cash et al., 2007; Cash et al., 2005). Using biomechanical models
for non-rigid registration is challenging as finite element (FE)
models are computationally intensive, but have to be solved in real
time for CAS while still being robust and accurate. The application
of fast, GPU-based FE solvers in combination with a reduced model
complexity is therefore crucial regarding real-time capability. Var-
ious FE algorithms exist which can be used for hyper-, visco-, and
poroelastic models in the field of real-time soft tissue simulation
(cf. e.g. (Marchesseau et al., 2010; Miller et al., 2007)). Both meth-
ods have drawbacks regarding robustness and numerical complex-
ity, especially in the context of an intra-operative application. Since
previous studies have shown that in this context the material law
and its parameterization has very little impact on the registration
accuracy as long as a geometrically non-linear model is used (Wit-
tek et al., 2009; Suwelack et al., 2011b), more efficient models, e.g.
the corotated FE (Mezger et al., 2009; Suwelack et al., 2011a), can
be used, also taking vascular structures inside the organ into ac-
count (Peterlk et al., 2012). Another aspect that has to be consid-
ered are morphological changes due to cuts which have to be
propagated in real time on the FE mesh. A promising and efficient
method for real-time cut simulation is e.g. the extended finite ele-
ment method (X-FEM). Several approaches based on X-FEM can be
found in the literature (e.g. (Vigneron et al., 2011; Jerabkova and
Kuhlen, 2009)).

8.7. Validation

Careful validation, both in controlled environments as well as in
clinical scenarios, is crucial for establishing a new system in the
clinic (Jannin et al., 2002, 2006). So far, most of the validation stud-
ies relating to 3D surface reconstruction have been performed on
numerically simulated data (Hu et al., 2007; Mountney and Yang,
2010), on phantom models with known ground truth geometry
and motion characteristics (Hu et al., 2007; Wu and Qu, 2007; Ri-
cha et al., 2008b; Noonan et al., 2009) or with ground truth data
obtained by scanning techniques (Burschka et al., 2005; Hu et al.,
2007; Wu and Qu, 2007; Richa et al., 2008b; Noonan et al., 2009;
Stoyanov et al., 2010). In this context, ensuring that there is no
deformation between data acquisition using scanning and observ-
ing the tissue with a laparoscope can be a practical challenge.
Experiments on dynamic objects are even more complicated. For
this purpose, a combination of mechanical devices and signal gen-
erators can be employed to generate repeatable dynamic motions
(Richa et al., 2008a; Visentini-Scarzanella et al., 2009; Mountney
and Yang, 2010). To register between the experimental and ground
truth coordinate systems, high contrast fiducial markers are typi-
cally attached to the object under observation. The most challeng-
ing scenarios for obtaining reference data are cadaver, in vivo and
wet lab experiments, which are mostly presented to qualitatively
demonstrate practical feasibility (Richa et al., 2008a,b; Noonan
et al., 2009; Stoyanov et al., 2010). Quantitative in vivo validation
of techniques could be performed by calibrating the endoscope
with an intra-operative CT as also shown in (Feuerstein et al.,
2008) and acquiring the images under breath-hold.

Regardless of the validation object/subject used, standardiza-
tion is an important issue to ensure reproducibility and informa-
tive value of a study. In order to allow reporting validation
experiments in a standardized manner, Jannin et al. proposed a
model for defining and reporting reference-based validation proto-
cols in medical image processing (Jannin et al., 2006). The model
and an associated checklist facilitate the standardization of valida-
tion terminology and methodology and thus the comparison of val-
idation studies. Apart from standardized validation protocols, there
is also the need for standardized validation objects. To advance fu-
ture research in 3D reconstruction, standardized data repositories
need to be established and shared for comparison of the different
techniques. Some efforts relating to stereoscopic reconstruction
have been made in this direction, but these are just preliminary
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and need further attention (Mountney et al., 2010; Stoyanov et al.,
2010).

A further challenge, in the clinical setting is that evaluation
metrics and strategies need to be devised for evaluating the
difference achieved by using a CAS system as opposed to normal
surgery. Indeed studies justifying and explaining the precise and
procedure-specific requirements for 3D surface reconstruction
are yet to appear and these are needed to highlight what the tech-
nology should be aiming for. In the long run, validation of CAS sys-
tems in randomized clinical trials are needed to fully prove the
benefits of new techniques.

8.8. Infrastructure

Today, CAS systems are generally provided as stand-alone solu-
tions and thus cannot be smoothly integrated into the clinical
workflow, however, some open-source software platforms for
medical image processing, such as 3D Slicer5 or the Medical Imaging
Interaction Toolkit (MITK),6 have found widespread use in the scien-
tific community. The underlying development process (Schroeder
et al., 2004) assures flexible and portable high-quality software.
Furthermore, the modular design allows straightforward re-use of
existing software components so that users may focus on new devel-
opments relevant for a dedicated application. Some frameworks
even support running the software as a plugin to clinical workstation
software (Engelmann et al., 1998) and thus enable its smooth inte-
gration into the clinical workflow. Finally, a familiar graphical user
interface (GUI) decreases training time and increases acceptance
on the part of the physicians who use the system. As pointed out
by Cleary and Peters (Cleary and Peters, 2010), common software
modules will continue to be needed so that researchers do not have
to reinvent the wheel and so that newly developed techniques can
be widely disseminated. To address this issue, several prominent re-
search groups and companies have formed a joint initiative to pro-
vide the medical imaging community with the next generation
open-source toolkit, referred to as Common Toolkit (CTK).7 However,
a common software platform by itself is not sufficient to guarantee
the smooth integration of CAS systems into the clinical workflow.
In fact, widespread acceptance will only be achieved if the new tech-
nologies are effectively integrated into hospital information systems.

8.9. Human factors

Currently, novel technical solutions often lack wide-spread
acceptance among physicians who tend to be reluctant to change
their established techniques. Hence, human factors issues relating
to the use of new technical equipment need to be addressed. The
systems should require a minimum of training, setup time and user
interaction. Information overload and the presentation of unfamil-
iar, fused data sets to the physicians will increase the need for re-
search into human–computer interfaces specific to CAS (Cleary and
Peters, 2010). Multidisciplinary partnerships between scientific
and clinical personnel are therefore essential.

In summary, CAS systems are still a long way from becoming
reliable and useful tools that enhance the surgeon’s capabilities
for laparoscopic procedures in soft-tissue anatomies. However,
there is a recognized clinical need for enhanced navigation to
anatomical targets and higher precision when controlling the sur-
gical instruments to improve the quality of tissue manipulation.
With rapid developments in medical imaging, medical image com-
puting and robotics, computing technologies will continue to push
the limits of surgical possibilities. The requirements for accuracy
5 http://www.slicer.org.
6 http://www.mitk.org (Wolf et al., 2005).
7 http://www.commontk.org.
will grow further as targets for therapy become smaller with im-
proved image resolution, and as new forms of treatment and
surgery continue to move toward minimally invasive interven-
tions, the demand for image-guided systems can be expected to
further increase in the future (Cleary and Peters, 2010). Once the
benefit of the new technologies has been proven in long-term pa-
tient studies, and the new systems have been integrated effectively
into the clinical workflow, CAS systems will find widespread
acceptance in MIS clinical routine.
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