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Abstract

We propose a new approach for template-based extensi-
ble surface reconstruction from a single view. We extend the
method of isometric surface reconstruction and more recent
work on conformal surface reconstruction. Our approach
relies on the minimization of a proposed stretching energy
formalized with respect to the Poisson ratio parameter of
the surface. We derive a patch-based formulation of this
stretching energy by assuming local linear elasticity. This
formulation unifies geometrical and mechanical constraints
in a single energy term. We prevent local scale ambiguities
by imposing a set of fixed boundary 3D points. We experi-
mentally prove the sufficiency of this set of boundary points
and demonstrate the effectiveness of our approach on differ-
ent developable and non-developable surfaces with a wide
range of extensibility.

1. Introduction
Monocular template-based 3D reconstruction and repre-

sentation of nonrigid objects require models with the ability
to assume a wide variety of shapes and to track complex
motion. The models must be able to recover a plausible
deformed shape (or at least a set of discrete plausible de-
formed shapes) from noise-corrupted features while making
the weakest possible assumptions about the observed shape.

On the one hand, previous approaches based on physi-
cal constraints address this problem in the case of isomet-
ric [6, 15], and conformal [9, 4] deformations. On the
other hand, statistical learning approaches [16, 13] have
shown effectiveness only on isometric surfaces. In this pa-
per, we present a new physical-based approach for monoc-
ular template-based reconstruction of extensible and com-
pressible surfaces with only one mechanical parameter. As
physical priors, our approach relies only on the Poisson ra-
tio of the surface material assumed to be linear Hookean
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(i.e. constant elasticity). This Poisson parameter models
the tendency of a material to be compressed in a transverse
direction when it is stretched in the longitudinal direction
[5]. Our formulation is based on the principle that any ex-
tensible/compressible surface lies in the minimal stretching
energy state subject to external applied constraints. Accord-
ingly, we formulate the reconstruction problem as being to
estimate the shape that has minimal stretching energy given
a set of boundary points, and is consistent with the mea-
sured image data. The results are close to the real deformed
surface as will be shown later in the experimental results
section.

2. Related Work and Contribution

Different types of constraints have been proposed and
can be categorized as statistical or physical constraints. Sta-
tistical constraints often model the deformation as a lin-
ear combination of basis vectors, which can be learned on-
line either for human face reconstruction [11] or for generic
shapes [15, 13, 18]. Non-linear learning methods were ap-
plied in human tracking [14] and then extended for more
generic surfaces [16].

Physical constraints include spatial and temporal priors
on the surface. In [3] physical constraints are used as pri-
ors for a coarse-to-fine shape-basis statistical model. A
physical prior that has been studied is the isometry con-
straint [6], which requires that any surface geodesic dis-
tance is preserved after deformation. This approach has
proven its accuracy for paper-like surfaces and was recently
extended for non-developable surfaces undergoing confor-
mal deformation[9]. More recently, [4] have studied the
well-posedness of both isometric and conformal deforma-
tions. Their applicability in real world deforming object
remains limited (paper like surfaces, deforming balls un-
der isotropic conditions). Thus, the problem of monocular
template-based 3D reconstruction of realistic deformations
has not yet been tackled. However, a SLAM (Simultane-
ous Localization And Mapping) method for elastic surfaces
was attempted with fixed boundary conditions [1] and later
extended to free boundary conditions [2]. This approach re-
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Figure 1. Diagram of monocular template-based 3D reconstruc-
tion. The surface is assumed to be homeomorphic to a disc.

lies on the Navier-Stokes fluid-flow equation. It uses an
FEM (Finite Element Method) to model the surface and
approximate the deformation forces. The surface and the
deformation forces are both estimated using an EKF (Ex-
tended Kalman Filter). It is important though to distinguish
SLAM and monocular template-based reconstruction meth-
ods. In the former a time sequential smoother is embedded
in a Bayesian a-posteriori estimator where for initialization
the scene is required to be static. These assumptions sim-
plify the problem since during tracking small deformations
are sequentially integrated and added to the surface. How-
ever, in monocular template-based approaches, the rate of
deformation of the deformed surface may be very large and
multiple solutions may appear.

Contributions. This work goes beyond isometric and
conformal deformations to consider elastic deformations
for monocular template-based reconstruction. The contri-
butions of the paper are threefold. First, we formalize the
reconstruction problem of a generic surface in terms of the
minimization of stretching energy. From classic linear elas-
ticity theory [5] we derive a patch-based formulation of the
stretching energy of an elastic surface. This formulation
unifies geometrical and mechanical constrains in a single
energy term. Second, we show that we do not have global
scale ambiguities and we prevent local scale ambiguities
by imposing a set of fixed boundary 3D points. We ex-
perimentally prove that this set of boundary condition suf-
ficiently constrain the solution. Third, we propose an iter-
ative method to solve our extensible surface reconstruction
problem.

3. Geometric Priors as Physical Constraints:
Isometric and Conformal

A smoothly deforming surface S homeomorphic to a
disc, can be modelled as an embedding of a template Ω into
R3. It is described by a surface function ϕ of two vari-
ables (u, v) ∈ Ω : ϕ : Ω ⊂ R2 → R3. The problem of
monocular template-based reconstruction can be then sum-
marized in figure 1. It is intuitively constrained by a set of

point correspondences, represented by the 2D warp η, be-
tween the template and the input image. The nature of the
surface deformations are encoded in the differential prop-
erties of ϕ. The Jacobian, denoted Jϕ, is a 3 × 2 matrix
which measures and characterizes the local extension of the
deformations. The first fundamental form Iϕ defined as:
Iϕ = J>ϕ Jϕ, gives the required tensor to measure distances
on the deformed shape. It is a 2× 2 matrix which maps the
local distances from Ω to S. Previous work has focused on
two types of mappings: isometric and conformal. If ϕ is
an isometry, then Iϕ is the identity. This property has been
used as the main constraint in formalizing the problem of
monocular template-based 3D reconstruction of isometric
surfaces [6]. If ϕ is conformal, i.e. preserves angles, then
Iϕ is of the form: Iϕ = λ I, where λ : Ω→ R controls the
amount of local isotropic scaling and I is the identity ma-
trix of dimension 2. This deformation assumption has been
used as the main constraint in formalizing the problem of
monocular template-based 3D reconstruction of conformal
surfaces [9, 4]. In our work, we link this geometric tensor
to mechanical priors and then unify geometric and mechan-
ical constraints in one equation, as will be seen in the next
section.

4. Mechanical Priors as Physical Constraints:
Our Stretching Energy

Our idea is to model the material being deformed as
made of some elastic material, and minimizing the defor-
mation energy in trying to fit the surface to the data. For
isotropic materials, the deformation energy is computed in
terms of the Young’s modulusE and the Poisson ratio ν [5].

4.1. Background
Consider a rod of some material with rest length L,

which is longitudinally stretched with a force F . Young’s
modulus expresses the relationship of the force to the exten-
sion of the rod:

F = E dL/L , (1)

where dL/L is the relative extension of the rod, and E
is Young’s modulus. It is measured in Pascals (Newtons
per square metre – the square metres relating to the cross-
section of the rod).

The Poisson ratio ν models the tendency of a material to
become thinner when it is stretched. A value of 0 indicates
that no thinning takes place. To be exact, for a unit cube of
material,

−ν =
∆y

∆x
=

∆z

∆x

where ∆x,∆y and ∆z are small changes in dimension when
the cube is stretched (or compressed) in the X direction
without constraints in the other directions, as shown in fig-
ure 2-a. For most materials, 0 ≤ ν ≤ 0.5, though for some
materials, ν < 0 which means that the material will ex-
pand laterally when stretched, or equivalently shrink when
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Figure 2. 2D deformation of a surface of negligible thickness.
(a): stretching the surface in the X direction introduces a com-
pression in the Y direction. (b): any deformation can be seen as
stretching/compression in the direction of the singular vectors of
the Jacobian of the deformation surface function ϕ.

compressed. Rubber has a value of ν close to 0.5, which
means that it does not significantly change volume when
compressed in one direction. Cork has a value close to zero,
it does not expand laterally when compressed or stretched.
This explains its usefulness in stopping wine bottles.

In the case of two-dimensional sheets, the relationship
between the stress σ (infinitesimal force) and strain ε (in-
finitesimal displacement) tensors is given by Hooke’s Law
[5]: εxxεyy

εxy

 =
1

E

 1 −ν
−ν 1

1 + ν

 σxxσyy
σxy

 , (2)

and henceσxxσyy
σxy

 =
E

1− ν2

1 ν
ν 1

1− ν

 εxxεyy
εxy

 . (3)

where σxx is the stress along the x axis, σyy is the stress
along the y axis and σxy is the mutual stress (shearing).
The εs’ indices represents the strains in the corresponding
directions.

4.2. Patch-Based Stretching Energy
One dimensional stretching. Let us return to the 1-
dimensional case, and consider the work done in extending
a rod (or a spring) with initial length 1 and Young’s modulus
E. Suppose it is stretched to length L and let us compute
the expended energy.

Suppose that we are pulling on the end of the rod, which
at some moment has length `. The force being applied at
that moment is equal to E(`− 1). If it is extended to length
`+d`, then the energy expended is E (`−1)d`. Integrating
to get the total work done, we find

W = E

∫ L

1

(`− 1)d` = (L− 1)2/2 .

This makes sense, since the force increases proportionally
from 0 to E(L − 1) during the stretching process. This
shows the necessity of using some infinitesimal process
when computing the energy expended.

Two dimensional stretching. Consider a unit square,
transformed by a linear transformation A. We could con-
sider an affine transformation, but that would make no real
difference. The question is, what is the deformation energy
of the material in this deformed state? Clearly it is equal
to the expended energy used to deform it. The first thing
we want to do is to simplify the computation, by simplify-
ing the deformation. Thus, suppose that the matrix A has a
Singular Value Decomposition (SVD) A = UDV> with a1

and a2 as real singular values. As shown in figure 2-b, the
transformation takes place in three stages, first a rotation by
V>, then axial stretching by a1 and a2, then rotation by U.
It is clear that rotation does not change the stored energy, so
we have reduced the problem to one of axial stretching.

Clearly, the amount of energy expended depends propor-
tionally on the area of the piece of material being stretched,
so we consider a unit square. We want to deform this to
dimension a1 × a2.

According to (3), when the dimensions of the square are
x× y, the force on the faces will be(

σxx
σyy

)
=

E

1− ν2

(
1 ν
ν 1

) (
x− 1
y − 1

)
,

since the strain εxy = 0 (the SVD decomposition allows us
to account only for axial deformations). Ignoring the con-
stantE/(1−ν2), the work done in increasing the dimension
by (dx, dy) is proportional to

dW = (dx, dy)

(
1 ν
ν 1

) (
x− 1
y − 1

)
(4)

= (x− 1)dx+ (y − 1)dy + ν(x− 1)dy + ν(y − 1)dx

= ((x− 1) + ν(y − 1)) dx+ ((y − 1) + ν(x− 1)) dy .

The complete energy taken to deform from an initial shape
1 × 1 to a1 × a2 is proportional to the integral of this over
some path from (1, 1) to (a1, a2).

We can deform first over x (with y = 1) then over y
(with x = a1), giving∫ a1

1

(x− 1) dx+

∫ a2

1

((y − 1) + ν(a1 − 1)) dy

=
(
(a1 − 1)2 + (a2 − 1)2

)
/2 + ν(a1 − 1) (a2 − 1) .

(5)

From symmetry of this expression, it is obvious that we get
the same result if we deform first over y, then over x. From
physical considerations, the integral must be the same over
any path from (1, 1) to (a1, a2); this may be verified. This
derivation allows us to state the following theorem:



Theorem 1 Let a planar region Ω be deformed by a differ-
entiable deformation mapping ϕ. Let a1(u, v) and a2(u, v)
be the singular values of the Jacobian Jϕ defined at point
(u, v) ∈ Ω. Then the deformation energy of the mapping ϕ
is given by

Es[ϕ] =
E

2(1− ν2)

∫∫
Ω

(a1(u, v)− 1)2 + (a2(u, v)− 1)2

+2ν(a1(u, v)− 1)(a2(u, v)− 1) du dv .
(6)

This theorem unifies the geometric and the mechanic prop-
erties of a deformable surface; it describes any deforma-
tion as an integration of local deformations of patches along
the principal axes of stretching/shrinking. These axes corre-
spond to the eigenvectors of the first fundamental form. The
amount of deformation is measured by the singular values
a1 and a2. The Young’s modulus is present as a multiplica-
tion factor and the minimization of the stretching energy is
independent of its values.

Let us compare this formula with the error term used in
[6] for isometric deformations. For a linear transformation
A the term used there is ‖A>A−I‖2. (this is applied in [6] to
the Jacobian of the transformation, so A = Jϕ). In this case,
setting A = UDV>, we see that A>A − I = U(D2 − I)U>,
and ‖A>A− I‖2F = (a21 − 1)2 + (a22 − 1)2 which is similar
to, but not quite the same thing as the energy term given by
replacing ν = 0 in equation (6). In particular, it involves
4-th degree terms in the deformation values, which would
appear to overly penalize large deformations. By contrast,
equation (6) involves only quadratic terms.

5. Variational Formulation
Let us assume a set C of point correspondences between

the template Ω and the deformed surface S. Minimizing
the stretching energy under this natural boundary condition
means (for perspective cameras) sliding the shape along the
sight lines until the shape lies in a minimum stretching en-
ergy. However, for a set of adjacent local patches it is still
possible that local depth variations can compensate for local
stretching energy among adjacent patches and provide the
same global stretching energy. Characterizing local ambi-
guities would require one to investigate an analytic solution
of this problem. Such a study is a very hard problem since
the equation (6) is non-linear. In order to overcome this is-
sue, we experimentally prove in §7 that a set of 3D boundary
points are sufficient to effectively prevent local ambiguities.
Henceforth, if we assume that a setF of sufficient boundary
3D points are known, then the reconstruction problem can
be formalized in the following variational approach:

min
ϕ
Es[ϕ] (Minimal energy)

s.t.
ϕ(ui, vi) = Qi, i ∈ F (3D fixed boundaries)
Π(ϕ(uj , vj)) = η(uj , vj), j ∈ C (Image fitting)

(7)

where Qi, i ∈ F is the set of known boundary points, Π is
the matrix of camera intrinsics assuming perspective projec-
tion, and (ui, vi), i ∈ C, are the template points that match
points η(ui, vi) in the input image.

6. Implementation
In order to solve the variational problem stated in

equation (7), we propose a two step practical solution: first
initialization through a sub-optimal convex formulation,
then refinement using non-linear optimization.

Initialization. In the first step, we roughly estimate
the 3D coordinates of the correspondence points by max-
imizing their depths. This convex formulation was used
in [17, 6] for isometric surfaces in a formulation using
SOCP (Second Order Cone Programming). In our imple-
mentation we relax the isometric condition to:

‖v′
i − v′

j‖ ≤ κ ‖vi − vj‖+ ετ , i, j ∈ C (8)

where vi and vj are known 3D points from the template Ω
and their corresponding unknown 3D points are v′

i and v′
j in

the deformed surface. Further, ετ is a small real value which
models the tolerance to noise in correspondences, and κ is
a real parameter chosen so that edges are able to stretch. As
in [17, 6], vi and vj are chosen to be closest neighbours.

Boundary points. We also add to this classic convex for-
mulation a further constraint in the form of boundary points
by setting the following condition:

‖ v′
i −Qi ‖≤ 0, i ∈ F (9)

In the case where the boundary points are rigid parts
of the template, we compute their 3D poses in the camera
frame using the EPnP source code from [12]1.

Non-Linear optimization. In order to minimize the
stretching energy, we propose to parametrize the surface
function ϕ by fitting the 3D points from the initialization
step to a cubic B-spline [7] defined in the parametrization
domain Ω ⊂ R2. Then a discrete set of surface points is uni-
formly sampled to compute a discrete sum of the stretching
energy. The minimization problem (7) is then reformulated
as:
min
Lϕ∑
i∈Ω

[
(a1(ui, vi)− 1)2 + (a2(ui, vi)− 1)2

+2|ν(a1(ui, vi)− 1)(a2(ui, vi)− 1)|]

}
, Elasticity

+λ1

∑
i∈F
‖ϕ(ui, vi)−Qi‖︸ ︷︷ ︸

(3D fixed boundaries)

+λ2

∑
i∈C
‖Π(ϕ(ui, vi))− η(ui vi)

>‖︸ ︷︷ ︸
(Image fitting)

(10)
1http://cvlab.epfl.ch/software/EPnP/index.php

http://cvlab.epfl.ch/software/EPnP/index.php


λ1 and λ2 are two real values that tune the importance of
the fixed boundary and the image fitting conditions. We
experimentally set λ1 to 0.8 and λ2 to 0.2.

The singular values a1(ui, vi) and a2(ui, vi) are com-
puted in closed form from the matrix Iϕ = J>ϕ Jϕ at each
point. This is more efficient that using SVD.

7. Experimental Results
7.1. Compared Methods and Parameters

We compared our algorithm Po (minimizing stretching
energy expressed with Poisson’s ratio) with four algorithms
representing methods of monocular template-based 3D re-
construction: Sa ([15]- a convex numerical solution based
on the maximum depth heuristic), Br ([6] – an iterative and
non-convex solution that minimizes the surface’s reprojec-
tion error with an isometry prior and a smoothness penalty),
Ma ([9] – an iterative and non-convex solution that mini-
mizes the surface’s reprojection error with a conformal prior
and a smoothness penalty) and Ba ([4] – an analytic solu-
tion with a conformal prior). We evaluated these methods
on both developable and non-developable surfaces by vary-
ing the amount of deformation. The amount of extensibility
is expressed as a percentage of the relative variation of the
stretching energy with respect to the ground-truth template.

7.2. Synthetic Data
In order to obtain physically meaningful elastic defor-

mations we used 3D Studio Max [10]. We used paper-
like material (ν = 0) and rubber material (ν = 0.5). We
also used two different template shapes: flat and ball-like
surfaces. The template of the developable-template (flat)
data sets has a size of 200 × 300 mm2 and the template
of the non-developable-template (ball-like) data sets has
a size of 70 × 100 × 140 mm3. We randomly drew 100
points on the simulated deformed surfaces and projected
them with a calibrated perspective camera with intrinsics
Π = diag(450, 450, 1) located 600 mm from the surface.
Gaussian noise with standard deviation σ = 1 pixel was
added to the image points. The set of known boundary
points is represented by 20 points randomly drawn from the
surface. We measured the 3D residual error in mm as the av-
erage distance between the simulated and the reconstructed
3D points. For each extensibility ratio, we kept the average
of the 3D residual error over 100 samples. The results are
shown in figure 3: figures 3-a and 3-c show some examples
of deformed surfaces. Figure 3-b shows the average recon-
struction error for the developable-template data sets com-
paring the five algorithms. It can be seen that the error of re-
construction increases when the extensibility ratio increases
except for our algorithm Po which remains more stable. For
isometric deformations (0% of extensibility ratio) the accu-
racy of the iterative methods Br, Ma and Po is high and sim-
ilar. We do not display the accuracy result of Br for extensi-
bility higher than 15% to keep the error scale of the most ac-
curate methods. The analytic conformal solution Ba is less
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Figure 4. 3D error with respect to the number of boundary points
for the synthetic data sets.

accurate than the iterative conformal method Ma because it
is more sensitive to noise. From 10% of extensibility ratio
the accuracy of the conformal methods Ba and Ma substan-
tially decreases because the conformal constraint becomes
too strong to model such amounts of elastic deformations.
Figure 3-d shows the average reconstruction error for the
non-developable-template data sets comparing the three
algorithms. We did not include Sa and Br because they
are designed for developable-template surfaces. Similar ob-
servations can be made for the non-developable-template
data sets. We note that our algorithm Po presents similar
accuracies for both data sets since it deals with the exten-
sibility locally it can handle both developable-template and
non-developable-template surfaces.

Necessary and sufficient condition for boundary points.
To experimentally prove that the presence of boundary

points are necessary and sufficient, we run under the con-
ditions of our synthetic data set an experiment where we
varied the number of boundary points from 1 to 35. The
ratio of extensibility ranges from 0% to 30% with a step of
approximately 2.5%. The boundary points were randomly
sampled on the synthetic deformed surfaces. The average
reconstruction error is shown in figure 4. It appears that over
17 points, the error is stabilized around 3.4 mm. This result
confirms our belief that there is no global scale ambiguity
that would produce huge errors. However, local ambiguities
may appear due to local compensation between shrinking
and extensions. To reduce these effects it is then sufficient
to constrain the minimization of our stretching energy with
3D boundary points.

7.3. Real Data

To acquire real data sets with ground-truth, we used
a stereo camera system consisting of two Point Grey
Grasshopper cameras. The two cameras have a resolution
of 640× 480 pixels. A set of 10 deformed shapes was used
for each material of the following data sets.
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Figure 3. Results on Synthetic data. Developable-template data sets: (a) Examples of simulated shapes. (b) 3D error with respect to the
extensibility ratio. Non-developable-template data sets: (c) Examples of simulated shapes. (d) 3D error with respect to the extensibility
ratio.

(a) Redchecker data sets

(a.1) Sa

(a.2) Br

(a.3) Ba

(a.4) Ma

(a.5) Grd truth

(a.6) Po (b) Spandex data sets

(b.1) Sa

(b.2) Br

(b.3) Ba

(b.4) Ma

(b.5) Grd truth

(b.6) Po

Figure 5. 3D reconstruction of Developable-template real data sets.

Developable-template real data sets. As real stretch-
able and compressible developable surfaces, we used a red-
checker pattern fabric made of polyester (ν = 0.3) and an
irregular pattern spandex (ν = 0.5). Both materials can
have a large amount of stretching deformation within their
tear limit. As demonstrated, 3D boundary points are re-
quired in our algorithm, so both materials are clipped on
the edge of a box to hold the surface during image acquisi-
tion. Features are obtained manually or semi-automatically
with SIFT [8]. For the redchecker pattern, we took ad-
vantage of its corner points for manual-driven point selec-
tion. A total of 100 feature points and 36 fixed boundary
points were used for this data set. For the spandex, features
are found by interactive point selection with initial matches
from SIFT, which is important in highly-deformed areas,
where it is difficult to find point correspondences automat-
ically. A total of 212 feature points and 45 fixed boundary
points were used for this data set. The extensibility ratio
ranges from 1% to 31%. The 3D error was measured at
about 1.3 mm for our Po method, 5.3 mm for Ma and 6.9
mm for Ba. See figures 8-a.1 and 8-a.2 for a summary of
3D errors with developable-template real data sets.

Non-developable-template real data sets. As non-
developable surfaces, we used a balloon pattern fabric
made of rubber (ν = 0.5), a cap made of quasi-inextensible
polyester material (ν ≈ 0), an in-vivo piglet bladder and a
piece of heart-tissue (ν = 0.35, experimentally set). See
figures 6 and 7 for examples of reconstruction. (i) balloon
data sets: the balloon is clipped to a ring in order to fix its
borders. A total of 95 feature points and 30 fixed boundary
points were used for this data set. The extensibility ratio
ranges from 0% to 22%. The 3D error was measured about
1.6 mm for our Po method, 4.3 mm for Ma and 8.9 mm
for Ba.. (ii) cap data sets: in this data set we deformed the
top of the cap and we kept rigid the surrounding part. The
boundary points were estimated by EPnP as explained in
§6. We used a set of 40 boundary points and a set of 130
point correspondences. The extensibility ratio was almost
zero and ν ≈ 0. The 3D error was measured at about 2.5
mm for our method Po, 4.1 mm for Ma and 7.2 mm for
Ba. (iii) Bladder and heart-tissue data sets. To demon-
strate a real application of our proposed method we recon-
structed elastic deformations from in-vivo piglet tissue. If
tissues are deformed with rigid tools during surgery then we
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Figure 6. 3D reconstructions of Non-developable-template real data sets: balloon and cap data sets.
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Figure 7. 3D reconstructions of Non-developable-template real data sets: bladder and heart-tissue data sets.

can infer boundary conditions on the contact between tool
and tissue if we assume that the rigid shape of the tool is
known. For this purpose we stitch a checkerboard on a flat
tool, see figure 7-a.1-b.1, that we use to deform a bladder
and a heart tissue of a piglet in vivo. In this experiment
we used the edge contact of the tool consisting of 10 pre-
calibrated points as a boundary condition. We also used
the stereo setup to infer ground-truth 3D points. A total of
81 and 72 point correspondences were used for the blad-
der and the heart-tissue respectively. The extensibility ra-
tio ranges from 5% to 20%. The 3D error was measured
for both Bladder and heart-tissue data sets and were about
2.2 mm for our method Po, 7.3 mm for Ma and 11.9 mm
for Ba. The 3D errors with the Non-developable-template
real data sets are summarized in figure 8-b.

8. Applicability of the Method
The surface reconstruction method developed in this pa-

per is based on the idea of minimizing deformation energy
subject to constraints imposed by the template-to-image
correspondences. For this method to be effective, a nec-
essary requirement is that the surface to be reconstructed
actually should be in a minimum energy state. If the sur-
face is deformed by external forces or constraints, known
or unknown, then this may not be the case. An inflated bal-
loon or a stretched piece of rubber will not be in a minimum
energy state, except with respect to the space of configura-
tions dictated by the external constraints. This is why we
need to include boundary conditions, fixing the position of
certain points on the surface. In cases where the surface is
deformed by use of an externally applied tool, as in the case

of the surgical application, or by fixing the border of the
reconstructed object, such constraints may be applied.

The image correspondences provide constraints that will
constrain the reconstructed surface to lie in an energy state
that is not minimal within the space of fully unconstrained
surfaces. The effect of the image constraints is to limit
the space of possible configurations, so that the recon-
structed surface may assume the minimal energy configu-
ration within a constrained space. This is appropriate for
surfaces not under significant tension, such as cloth. It is
important to note that for elastic surfaces such as rubber
under tension, the image constraints are not sufficient. Im-
age constraints allow points on surfaces to move along rays
through the camera centre, defined by the point matches. A
surface under tension has a bias to shrink along the image
rays towards the camera centre, resulting in a reconstructed
image smaller than the ground-truth, but with less stretching
energy. Application of further position constraints mitigates
this tendency.

Materials such as cloth are not well modelled by an iso-
metric deformation. They deform quite differently from
more exactly isometric materials such as paper. A piece
of crumpled or ruffled cloth typically takes a shape that is
incompatible with the assumption of isometric deformation,
which implies a non-curved or developable surface (having
zero Gaussian curvature) made up of straight lines. For such
deformations, nearly isometric, but not quite, the minimal
energy model is appropriate and effective.



Sa Br Ma Ba Pa

0

20

40

60

80

3
D

 e
rr

o
r 

[m
m

]

(a.1) Developable-template real data sets
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(a.2) zoom on (a.1)
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(b) Non-developable-template real data sets

Figure 8. 3D error on real data sets.

9. Conclusion
In this paper we presented a new approach to monocular

template-based 3D reconstruction of elastic surfaces. Our
method relies on a single mechanical parameter, the Pois-
son ratio. Our analysis defines the deformation energy with
respect to this parameter by assuming linear elasticity of lo-
cal surface patches. Our method is further constrained by a
set of boundary points for which we experimentally proved
the necessary and sufficient condition. Synthetic and real
data experiments have proven the effectiveness of our ap-
proach above classic isometric and conformal reconstruc-
tion method for elastic surfaces. For future work, it may be
fruitful to formally investigate the set of local ambiguities
and derive formal properties of the boundary conditions.
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