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ABSTRACT

Augmented Reality (AR) can improve the information deliv-
ery to surgeons. In laparosurgery, the primary goal of AR is to
provide multimodal information overlaid in live laparoscopic
videos. For gynecologic laparoscopy, the 3D reconstruction
of uterus and its deformable registration to preoperative data
form the major problems in AR. Shape-from-Shading (SfS)
and inter-frame registration require an accurate identification
of the uterus region, the occlusions due to surgical tools, spec-
ularities, and other tissues. We propose a cascaded patient-
specific real-time segmentation method to identify these four
important regions. We use a color based Gaussian Mixture
Model (GMM) to segment the tools and a more elaborate
color and texture model to segment the uterus. The specu-
larities are obtained by a saturation test. We show that our
segmentation improves SfS and inter-frame registration of the
uterus.

Index Terms— Segmentation, laparoscopy, uterus.

1. INTRODUCTION

AR in gynecologic laparoscopy is expected to be of practical
importance for several pathologies [2]. Implementing AR to
overlay preoperative data such as MRI extracted tumors into
the live laparoscopic video is, nonetheless, a colossal, diffi-
cult and still unsolved task. Live image parsing is one of the
main components of AR. By live image parsing implies the
segmentation of laparoscopic video frames into four major
classes: uterus, tool, specularity and other tissues as shown in
Figure 1.

Identifying the uterus and tools has a particular impor-
tance in 3D reconstruction required for AR. Several advances
have been made in recent years in monocular 3D reconstruc-
tion with laparoscopic images, using for instance a combina-
tion of SfS and Shape-from-Motion (SfM) [9]. However, in
many situations related to pathologies of the uterus, the de-
formation defeats SfM methods. On the other hand, SfS does
not suffer from the deformations [4]. SfS benefits from image
parsing: the surface normal can be fixed in specular segments,
and the 3D reconstruction domain is limited to the uterus for
many pathologies. Live segmentation also helps inter-frame
registration by eliminating a large amount of false matches
between the video frames. As in the case of SfS, it also lim-

its the image domain, potentially providing an overall speed-
up. AR also directly benefits from image parsing as overlays
should not erase the tools.

We present a carefully engineered cascaded system of
multiple processes to obtain the live parsing of uterine laparo-
scopic images. The tools in laparoscopy have discriminant
color. As such, we exploit the color information with a Gaus-
sian Mixture Model (GMM) to learn the tool characteristics
and use likelihood estimation and graph cut to segment input
frames. For the uterus, however, color alone was found to
be insufficient to arrive at a satisfactory segmentation per-
formance. Thus we use Support Vector Machines (SVM) to
learn dense feature descriptors that encode both color and tex-
ture in a patient-specific manner. Finally, we also segment the
specularities in the uterus to obtain a four class segmentation
result.

Fig. 1: Example outputs of our live parsing with labels.

We validate the impact of parsing in two ways. In the first
component of 3D reconstruction by SfS, segmentation is used
to exclude tools and other tissues to obtain a reconstruction
with less artifacts. In addition, specularities are used by SfS
to get the surface normals at those locations. It is to be noted
that such a segmentation would also be crucial in other meth-
ods of 3D reconstruction while the uterus is deforming [5].
Similarly, we exploit segmentation in inter-frame registration
to reduce the amount of false putative keypoint matches.

2. SEGMENTATION

We achieve parsing by two main binary segmentation pro-
cesses and some post-processing. In order to perform each
segmentation process we use specific constraints and meth-
ods optimized to the particular segmentation task. A process
diagram is shown in Figure 2.



Fig. 2: A detailed process diagram of our four-class parsing. The actual processing is carried out after downsampling the input
images for speed.

2.1. Tool Segmentation from Color

One way to obtain tool segmentation is to use supervised clas-
sification of pixels with a feature descriptor based on gradient
and color [1]. Another class of methods uses tracking algo-
rithm with geometric constraints [10]. We present an alterna-
tive approach that works at frame rate using GMMs. A GMM
can be used to encode the first order and second order mo-
ments of color in images. Tools in laparoscopy have specific
colors that are quite different from the rest of the image. It
motivates the use of color GMMs of the tool for our task. A
minimal interaction with the user is also preferred for the au-
tomatic segmentation procedure. The GMMs of the tool is
learned from a single image, where the user draws a polygo-
nal region to extract the tool pixels. The whole process is done
in normalized RGB in order to handle illumination changes.

A GMM can be represented by:

p(x|λ) =

K∑
i=1

wig(x|µi,Σi).

Here, K = 4 is a hand-tuned parameter in our case, cho-
sen in order to represent each pixel color with 4 Gaussian
components. The Gaussian parameters are represented by
λ = {wi, µi,Σi}, with i = 1, . . . ,K. The parameters are
estimated with the popular Expectation Maximization (EM)
algorithm.

The second step in the tool segmentation process is to con-
struct a probability map for test-image pixels using the trained
GMMs. With likelihood estimation, a probability map is ob-
tained that indicates the probability of an image pixel belong-
ing to the tool. The result of the probability map is then fed
to a Graph Cut algorithm to obtain a smooth estimate of tool
segmentation. Further post-processing based on connected
region analysis then eliminates regions that do not touch an
image boundary or that are too small (< 50 pixels). The pro-
cess is done at an image resolution of 350×250 or 350×200
depending on the original aspect ratio of the input image.

2.2. Uterus Segmentation from Color and Texture

Organ segmentation in laparoscopic images is a very chal-
lenging task and the literature regarding such is rare. [8]
presents an unsupervised algorithm that lacks semantics and
was not found to be suitable for uterus segmentation. The
uterus segmentation task is further complicated by inter-
patient variabilities such as color and texture and intra-patient
variabilities such as the viewpoint, scale and the associated
changes in texture perception. Our approach to segmentation
is to proceed with supervised learning of a patient-specific
uterus model with dense feature descriptors that exploit both
color and texture.

AM-FM texture descriptor. Methods based on AM-FM
image analysis represent an image as a combination of am-
plitude and frequency modulated signals [6]. To capture cues
from the uterus and off the uterus (including other organs,
blood vessels, etc), we use Gabor filters in AM-FM image
analysis as in [6]. An AM-FM model can describe an inten-
sity image f(x, y) with spatial coordinates (x, y) in the form
of the equation:

f(x, y) = a(x, y) cos (φ(x, y)), (1)

where the local image contrast is represented by the ampli-
tude signal a and the image structure by the instantaneous
frequency vector in terms of phase φ:

~ω(x, y) = ∇φ(x, y) =

(
∂φ

∂x
,
∂φ

∂y

)
(x, y). (2)

The parameters a and ~ω are estimated with an Energy Sepa-
ration Algorithm (ESA) [6].

To have a better characterization of texture and frequency
information, ESA has been applied on separate Gabor filtered
channels [6]. This also regularizes the parameter estimation
by replacing image derivatives with filter derivatives. To cap-
ture different visual cues, we use two different sets of Gabor



filter frequencies as in [6], but with different parameters. The
first set that gives high responses on contours and high fre-
quency variations off the uterus has center frequencies in the
range of 0.09 to 0.4 radians per pixel. The second set of fil-
ters that gives high responses on smooth regions such as the
uterus with very small spatial changes has center frequencies
in the range of 0.02 to 0.08 radians per pixel. 40 different fil-
ters from each set were used to get a descriptor to model the
uterus region in the luminance channel of CIE L∗a∗b∗ color
space.

Texture descriptor formulation. ESA gives the amplitude
and frequency quantities for each pixel of the image after de-
modulation. The descriptor thus consists of a signal mag-
nitude and a frequency magnitude from each of the 80 dif-
ferent filters. Consequently, the dimension of the descriptor
becomes very large to up to Image size ×2 × 2 × 40. Us-
ing such high dimensional features directly for classification
was found to result in poor performance. Thus we reduced
the dimensions of the descriptor to Image size×2×2 by tak-
ing only the maximum value of the component for each set
of filters. This simple form of dimension reduction was pre-
ferred over Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) for its speed and also because
the output performance due to dominant components was in
par with the PCA and LDA methods.

Color descriptor. In laparoscopic images, color is proba-
bly the most important cue that can discriminate uterus from
the rest of the tissues and even tools. However, the RGB rep-
resentation of color does not capture the similarity of uterus
color in different views. To obtain a color descriptor that is
discriminant, while retaining similar properties in illumina-
tion varying situations is an open field of its own. We choose
the classical CIE L∗a∗b∗ color space to extract color infor-
mation using the a∗ and b∗ channels, while the L∗ channel is
used by the AM-FM descriptor formulation. This approach
of combining the texture information with color was found
to be simple as well as effective, hence suitable for an actual
surgical scenario.

Classification and post-processing. The feature descrip-
tors are obtained by combining the 4-dimensional AM-FM
descriptors and the 2-dimensional color descriptor for each
pixel. To classify the pixels into uterus and non-uterus
classes, we use a linear SVM from the LIBSVM library [3],
which was found to have sufficient accuracy and very low
training and prediction time. The pixel-wise binary classifi-
cation was found to give largely an accurate segmentation. To
remove small falsely detected regions outside the uterus and
to eliminate small false negative regions we use connected
region analysis after a smoothing operation. The connected
regions other than the largest two and those with the major

axis length more than 2.5 times that of the minor axis length
were eliminated. In addition, the result of tool segmentation
was used to remove the false detection of tool pixels as uterus.
We also use the connected regions to fill holes (such as those
left by specularities) in the segmentation mask. The result of
the whole process is a mask for the uterus region.

2.3. Specularity Segmentation from Saturation

The specularities are found by thresholding on luminance
(0.95) and saturation (0.9) channels in the HSV color space
after a Gaussian smoothing. The saturation and luminance
test together select only white pixels with sufficient lumi-
nance so that they can be safely assumed as specularities.
The binary segmentation obtained from the process is then
combined with the uterus mask to get the specularities in
uterus. The final result is the complete 4-class parsing of a
laparoscopic video frame.

3. RESULTS AND APPLICATIONS

Our implementation was done in both C++ and MATLAB.
The MATLAB implementation was used to evaluate our
methods, to choose their parameters and to compare them
against other approaches. The optimal design was imple-
mented in C++ using the OpenCV and CUDA libraries, to
test for the real-time feasibility of our system. The uterus
segmentation forms the most critical part of the system and
therefore its detailed analysis was done independently in a
well structured dataset. The dataset contains laparoscopic
videos for 15 different patients, each with images that were
split into training, validation and test set. The number of
images used was 3 in the training set and 5 in the others for
each patient. The images were chosen to include difficult
cases and views with large variabilities from the training
images. We obtained a Dice similarity ratio of 80.44% and
a false detection rate of 3.29% using 2 training images for
each patient. Most inaccuracies in the results were due to
undersegmentation of the uterus, which is natural around
strong contours due to the use of filtering based descriptors.
Moreover, for a typical surgical scenario, where the camera is
focused on the uterus, the accuracy was observed to be much
higher. Tool segmentation showed good performance against
several videos, while giving highest accuracies in presence
of green colored tools. The OpenCV implementation of the
complete system takes around 250ms to segment each frame
at a resolution of 350 × 200 in a Dell Alienware desktop PC
of 2011. Figure 3 shows some results of the live parsing.

To validate the motivation for segmentation we experi-
mented 3D reconstruction with and without using segmen-
tation. We used perspective SfS [7] to reconstruct the 3D
shape of the segmented uterus. The results in Figure 4 show
better performance with segmentation around the discontinu-
ities (tools). The results clearly imply the impossibility of



Fig. 3: Representative outputs of segmentation (see Figure 1
for legend).

using the reconstruction with unsegmented image to perform
further tasks such as 3D matching. Similarly, the results of
matching using SIFT in different pair of frames are shown in
Figure 5 with and without segmentation. The results show
correspondences between two images of a uterus, where cor-
respondences outside the uterus are eliminated. It is what
we would require for a deformable registration between two
views of a deforming uterus. One critical part in such ap-
plications is the elimination of specular regions that would
otherwise lead to false matches, thus supporting the need for
a four-class live parsing.

Fig. 4: (a) Input image (b) SfS result without segmentation:
texture mapped view (c) second (surface) view with a circle
indicating the region of interest (d) SfS result with segmenta-
tion.

4. CONCLUSIONS

We have presented a cascaded method for live parsing of uter-
ine images in laparoscopic uterus surgery. Our results show
that such segmentation has several applications, particularly
towards aiding the components of AR. Besides SfS and reg-
istration, numerous other applications may exist. In order to
improve the current system, methods based on Conditional
Random Fields could be explored. We are currently working
on fitting our live parsing into a complete AR suite; this may
impact medical computer vision importantly.

Fig. 5: Results of matching between a reference and an input
image.
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