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Figure 1: Proposed AR solution for computer-assisted myomectomy. (a) Sagittal MRI slice showing a uterus with two myomas in dark grey. (b)
MRI segmentation of uterus and myomas. (c) Raw laparoscopic image and (d) translucent augmentation of the myomas.

ABSTRACT

An active research objective in Computer Assisted Intervention
(CAI) is to develop guidance systems to aid surgical teams in la-
paroscopic Minimal Invasive Surgery (MIS) using Augmented Re-
ality (AR). This involves registering and fusing additional data
from other modalities and overlaying it onto the laparoscopic video
in realtime. We present the first AR-based image guidance sys-
tem for assisted myoma localisation in uterine laparosurgery. This
involves a framework for semi-automatically registering a pre-
operative Magnetic Resonance Image (MRI) to the laparoscopic
video with a deformable model. Although there has been several
previous works involving other organs, this is the first to tackle the
uterus. Furthermore, whereas previous works perform registration
between one or two laparoscopic images (which come from a stereo
laparoscope) we show how to solve the problem using many images
(e.g. 20 or more), and show that this can dramatically improve reg-
istration. Also unlike previous works, we show how to integrate
occluding contours as registration cues. These cues provide pow-
erful registration constraints and should be used wherever possible.
We present retrospective qualitative results on a patient with two
myomas and quantitative semi-synthetic results. Our multi-image
framework is quite general and could be adapted to improve regis-
tration in other organs with other modalities such as CT.

1 INTRODUCTION AND BACKGROUND

1.1 Localising Myomas in Laparosurgery
Myomas, also known as uterine fibroids, are the most common tu-
mors of the female genital tract. Myomas are nearly always be-
nign but can lead to problems including prolonged menstrual peri-
ods (menorrhagia), a low blood count (anaemia), menstrual cramp-
ing (dysmenorrhoea), infertility or miscarriage. A common type
of myoma are intramural myomas which grow within the uterine
wall and are most successfully treated by laparoscopic myomec-
tomy. When they are small to medium sized (up to 5cm in diameter)
they often do not noticeably change the uterus’ outer shape, and can
be hard to localise. To assist localisation the surgeon usually con-
sults pre-operative images (usually MRI or ultrasound (US)) during
surgery. However it can be difficult even for experienced surgeons
to predict a myoma’s position accurately in this way. Augmented

Reality (AR) offers a possible solution to help. Foremost, this in-
volves solving nonrigid pre-operative MRI/laparoscopic image reg-
istration of the uterus. Once achieved the position of myomas can
be transferred via this registration and augmented onto the laparo-
scopic video. In this paper we propose the first method to solve this
problem.

1.2 Prior work
There is much ongoing research to apply AR to help overcome
some of the current limitations of MIS [4, 13]. The general ob-
jective is for realtime fusion between another modality that con-
veys additional information (such as the location of important sub-
surface structures) and the MIS video. Previous works can be
broadly divided into two categories depending on whether the sec-
ond modality is captured pre-operatively, or intra-operatively and
synchronously with the MIS video. The second category involves
determining a rigid transform between the sensors’ 3D coordinate
frames. Solutions to this in laparosurgery have been proposed by
either externally tracking the laparoscope with optical or magnetic
markers [18] or placing on tissue artificial markers that can be de-
tected in both modalities [16].

If additional interventional modalities are not available or not
sufficiently informative then AR can be performed with pre-
operative modalities. In this case the registration problem can be
much more challenging due to soft tissue deformation between ac-
quisition times. Also once significant changes are made during
surgery the pre-operative data becomes ‘outdated’, and less use-
ful. Previous works can be divided into whether the MIS video
is monocular [15] or stereo [2, 3, 5, 8, 9, 18]. In [15] an initial
rigid registration is performed manually with an interactive Graphi-
cal User Interface (GUI), and then automatic feature-based tracking
is performed. The registration problem is less difficult with stereo
because one can reconstruct intra-operative 3D surface information
by stereo reconstruction [17], and this provides greater registration
constraints. Of these stereo methods, some perform the registration
with a manual GUI [5, 9] and others perform it semi-automatically
with manually located landmarks [2, 3, 8, 18]. In some works the
registration is refined by minimising the distance between the pre
and intra-operative surfaces [8, 18], and in other works tracking is
performed with texture features [9]. Various deformation models
have been used to constrain the registration problem, including the
rigid model [18], 3D splines [3] and biomechanical models [8, 9].

The limitation of the previous works is that they use only one
monocular or two stereo images to constrain the registration. For
the stereo methods a partial 3D reconstruction is computed (known



as a 2.5D reconstruction in computer vision), and all regions of the
organ not visible in both images have no 3D information. Thus
the registration is essentially guessed at these regions from the de-
formation model’s prior. Secondly they do not use the organ’s oc-
cluding contours as registration constraints. Typically a stereo re-
construction never computes 3D information well at the occluding
contours. The occluding contours provide powerful boundary con-
ditions and should be exploited whenever possible.

We present the first framework which uses several laparo-
scopic images simultaneously to perform registration between a
pre-operative 3D modality and laparoscopic images. In our cur-
rent work the images are captured by a monocular laparoscope,
but these could have come from a stereo device. We are also the
first to integrate occluding contours as registration constraints from
these images. Our framework has been tested on the uterus, but it is
adaptable to other organs and other pre-operative 3D image modal-
ities.

2 PROBLEM SETUP AND APPROACH OVERVIEW

2.1 Problem Setup
We use T2 weighted contrast-enhanced 1.2mm slice MR as pre-
operative images. For the intra-operative images, we use images
streamed from a standard High Definition handheld monocular la-
paroscope. We assume the outer surface of the uterus has been
segmented in the MRI , which can be achieved reliably using stan-
dard interactive tools such as MITK [19]. Our registration problem
is therefore a 3D surface-to-2D video registration problem. We use
the function f (p, t) to denote transforming a 3D point p located in
the uterus in the MRI volume to its position in the laparoscopic co-
ordinate frame at time t. Due to physical changes including abdom-
inal insufflation, f is a nonrigid transform. We use M to denote a
3D mesh model constructed from the segmentation of the uterus’
outer surface (Fig. 1-b). M is constructed using standard methods
based on marching cubes followed by mesh smoothing and deci-
mation. Usually the number of vertices in M will be in the order
of several thousands. We restrict M to model the uterus up to the
cervix (at which point the mesh is cut). Thus M is an open surface
with disc topology.

2.2 The Reference-Update Formulation
We solve the registration problem by decomposing f into two trans-
forms that can be optimised independently. We define f (p, t0) to
be the reference transform. This transforms p to the 3D coordi-
nate frame of the laparoscope at a reference time t0. For all other
times t > t0 we write f as the composition of f (·, t0) with an up-
date transform: g(·, t), which gives: f (p, t) = g( f (p, t0), t) (Fig. 2).
This decomposition splits f into a component g(·, t) that depends
on the current time and a component f (·, t0) which does not. With
this decomposition the speed of registration at time t is determined
entirely by the time taken to solve the update transform g. If g is
solvable in realtime then full registration is solvable in realtime.
With respect to AR, the time taken to determine f (·, t0) manifests
as a delay period before AR can run, and the time taken to solve
f (·, t0) does not affect the AR frame-rate. We call the registration
problems corresponding to determining f (·, t0) and g(·, t) the refer-
ence problem and the update problem respectively.

2.3 Solving the Reference Problem
The reference problem involves finding f (·, t0), which is a 3D-to-
2D registration problem. Although 3D-to-2D registration is well
understood and well constrained for rigid objects, it is far more
challenging for nonrigid objects. Our solution is to exploit the fact
that the motion of the organ with respect to the laparoscope immedi-
ately after t0 is approximately rigid (up to the time when the surgeon
starts resecting). It has been shown recently that the rigid assump-
tion holds well for describing the motion of the uterus during this
period of surgery [6]. Thus we can extract 3D information from the
laparoscope using multiple images captured shortly after t0 using
rigid Structure-from-Motion (SfM). This 3D information converts
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Figure 2: Breaking the registration problem into a nonrigid reference
transform and a rigid update transform.

the 3D-to-2D registration problem to a 3D-to-3D registration prob-
lem. Specifically, the registration problem now involves registering
M to a set of intrinsically and extrinsically calibrated laparoscopic
images. This significantly improves the problem’s tractability com-
pared with registering M to a single laparoscopic image.

Therefore to solve the reference problem we perform two steps.
In the first step we gather frames from a short interval t0 ≤ t ≤ t1.
We call this interval the exploratory phase, and in our tests this lasts
approximately 20 seconds. We then perform SfM to obtain the fol-
lowing information: (i) the laparoscope’s 3D rigid transforms with
respect to the uterus for times t0 ≤ t ≤ t1, (ii) 2D feature corre-
spondences in the laparoscopic images for times t0 ≤ t ≤ t1, and
(iii) an estimate of the feature correspondences’ 3D positions. In
the second step we use this information to apply 3D constraints for
registering M to the laparoscopic images in the interval t0 ≤ t ≤ t1.
To further constrain the problem, we introduce two other comple-
mentary cues. The first are natural landmarks corresponding to the
junctions formed between the fallopian tubes and the uterus. The
second is the boundary contour of the uterus.

2.4 Solving the Update Problem and Image Fusion

We use our recently published Wide-Baseline Multi-Texturemap
Registration (WBMTR) method for solving the update problem [6].
WBMTR registers the organ in realtime on standard workstation
hardware, and is robust to occlusions from e.g. surgical tools or
partial views, and can handle large viewpoint changes. It recov-
ers automatically if the organ is not visible in sections of the video
(e.g. if the surgeon removes and then reinserts the laparoscope),
and unlike SLAM-based tracking methods does not require suc-
cessful registration in previous frames. This means WBMTR can
run indefinitely over long duration videos. Note that [6] does not
solve the reference problem. Once registered we transform the my-
oma(s) to the laparoscopic coordinate frame using the full transform
f (·, t) = g( f (·, t0), t). We then render the myomas using OpenGL
and blend the render with the laparoscopic image at time t using
‘x-ray’ augmentation [11]. This gives the impression the uterus is
translucent and the myomas can be seen inside (Fig. 1-d).

3 SOLVING THE REFERENCE PROBLEM

3.1 The Exploratory Protocol

The goal of the exploratory phase is to gather sufficient views of
the uterus shortly after t0 so that we can reconstruct with rigid SfM
the uterus body, and to determine the 3D transforms of the laparo-
scope with respect to the reconstruction. To achieve this we use a
simple protocol that our surgeons perform to gather these views in
a repeatable manner. We call this the exploratory protocol. The
exploratory protocol involves the laparoscope being kept in an ap-
proximately fixed position with respect to the patient, and the sur-
geon’s assistant orbiting the uterus by moving the uterine cannula
(Fig. 3). This gathers posterior, anterior and lateral views of the
uterus body, and takes approximately 20 seconds to perform (giv-
ing approximately 500 video frames). The protocol is performed
only once and workflow interruption is quite minimal.



Figure 3: Frames from an exploratory video captured as the sur-
geon’s assistant rotates the uterine cannula.

3.2 Partial Dense 3D Reconstruction of the Uterus
We first downsize the number of frames in the exploratory video
to a smaller set of K = 10 frames (uniformly distributed in time),
which we call the keyframe set. We manually mark in the keyframe
set occluding contours of the uterus and the position (if visible) of
the fallopian tube junctions (Fig. 4). This takes between 1-2 min-
utes to perform. We then perform dense SfM on the keyframe set,
ensuring that the SfM engine only uses features and pixel inten-
sities that lie within the boundary of the uterus in each keyframe
(Fig. 5). This is to ensure that motion of background structures do
not adversely affect reconstruction. We have found good success
using reconstructions by Photoscan [1], which for 10 images takes
approximately 1 minute. To improve reconstruction accuracy, we
do not self-calibrate the laparoscope jointly with 3D reconstruction.
Instead, before the laparoscope is inserted we perform intrinsic cal-
ibration using OpenCV’s calibration library, and keep its intrinsics
fixed during 3D reconstruction.

We define the 3D reconstruction in world coordinates, and define
world coordinates to be the laparoscope’s 3D coordinate frame at
time t0. We use T to denote all the information that we retain from

the 3D reconstruction. This is given by T
def
= (Q j,Mi, Ii,q

j
i ,S ).

i ∈ [1...K] denotes the index of the keyframe and j ∈ [1...n] denotes

the index of a reconstructed 3D feature. Q j ∈R
3 denotes the 3D po-

sition of the jth feature in world coordinates. Mi ∈ SE3 denotes the
rigid 3D transform that maps world coordinates to the laparoscopic

coordinate for the ith keyframe, with Mt0 = I4. q j
i ∈R

2 denotes the

2D position of the jth feature in the ith keyframe. Usually Q j will

not be detected in all keyframes, so q j
i may not be defined for all

i. Ii denotes the ith keyframe. S denotes a 3D mesh model of the
reconstructed uterus with vertices defined in world coordinates.

Figure 4: Keyframes marked-up with boundary contours and the 2D
positions of the Fallopian tubes/uterus junctions.

Figure 5: Partial dense 3D reconstruction of the uterus from seg-
mented keyframes using SfM.

3.3 Registration Cost
We use three complementary cues for registering the MRI uterus
surface M to the set of laparoscopic keyframes from the ex-
ploratory phase. These are as follows. Anatomical landmarks: We
have identified two anatomical that can usually be located well in
laparoscopic images and on M . These are the junctions formed
between the uterus body and the Fallopian tubes (Fig. 4). If M has
been registered well the distance between the landmarks on M pro-
jected into a laparoscopic image should be close to their measured
positions. Contours: If M has been registered well the boundary
contours of the uterus in a laparoscopic image (Fig. 4) should lie
close to the boundary of the silhouette of M . Feature correspon-
dence: If M has been registered well then the correspondences in
T should be consistent with the registration. We now give the for-
mal definitions of these constraints as cost functions. We represent
the reference transform f (·, t0) with an (unknown) parameter vector
θ by f (·, t0;θ), and our goal is to recover θ .

3.4 Anatomical Landmark Constraints
We use vL

i ∈ R
2 and vR

i ∈ R
2 to denote the 2D position of the left

and right Fallopian tube/uterus junctions in the ith keyframe. We do
not assume that a junction will be visible in all keyframes. We use

UL ∈R
3 and UR ∈R

3 to denote the 3D position of the left and right
Fallopian tube/uterus junctions on M . The cost is as follows:

CJ(θ)
def
=

1

2K

K

∑
i=1

∥∥π
(
Mi f (UL, t0;θ),K

)−vL
i

∥∥2

2
+
∥∥π

(
Mi f (UR, t0;θ),K

)−vR
i

∥∥2

2
(1)

The perspective projection of a 3D point in the laparoscopic co-
ordinate frame onto its image is given by π(x,K), where K is the
intrinsic calibration matrix. Because the laparoscope is calibrated,
we can undo the effects of lens distortion, and π is then given by

π(x,K) = 1
K3x [K1x,K2x]�, where Kk denote the kth row of K. No-

tice that information in the 3D reconstruction T is used in this cost.
Take the left junction UL as an example. First UL is transformed ac-

cording to a nonrigid deformation f (UL, t0;θ) to transform it into
world coordinates. Then Mi is applied to transform it into the la-
paroscopic coordinate frame. Thus for any θ we have the predicted

2D positions of UL in each keyframe.

3.5 Contour Constraints
We assume that the user has been able to partially mark the bound-
ary contours of the uterus in the keyframes. We do not assume
the whole boundary has been provided by the user. This cannot
be achieved if for example the uterus is occluded by other organs
such as the bladder or intestines. We rasterise the user’s contours
in each keyframe to obtain a collection of Mi pixels on the contour.

We store this as Ci ∈ R
Mi×2, where the mth row of Ci (which we

denote by Ci
m) holds the 2D pixel position of the mth point on a

contour in the ith keyframe. We use the function s(M , t0;θ ,Mi,K)
to denote the silhouette generator function. This function first de-

forms M according to θ and then transforms it to the ith coordinate
frame via Mi. Next the silhouette of M is computed on the 2D
image plane, and 2D contours are generated on the boundary of the
silhouette. The contour cost is then defined as:

CS(θ)
def
=

1

K

K

∑
i=1

1

Mi

Mi

∑
m=1

d
(
s(M , t0;θ ,Mi,K),Ci

m
)2

(2)

where d (C ,c) denotes the minimum Euclidean distance from a 2D

point c ∈ R
2 to the 2D contours C . In practice s(M , t0;θ ,Mi,K)

can be approximated by rendering the deformed mesh using z-
buffering. This makes computing the silhouette contours fast, how-
ever it causes difficulty for gradient-based optimisation because CS
is hard to differentiate due to quantisation induced by z-buffering.
Our solution is to approximate CS using virtual contour correspon-
dences, in a similar fashion to [10], but here we work directly with
the 3D mesh. The idea is that at a given iteration during optimi-

sation we can construct for each Ci
m a virtual correspondence on



M . This virtual correspondence is the point on M that projects

closest to Ci
m in the ith keyframe. By keeping this virtual corre-

spondence fixed for a single optimisation iteration, we can obtain a
differentiable cost function. We achieve this as follows. First M is
deformed according to θ and then transformed to the ith coordinate
frame via Mi. Next M is rendered with z-buffering, and from this

we compute the silhouette of M . For each point Ci
m we then com-

pute the closest pixel on the silhouette’s contour. If this pixel is at a

point di
m ∈R

2, we then cast an optical ray through di
m and intersect

it with M . This intersection point gives us a virtual correspondence

on M . We define Di
m ∈ R

3 to be the virtual correspondence in the
MRI ’s 3D coordinate frame. Our approximation to CS is then given
by:

C′
S(θ)

def
=

1

K

K

∑
i=1

1

Mi

Mi

∑
m=1

∥∥π
(
Mi f (Di

m, t0;θ),K
)−Ci

m

∥∥2

2
(3)

C′
S is useful for gradient-based optimisation because if f is differ-

entiable up to the cth order, then so is C′
S. Note that at each iteration

Di
m may change, and so Di

m is like an ICP correspondence.

3.6 Correspondence Constraints
So far we have used only the rigid transforms Mi from the 3D re-
construction information in T . Our third cost function enforces
that the correspondence information in T should be consistent with
f (·, t0;θ). Specifically, we enforce that M should be deformed by

θ such that the 2D correspondences qk
i are predicted well. We do

this by introducing N point correspondences Y = {y1, ...,yN} that
we define on the surface of M . A cost is then given to θ if these

points do not project close to the correspondence positions q j
i in

the images. Because M is a 2D manifold embedded in 3D space,
it is easier to define Y in 2D using a 2D parameterisation of M .
Because M has disc topology a natural 2D parameterisation can
be made by conformally flattening M . We denote the domain of

this flattening by Ω ∈ R
2, and the flattening gives us the function

h(y j) : R2 → R
3 which maps the 2D point y j ∈ Ω in Ω to its 3D

position in the MRI. The feature correspondence cost then writes
as:

CF (θ ,Y )
def
= 1

KN

K
∑

i=1

N
∑
j=1

ρ
(

π (Mi f (h(y j), t0;θ),K)−q j
i

)

ρ(x) def
=

2

∑
i=1

2

(√
1+x2

i /2−1

) (4)

Eq. (4) enforces that the positions of y j projected into the ith

keyframe should be close to q j
i . Because Y is unknown, it must

be optimised together with θ . One can think of Eq. (4) as a type
of constrained multiview triangulation where the feature positions
are optimised on the surface of the uterus jointly with estimating
the nonrigid deformation of the uterus. The function ρ is an M-
estimator which we use to handle the fact that the output from a
SfM engine is never perfect and some correspondences will be in-
correct. The M-estimator provides robustness to such errors. In our
current system we use the L1 −L2 M-estimator.

3.7 Deformable Model, Initialisation and Optimisation
The total registration cost is given by:

C(θ ,Y ) =CJ(θ)+ γC′
S(θ)+λCF (θ ,Y ), (5)

Where γ and λ are weights associated with C′
S and CF respectively.

In the framework outlined so far we have kept things independent of
the deformation model. We now explain the model we currently use
for the uterus. The biomechanical properties of the uterus have been
studied in e.g. [14], which showed considerable intra and inter-
subject variability (its Young’s modulus ranged from 20.3 kPa to
1379 kPa). Thus using a precise biomechanical model is challeng-
ing. We propose using a simpler deformable model, since the defor-
mation between the uterus in the MRI and during laparosurgery is

simple and mostly caused by compression from the abdominal wall.
To model this we use an affine transform, which has been used suc-
cessfully for registering other soft organs [12]. Thus f (·, t0) trans-
forms a 3D point p in the MRI according to f (p, t0) = Ap+ t, with

(A ∈ R
3×3, t ∈ R

3×1) being a 3D affine transform. Therefore θ
holds the 12 coefficients of (A, t).

If ground-truth registrations were available γ and λ can be
learned from training examples. At present we do not have ground-
truth registrations (since these are very difficult to obtain), so in-
stead we manually set γ and λ . A nice property of our cost func-
tions is that all costs are defined in pixels, which makes setting γ
and λ easier. In our experiments we use γ = 1e−1 and λ = 1e−1.

We initialise θ and Y as follows. We know in advance the ap-
proximate pose of the uterus with respect to the laparoscope at time
t0. This is because the laparoscope is inserted through the abdomen
at a standard location above the navel, its tip is approximately 10cm
from the uterus, and the laparoscope is rotated to view the uterus in
a canonical ‘upright’ position (Fig. 4-left). This information pro-
vides a priori a rough estimate of the rigid transform M0 ∈ SE3
that maps the MRI to world coordinates. We thus initialise A with
M0. We initialise y j ∈ Y as follows. We first transform M to
world coordinates using M0. Then we take the 3D estimate Q j of
the correspondences in world coordinates (from T ) and find the
closest 3D points on M . These closest points are then mapped to
the 2D parameterisation of M via h (§3.6) to give us an initial es-
timate of y j . Having initialised θ and Y , these are then refined by
minimising Eq. (5) using gradient-based optimisation. Specifically
we use Gauss-Netwon iterations with backtracking line-search. In
practice we have found convergence to be fast, and typically taking
fewer than 10 iterations.

4 EVALUATION

4.1 Evaluation with a Synthetic Phantom
We present quantitative results with a synthetic phantom that we
constructed by 3D printing a uterus CAD model in a rigid material.
The phantom simulates the intra-operative state of the uterus, where
we assume rigid motion. The phantom body (shown in Fig. 6(a))

was 90× 60× 60 mm3 and it was printed in color with a realistic
texture obtained from images of a human uterus.

Figure 6: (a) CAD model of the rigid phantom. (b) 3D printed phan-
tom inside a pelvic trainer with a 10mm Karl Storz HD laparoscope.
(c) Laparoscopic images of the phantom.

We introduce the rigid phantom into a pelvic trainer (see
Fig. 6(b)) to simulate the laparoscopic conditions. We use a 10mm
Karl Storz HD laparoscope that is fixed to the pelvic trainer trough
a flexible arm. We perform the exploratory video, keeping K = 20
keyframes (see Fig. 7) from where we have manually marked the
boundary contours and the fallopian tube junctions. Fig. 7 shows
the reconstructed sparse point cloud from PhotoScan.

We artificially deform the intra-operative CAD model to sim-
ulate the shape of the uterus in its pre-operative state. To this
end we use a volumetric deformation model represented with the
Thin Plate Spline (TPS). Our TPS is defined by a set of 2× 3× 3
control points that uniformly cover the intra-operative uterus vol-
ume. By perturbing the reference grid of control points we create
non-linear volumetric deformations (see Fig 7, right). We generate
many pre-operative test models by first applying a random global
affine transform to the reference control points followed by a ran-
dom displacement of standard deviation σp = 10mm. We write the



Figure 7: Left: Some of the K = 20 exploratory video keyframes with manually marked contours. Middle: Sparse 3D cloud from SfM computed
by PhotoScan. Right, up: Pre-operative model overlaid with the TPS grid of control points. Right, down: Several synthetic deformations obtained
with the TPS.

TPS as wT PS(·,θT PS), where θT PS holds the control centers (i.e.
18× 3 parameters in total). We highlight that the synthetic defor-
mation we induce with the TPS model is not exactly approximated
by our affine model. We use this fact to test our system under non-
modelled deformations which can likely occur when dealing with
a real uterus. Our quantitative experiment tests the influence of the
number of views used during the registration. We randomly select
sets of {2,3,4,5,6,7,10,15} images from the K = 20 keyframes.
For each set of views we test 50 randomly-generated pre-operative
models. Fig. 8 shows the initial shapes of three pre-operative mod-
els overlaid with the marked contours from three different views.

Figure 8: (a), (b) and (c) show the initial projection of three different
pre-operative models (one model per column) in three different views
(one view per row) using the z-buffer. We overlay on top the contours
from each view given by the user.

For each trial we measure registration error in 3D by discretising
the intra-operative volume with a grid of 100× 100× 100 voxels.
We denote as V , the set of voxels in the interior of the uterus. We
define the registration error εr as:

ε2
r =

1

NV
∑

q∈V

‖ f (wT PS(q;θT PS), t0;θ)−q‖2. (6)

Fig. 9(a) shows the mean registration error we achieve as a func-
tion of the number of keyframes available, whereas Fig. 9(b) shows
the mean number of iterations it takes our method to reach con-
vergence. Fig. 9(c) shows the registration accuracy by texturing
the surface with the mean registration error at each surface’s point.
What we see is a clear reduction in registration error with increased
numbers of views, and saturating at approximately 8 views beyond
which the registration error is approximately 1.4mm. The distribu-
tion of errors at 2 views in Fig. 9(c) shows a tendency for greater
error away from the uterus head towards the cervix. The reason
for this is that with only a few views the uterus head is quite well
constrained by the feature correspondences from the SfM recon-
struction. However, further into the uterus the registration becomes
less well constrained which leads to greater error. By contrast with
more views we have more constraints from contour information and
also more from feature correspondences, and this significantly im-

proves the registration. We also see a significant reduction in the
number of iterations for convergence with more views.

4.2 Evaluation with a Patient
We present preliminary qualitative results on a patient with two my-
omas (Fig. 1). One myoma was large, with a diameter of 121mm,
and the other medium sized with a diameter of 52mm. M was
constructed by performing an interactive segmentation of the MRI
using MITK [19], followed by meshing with marching cubes, two
iterations of Laplacian mesh smoothing and then mesh decimation
with quadratic edge collapse [7] to give a mesh of 6210 vertices.
The laparoscopic video was recorded during the patient’s myomec-
tomy and we performed the registration and augmentation offline
after surgery on a 50 second video clip before resection began (in-
cluding the 20 second exploratory phase). We used Photoscan to
perform SfM on 10 keyframes from the exploratory phase, and this
computed correspondences for 321 image features located on the
uterus. The cost function in Eq. (5) was optimised in 6 Gauss-
Newton iterations. This took approximately 15 seconds to com-
pute using an unoptimised Matlab implementation with a C++ z-
buffer implementation. The registration for the frames after the ex-
ploratory video was achieved using the method presented in [6],
which processed each frame in approximately 37.0ms (or 27fps).
We show four frames from the clip in Fig. 10 (top row), together
with an overlay of M registered to each frame. We show with a red
contour the silhouette boundary of M in each frame. Qualitatively
we see that the red contours align well to the real image contours,
and the supplied video shows clearly that the registration track the
uterus well over the sequence. This indicates that the affine de-
formable model we use is sufficiently complex to approximate well
the nonrigid deformation of the uterus. In Fig. 10 (bottom row) we
show the visual augmentation of the myomas in each frame (the
larger myoma is in green and the smaller is in blue). The surgeon
who conducted the myomectomy reported that localising the small
myoma was difficult, and took them approximately 15 minutes. Af-
ter surgery they inspected our augmentations and confirmed that
both myomas appeared to be localised well by our system. This
promising result indicates the potential benefit for using our AR
system during surgery.

5 CONCLUSION

We have presented an Augmented Reality solution for assisting the
localisation of myomas during laparoscopic surgery. This has been
achieved by nonrigidly registering the uterus and myomas from the
MRI to the laparoscopic video. This is a challenging problem which
we tackle by factoring the registration into two components. The
first component is the reference registration, which registers the
uterus at a single reference time during surgery. The second com-
ponent is the update registration, which can be achieved quickly
and fully automatically by rigid registration. This paper has fo-
cused on solving the reference problem. The main contribution is
to show that this can be solved by registering the MRI of the uterus
to multiple laparoscopic images (which we call keyframes) that are
intrinsically and extrinsically calibrated using rigid SfM. Therefore
we solve the reference problem by registering the MRI to multiple
keyframes simultaneously. Registration is performed using three



Figure 9: (a) Registration error vs. number of views. (b) Number of iterations vs. number of views. (c) Mean surface registration error for 2,4 and
15 views.

Figure 10: Registration between the uterus in a pre-operative MRI to intra-operative laparoscopic images, and visual augmentation of two hidden
myomas. The top row shows M (the mesh model of the uterus from the MRI ) overlaid in each image. The red contours denote the silhouette
boundaries of M in each image. The bottom row shows the augmented myomas. Best Viewed in colour.

complementary cues involving natural anatomical landmarks, the
uterus’ boundary contour and feature correspondences.

This is the first work which registers a pre-operative MRI of the
uterus to laparoscopic images. In our ongoing research we will per-
form a deeper quantitative evaluation, test other deformable models,
and test the system’s performance on live videos. Our solution is
not limited to visualising myomas. Any anatomical structure that
is visible in the MRI can be visualised in the laparoscopic images,
such as the cervix and uterine cavity. We expect that augmenting
this information may also help the surgeon perform myomectomies
and other uterine surgery, improve safety and reduce time in the
operating room.
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