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Abstract—We propose a new monocular 3D reconstruc-
tion method adapted to reconstructing organs in the ab-
dominal cavity. It combines both motion and shading cues.
The former uses a conformal deformation prior and the
latter the Cook-Torrance reflectance model. Our method
runs in two phases: first, a 3D geometric and photometric
template of the organ at rest is reconstructed in-vivo.
The geometric shape is reconstructed using RSfM (Rigid
Shape-from-Motion) while the surgeon is exploring – but
not deforming – structures in the abdominal cavity. This
geometric template is then used to retrieve the photometric
properties. A non-parametric model of the light’s direction
of the laparoscope and the Cook-Torrance reflectance
model of the organ’s tissue are estimated. Second, the
surgeon manipulates and deforms the environment. Here,
the 3D template is conformally deformed to globally match
a set of few correspondences between the 2D image
data provided by the monocular laparoscope and the
3D template. Then the coarse 3D shape is refined using
shading cues to obtain a final 3D deformed shape. This
second phase only relies on a single image. Therefore it
copes with both sequential processing and self-recovery
from tracking failure.

The proposed approach has been validated using (i) ex-
vivo and in-vivo data with ground-truth, and (ii) in-vivo
laparoscopic videos of a patient’s uterus. Our experimental
results illustrate the ability of our method to reconstruct
natural 3D deformations typical in real surgical proce-
dures.

Index Terms—Laparoscopy, monocular 3D reconstruc-
tion, deformable surface, shading, motion.

I. INTRODUCTION

The problem of 3D reconstruction in monocular
laparoscopy has recently become a field of promis-
ing research. This has been made possible thanks to
recent advances in 3D reconstruction of deformable
surfaces [1], [2], [3], [4] and the extraordinary
potential that such techniques can offer to new view
point synthesis, augmented reality with 3D pre-
operative data (MRI, CT, etc) and surgery planning,

to name a few. However, if these techniques have
shown effectiveness in a well-controlled context, the
peritoneal tissues present three main difficulties: (i)
non-rigid motion, (ii) non-Lambertian reflectance,
and (iii) lack of texture. To be able to use motion
and photometry for peritoneal tissues, a model of its
parameters for the non-rigid motion and the BRDF
(Bidirectional Reflectance Distribution Function)
have to be estimated. It is clear that the estimation of
the mechanical and photometric properties has to be
done in-vivo since these parameters change across
patients. These properties make 3D shape recovery
from monocular laparoscopy a difficult and open
problem. On the one hand, DSfM (Deformable-
Structure-from-Motion) has shown effectiveness in
recovering 3D shape after elastic deformations in la-
paroscopy [5], [4]. However, with these methods the
3D shape may be quite sparse. Human organs are
usually textureless and very specular. This makes
it difficult to densely cover their deforming surface
with feature correspondences using automatic fea-
ture detection and matching. On the other hand, SfS
(Shape-from-Shading) allows one to recover surface
details. However, it is difficult in practice because
the reflectance of the organ tissues is complex and
the SfS problem has been mostly solved for Lamber-
tian surfaces [6]. In addition, SfS does not allow one
to solve temporal registration between successive
images. In order to take advantage of DSfM and
SfS and overcome their drawbacks, we propose
to combine them in a DSfMS (Deformable-Shape-
from-Motion-and-Shading) framework. This paper
is an improvement of our former work [7] where we
proposed a combination of motion and shading cues
but we assumed a Lambertian reflectance model in
the shading part. In this new work, we propose to
use the Cook-Torrance reflectance model [8]. We
prove with both qualitative and quantitative results
that this assumption fits better the reflectance model
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of the tissues than the Lambertian or the Oren-Nayar
[9] models.
Paper organization. Section II presents state-of-
the-art. Section III gives an overview of our DSfMS.
Section IV presents the reconstruction of the photo-
metric template using the Cook-Torrance reflectance
model. Section V presents our 3D reconstruction
method based on motion and shading cues. Sec-
tion VI reports experimental results. Our notation
will be introduced throughout the paper.

II. RELATED WORK AND CONTRIBUTION

The various methods of 3D sensing in la-
paroscopy can be classified as active and passive
[10]. As active approaches, [11], [12] have proposed
a technique based on the detection of a laser beam
line. In [13] a prototype of Time-of-Flight (ToF)
endoscope was designed. If these approaches offer
2.5D views (depth maps) of the current image
they do not solve the registration problem. Solving
this problem is required for important applications
such as augmented reality. In passive approaches
both stereo and monocular endoscopes are con-
cerned. In [5], [14] methods based on disparity
map computation for stereo-laparoscope have been
proposed. Visual SLAM for dense surface recon-
struction has been proposed in [15]. In monocular
DSfM approaches, the computer vision community
has made important achievements in template-based
3D reconstruction. Template-based methods provide
a dense surface recovery rather than just a sparse
one as in the previously cited methods. This allows
one to render the surface from a new viewpoint
and opens applications based on augmented real-
ity. Template-based monocular 3D recovery needs
priors to have a unique consistent solution. Dif-
ferent types of physical and statistical priors were
proposed [1], [2], [3]. Recently a 3D conformal
method has been proposed to reconstruct elastic
deformations in the context of laparosurgery [4].
To provide good reconstruction results, DSfM needs
feature detection and matching in the deformed
areas which are not easy to obtain because of the
textureless nature of some tissues. Alternatively,
SfS is a 3D reconstruction method which does not
need feature correspondences [16], [6]. Recovering
depths using shading cues has been extensively
used for both rigid and deformable objects [16].
This method i quite effective with perfect diffuse
surfaces (Lambertian reflectance model), but fails
for surfaces which present specular reflections.

To overcome the bottleneck of SfS and DSfM,
we can take advantage of both methods: we use

feature-based 3D reconstruction to recover a coarse
deformed 3D surface and we use shading to refine
the reconstruction of areas which lack feature corre-
spondences. This combined approach has been used
in several other conditions to recover coarse to fine
3D shapes. For instance in rigid 3D reconstruction
[17] presented an algorithm for computing optical
flow, shape, motion, lighting, and albedo from an
image sequence of a rigidly-moving Lambertian
object under distant illumination. [18] proposed an
approach to recover shape details in a dynamic
scene captured with a multi-camera setup.

This paper is based on our recent work [7]
where we proposed a method to combine motion
and shading cues assuming a Lambertian model.
In our present work, we improve this approach by
using the Cook-Torrance reflectance model. Indeed,
this function is known to better represent the
physical model of the diffuse/specular reflectance
properties of surfaces. We experimentally show
with both qualitative and quantitative results that
the Cook-Torrance model combined with motion
cues performs better than the Lambertian model
combined with motion cues as used in [7]. We
take advantage of our recent work on estimating
the Cook-Torrance parameters [19] to have fully
automated 3D reconstruction.

Contribution. The contributions of our work are
three folds. (i) Enhancing the 3D geometric template
[4] with a photometric template by estimating the
Cook-Torrance reflectance parameters from in-vivo
images. (ii) Combining motion and shading cues,
with a realistic reflectance model to recover the 3D
deformed tissue. The motion cues take advantage
of a few point correspondences to recover a coarse
deformation of the tissue and the shading cues take
advantage of the estimated Cook-Torrance parame-
ters to accurately refine the 3D reconstruction. (iii)
Our proposed 3D reconstruction method is qualita-
tively and quantitatively compared to two previous
methods: the first is based only on motion cues with
conformal priors [4] and the second is based on
combining motion and shading cues but assumes
a Lambertian model of reflectance [7].

III. OVERVIEW OF DSFMS
As depicted in Figure 1, our DSfMS system has

two main phases:
1) Template reconstruction. In this phase both
the 3D structure and the Cook-Torrance parameters
are recovered, by assuming that the scene remains
approximately rigid as the surgeon explores it with
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Fig. 1. Principle of our DSfMS (Deformable Shape-from-Motion-and-Shading) approach. In the first phase the surgeon explores the
abdominal cavity without deforming it; RSfM (Rigid Shape-from-Motion) is used to find the 3D shape called the 3D template (N vertices
and NF faces). This 3D shape is used to infer the Cook-Torrance reflectance parameters and calibrate the light directions. In the second
phase, the 3D template is used to infer the 3D shape deformed as observed from only a single laparoscopic view. This makes the approach
resistant to registration and tracking errors and well-adapted to live sequential processing.

the laparoscope. Using a calibrated camera and the
5-point algorithm for RSfM [20], a 3D point cloud
representing the organ’s shape is reconstructed. The
3D point cloud is then meshed to provide a dense
3D surface, parameterized on the 2D plane via
conformal flattening [21]. The procedure of recon-
struction of the 3D geometric template is explained
with more details in [4]. This geometric shape is
then used to estimate the Cook-Torrance reflectance
model (c.f. section IV).
2) 3D reconstruction of deformations. The sur-
geon is now free to proceed and manipulate the
target surface, and consequently induces non-rigid
deformations with the surgery tools. Here, the tem-
plate reconstructed in phase 1) is used to perform
3D reconstruction from raw laparoscopic images.
The 3D shape is computed by globally deforming
the template assuming conformal deformations and
then refined using shading cues with the estimated
Cook-Torrance parameters (c.f. section V).

IV. PHOTOMETRIC TEMPLATE
RECONSTRUCTION

The Cook-Torrance model is known as being one
of the most meaningful physical representation for
complex surface reflectance modelling [8]. If we
assume a linear radiometric response of the camera
sensor, then the predicted image intensity Î with this
model depends on three vectors: the shape normal
N, the viewing direction V and the light direction

N

L

V

Fig. 2. Geometry of light reflection with the Cook-Torrance model.
The image irradiance depends on (i) the projection of the surface
normal N onto the viewing direction V and (ii) on the projection of
N onto the incident light direction L. The surface roughness D, the
Fresnel parameter F and the albedo ρ are assumed constant.

L (see Figure 2 for a local geometry representation
of the reflection). It is given by:

Î(ρ, F, σ,N,L) =
ρ

π
(N · L)︸ ︷︷ ︸

diffuse reflectance

+
F D(σ,N,L)

π (N · L) (N ·V)︸ ︷︷ ︸
specular reflectance

(1)

where

D(σ,N,L) =
1

σ2 cos2 α
exp

(
− tan2 α

σ2

)
(2)

The diffuse reflectance is assumed to be Lambertian
and ρ is the diffuse albedo. The Fresnel coefficient
F represents the refractive index of the tissue. The
facet slope distribution D can be represented by the
Beckmann distribution explicited in equation (2),
where σ represents the roughness of the tissue
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(small for mirror-like surfaces). α = (̂N,H) is
the angle between the normal and the bisector
H of the angle (̂L,V). For estimating the Cook-
Torrance reflectance parameters (ρ, F, σ), of a given
tissue, reflections are first measured under various
viewing and illumination angles. At this step, the 3D
geometric template of the tissue is assumed to be
computed as described in section III. The measured
image irradiance I (the intensity of the image) can
be then approximated by the prediction formula (1).
If we assume that, near the specularities, the light
direction is such that the bisector H is parallel to the
surface normal, we can estimate the Cook-Torrance
parameters by minimizing the difference between
the measured and the predicted intensity [19]:

(ρ, F, σ) = argmin
ρ,F,σ

∑
i∈S̃

(
I(ui, vi)− Î(ρ, F, σ,Ni,Li)

)2
(3)

where S̃ is the set of pixels that are neighbours
of the specular pixels (taken over all the consid-
ered rigid images of the organ) and which are not
saturated pixels. I(ui, vi) is the measured intensity,
Ni is the normal of surface organ and Li is the
light direction at these pixels. Notice that ρ and F
are estimated up to scale representing the camera
response factor and the light intensity. Once these
parameters are evaluated, we use them to estimate
the light directions over all the pixels of the la-
paroscopic image. This estimation assumes that the
source light is rigidly attached to the camera body.
The computation criterion is as follows:

Li = argmin
L

∑
j∈M

(
Ij(ui, vi)− Î(ρ, F, σ,Nj

i ,Li)
)2

(4)

where j is the image index within the setM of rigid
images and i runs over the image pixels to assign
a light direction to each.The global minimum of
criterion (3) is computed using Branch-and-Bound
and Second Order Cone Programming (SOCP) [19].
The minimization of criterion (4) is done using the
Levenberg-Marquardt algorithm [19].

V. MONOCULAR CONFORMAL DSFMS
A. Coarse 3D Reconstruction

We use a triangular mesh representation of the
surface. When conformally deformed, each triangle
may undergo stretching or shrinking by penalizing
changes in angles. In [4] a discrete quasi-conformal
reconstruction of deformable surfaces is proposed
from Nc point correspondences between the imaged
deformed shape and the 3D template. In this work
we propose to formalize the conformal penalty by

directly minimizing the changes in angles. This
formulation has the advantage of being independent
of any extra hyper-parameter as the shearing and
the scaling. In the template, the correspondences
are given by their barycentric coordinates (fi bi)

>,
i = 1, . . . , Nc. fi is the index of the triangle and
bi = (b1i , b

2
i , b

3
i ) are the values of the barycentric

coordinates. (ui, vi), i = 1, . . . , Nc are the corre-
sponding pixels in the image where the deformed
shape is projected. Extensible 3D reconstruction is
formulated as:

v′ = argmin
v′

Nc∑
i=1

‖ Π (v′(fi)b
>
i )− (ui, vi) ‖︸ ︷︷ ︸

(reprojection cond.)

+λ1

N∑
i=1

∑
j∈N (vi)

(αi(v)− αi(v′))2 + (βi(v)− βi(v′))2

︸ ︷︷ ︸
(conformal energy)

+λ2 ‖ ∆v′ ‖2︸ ︷︷ ︸
(smoothing)

(5)

where Π is the projective mapping from 3D to
2D including the intrinsics of the camera. v′ is
the matrix of vertices that represents the coarse
reconstructed shape with motion cues (see Figure 1).
v′(fi) is the (3× 3) matrix whose columns are the
3D coordinates of the vertices of face i. αi(v) and
βi(v) are two template angles of triangle fi. αi(v

′)
and βi(v

′) are their corresponding angles in the
deformed shape. The conformal energy term allows
triangles to stretch but penalizes changes in angles.
The smoothing energy term is expressed through
the linear Laplace-Beltrami discrete linear operator
∆ of dimension N×N [22], where N is the number
of vertices in the 3D template mesh. λ1 and λ2 are
real positive weights that tune the amount of penalty
for the conformal and the smoothing energy terms.
Their values are respectively set to 0.11 and 0.30
using the method described by [23]. This is further
discussed in section VI-D.

B. Fine 3D Reconstruction

The resulting deformed shape with the set of
vertices v′

i, i = 1, . . . , N , recovered from the previ-
ously described method can be refined using shading
cues to obtain the final mesh v′′

i , i = 1, . . . , N
(last box in the pipeline of Figure 1). Using the
reconstructed photometric template, we formulate
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3D reconstruction with motion and shading cues as:

v′′ = argmin
v′′

Nc∑
i=1

‖ (0 0 1)>
(
v′′(fi) − v′(fi)

)
b>
i ‖︸ ︷︷ ︸

(boundary cond.)

+λ6 ‖ ∆v′′ ‖2︸ ︷︷ ︸
(smoothing)

+λ3

N∑
i=1

‖ Π(v′′
i )−Π(v′

i) ‖2︸ ︷︷ ︸
(reprojection cond.)

+λ5

∑
i∈Sv

‖ Hi ×N′′
i ‖2︸ ︷︷ ︸

(specular vertices)

+λ4

∑
i∈Dv

‖ I(ui, vi)−
(
N′′
i · Li
π

ρ+
F D(σ,Ni,Li)

π(N′′
i · Li)(N′′

i ·V)

)
‖2︸ ︷︷ ︸

(diffuse vertices)
(6)

where Dv and Sv are respectively the diffuse and
specular pixels which belong to the organ’s tissue.
A tool/tissue segmentation using graph cuts [24] al-
lows us to determine these pixels. The specular pix-
els can be easily detected as saturated regions in the
deformed image intensity I . Hi is the bisector writ-
ten as Hi =

V+Li

2 . The real parameters λ3, λ4, λ5, λ6
are experimentally set to 0.21, 0.21, 0.21 and
0.17. Paragraph VI-D in the experimental results
section discusses this choice. Through the boundary
condition, this formulation gives confidence to the
depth of the correspondences reconstructed by the
conformal method using motion. The reprojection
condition constrains the refinement of the vertices
along the camera sightlines. The diffuse condition
refines the diffuse vertices according to the Cook-
Torrance model using shading. The specular vertices
are constrained to have their normals parallel to the
bisector direction of the source light and the viewing
direction. Due to noise in the image intensity a
smoothing term is needed to avoid bumpy surfaces.
The diffuse and specular terms allow us to recover
the deformed surface in regions where the data
correspondences are missing.

VI. EXPERIMENTAL RESULTS

Using ex-vivo and in-vivo animal and human data
with ground-truth, our proposed method MoT-CT
(MoTion-Cook-Torrance) is quantitatively com-
pared to three methods: MoT (MoTion) which is
based only on motion cues with conformal pri-
ors [4], MoT-LaM (MoTion-LaMbertian) which
is based on combining motion and shading cues
but assumes a Lambertian model of reflectance [7]
and MoT-ON (MoTion-Oren-Nayar) which uses
the Oren-Nayar [9] model instead of the Cook-
Torrance Model. We also present some qualitative
reconstructions using in-vivo images of a human
uterus. The considered deformations range from 2
mm to 12 mm per mesh vertex up to a rigid trans-
form of the mesh. This interval of deformation is

acceptable for early surgery step when the surgeon
deforms the organ to find the locations of abnormal
tissues.

The proposed method is implemented and tested
with Matlab R2013a running on a MAC OS X 10.8
system with an Intel Core 2 Duo CPU running at
2.26 GHz. The template reconstruction takes about
15 seconds. The light and Cook-Torrance calibra-
tion take about 10 seconds. These two steps are
processed once at the beginning of the experiments
or surgery. The 3D reconstruction of deformations
lasts about 10 seconds.

A. Ex-Vivo Data With Ground-Truth
In order to acquire real ex-vivo datasets we

used two laparoscopes fixed through two trocars
mounted on a pelvitrainer (see Figure 3). The two
laparoscopes are mounted to two PointGrey Flea2
color cameras with two c-mounts. The two cam-
eras are synchronized at 15 fps with a resolution
of 1024 × 728 pixels. The distance between the
two cameras is about 3 cm and the angle between
the camera axes is about 30 degrees. This setup
allows us to build reference ground-truth 3D models
of ex-vivo organs with stereo views. The stereo
reconstruction was about 0.2 mm. In order to avoid
interference with the room light, we covered the
pelvitrainer with black clothes and the room light
was turned off during the experiments

In our validation with ex-vivo organs we use the
lung and the liver of a lamb. In the first exploratory
step we reconstruct the 3D template of these organ’s
tissues as shown in Figure 4. The Cook-Torrance
parameters and the light are then calibrated as
described in IV. In the deformation step, the lung
and the liver are deformed with a surgery tool. A set
of 600 deformed image frames are taken. We use on
average a set of 15 point correspondences between
template and deformed images. For the liver, we
drew a set of patterns with surgery pen because
of the extreme textureless aspect of its tissue. The
correspondences were generated using SIFT [25].
Outliers and points outside the organs were removed
by the method proposed by [26]. In Figure 5 we
show a subset of different 3D reconstructions using
our method from single views for different amounts
of extensibility and curvature change with respect to
the template. We can see that globally our method
gives meaningful 3D reconstructions according to
the deformed images.

B. In-Vivo Data With Ground-Truth
To obtain in-vivo datasets with ground-truth we
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Fig. 5. Ex-vivo datasets: 3D reconstruction from a monocular laparoscope using our DSfMS method. First column: Left image from
stereo view used to compute ground-truth deformation. Second column: Right image from stereo view. This image is used together with the
left image to generate ground-truth 3D reconstruction. It is also used as single image to obtain 3D reconstruction with our method. Third
column: correspondences between the template image and right image used for the 3D reconstruction with our method. Fourth column: 3D
reconstruction with our method from single image. Quantitative 3D errors of reconstruction are shown in Table I.

2 laparoscopes

pelvitrainer

camera
+

adapter

surgery
tool

Fig. 3. Experimental setup to acquire real ex-vivo datasets. Two
Pointgrey cameras are synchronized to obtain reference ground-truth
data using stereo-views.

Fig. 4. Ex-vivo datasets: 3D template of the lung and the liver. The
size of the box bounding the 3D shape of the lung is 45.40×47.50×
20.16 mm3. The size of the box bounding the 3D shape of the lung
is 42.40× 43.50× 18.16 mm3.

use two synchronized laparoscopes in a stereo setup
to explore and deform the abdominal cavity of a liv-
ing pig. The experiment is done in the Centre Inter-
national de Chirurgie Endoscopique1 under respect
of ethical constraints. The laparoscopes and the
synchronization framework follow the same setup
as described before to acquire real ex-vivo datasets.
However, to cope with the difficulty of having a non-
constant rigid transform (stereo-transform) between
the two laparoscopes we put a reference checker-
board inside the abdominal cavity. This checker-
board allows us at any frame to calibrate the stereo-
transform from the left and right views to obtain
ground-truth 3D information. The distance between
the two cameras is about 3 cm and the angles
between the camera axis is about 30 degrees. The
stereo reconstruction was about 0.3 mm. In the first
exploratory step we reconstruct the 3D template
of three different organ’s tissues: the bladder, the
pericardium and the left lung. The obtained shapes
are shown in Figure 6. The Cook-Torrance parame-
ters and the light are then calibrated as described
in IV. In the deformation step, the bladder and
the pericardium are deformed with the checker-
board tool. The left lung also deforms due to the
breathing. A set of 500 deformed image frames are
taken for each tissue. For our reconstruction method
we use on average a set of 20, 25 and 10 point
correspondences respectively for the bladder, the
pericardium and the left lung. They were generated
using SIFT [25]. Outliers and points outside the
organs in concern were removed by the method
proposed in [26]. In Figure 7 we show a subset of

1http://www.cice.fr/
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different 3D reconstructions using our method from
single views for different amounts of extensibility
and curvature change with respect to the templates.
We can see that globally our method gives mean-
ingful 3D reconstructions according to the deformed
images. The quantitative results are shown in table
I and discussed in paragraph VI-E.

C. Surgery In-Vivo Data with Ground-truth
To validate the proposed approach on real in-vivo

data, we use in-vivo sequences of a human uterus
acquired using a monocular Karl Storz laparoscope.
The frames are acquired at 25 fps and have a resolu-
tion of 1920×1080. The 3D template of the uterus is
generated during the laparosurgery exploration step
as previously described. The Cook-Torrance param-
eters and the light are then calibrated as described
in IV. Deformations on the uterus are performed by
a surgery tool. To construct the ground-truth data of
a deformation, we ask the surgeon to keep steady the
deforming tool and to explore around this area with
the laparoscope. Under this condition, the scene
remains approximately rigid. Using a calibrated
laparoscope and the 5-point algorithm for RSfM
[20], a 3D ground-truth point cloud representing the
deformed organ is reconstructed. A set of 50 images
of deformations have been used for this experiment.
An average of 15 correspondences between the
uterus template and the deformed images were used.
They were generated using SIFT [25]. Outliers and
points outside the uterus region were removed by
the method proposed in [26]. In Figure 8 we show
a sample of 3D reconstruction using our method
from single views for the human uterus. We can
see that globally our method gives meaningful 3D
reconstructions according to the deformed images.
Further qualitative results on other uterus tissues are
reported in Figure 11. The quantitative results are
shown in table I and discussed in paragraph VI-E.

D. Choice of the Hyper-Parameters
We computed λ1, . . . , λ6 as described

in [23]. The computed values are
λ0 = (0.11, 0.30, 0.21, 0.21, 0.21, 0.17). To
assess the sensitivity of the reconstruction accuracy,
we evaluate the reconstruction error by varying
each hyper-parameter λi, i = 1 . . . 6, from 0.05 to
0.5 within a step of 0.01 and keeping the optimal
values which provide the least 3D reconstruction
error. It turns out that for deformations ranging
from 2 mm to 12 mm per mesh vertex, the
variation of the reconstruction error is negligible

Fig. 8. Surgery of the uterus with ground-truth. Top left, the 3D
template of the human uterus. The size of the box bounding the 3D
shape of the uterus is 70.40 × 65.50 × 40.10 mm3. Bottom, the
15 correspondences between the template image and the deformed
image. Top right, the 3D reconstructed deformed shape with the
proposed method. Quantitative 3D errors of reconstruction are shown
in table I.

for small perturbations of the optimal values of
the lambdas (see the interval of small sensitivity
in Figure 10). Moreover, each hyper-parameter
has an interval around the optimal value λ0i
where the reconstruction error is almost invariant.
This observation enhances the fact that the
reconstruction error is robust to small data noise.
Outside the robustness intervals, we can observe
that the reconstruction error is more sensitive to
perturbations of the weights of the physical terms:
λ1 (conformal), λ4 (reflectance) and λ5 (specular),
than to perturbation of the weights of the smoothing
or reprojection error terms.

For this reason, the optimal λ0s at the middle
of the robust intervals give us a secure margin for
reconstruction accuracy. They allow us to use the
same values independently from the used data sets
and for the considered range of deformation. The
considered interval of deformation is completely
acceptable for early surgery steps when the surgeon
deforms the organ to find the locations of abnormal
tissues.

E. Quantitative Evaluation and Comparison with
other Methods

Table I summarizes the RMS 3D errors (c.f.
appendix for computation formula) computed on
both the ex-vivo and in-vivo datasets for each ex-
perimented tissue and with the maximum amount
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Pig datasets: 3D templates
Bladder Pericardium Left Lung

47.90× 27.45× 24.0 mm3 20.40× 22.00× 14.16 mm3 83.70× 37.60× 18.54 mm3

Fig. 6. Pig datasets: 3D templates of three different organ’s tissues: The bladder, the pericardium and the left lung. For each template we
indicate in mm the size of the box bounding the 3D shape.

Fig. 7. In-vivo pig datasets: 3D reconstruction from a monocular laparoscope using our DSfMS method. First column: Left image from
stereo view used to compute ground-truth deformation. Second column: Right image from stereo view. This image is used together with the
left image to generate ground-truth 3D reconstruction. It is also used as single image to obtain 3D reconstruction with our method. Third
column: correspondences between template image and right image used for the 3D reconstruction with our method. Fourth column: 3D
reconstruction with our method from single image. Quantitative 3D errors of reconstruction are shown in table I.

of considered deformations (12 mm on average
per mesh vertex). The proposed method MoT-
CT provides results more accurate than the three
compared methods with an average of 1.8 mm.
MoT-ON presents an average of 2.3 mm, MoT-
LaM presents an average of 3.7 mm and MoT
presents an average of 5.8 mm. A detailed analysis
of the results in Table I show that the MoT-CT
method has very high performance when compared
to others for moist tissues with uniform textures.
This is the case of the in-vivo tissues especially
the lung and the uterus. For the bladder and the

pericardium tissues it has lower performance if we
observe the values of the maximum errors. This is
mainly due to the presence of veins at the surface
where their reflectance parameters (roughness and
Fresnel) are different from the rest of the tissue. The
detection of such areas and the computation of the
corresponding reflectance parameters can be a future
development of the current approach. For the ex-
vivo liver, the three algorithms have closer perfor-
mance even if the best one remains MoT-CT. This
is mainly due to the fact that the ex-vivo liver has
lost its moist characteristic. The worst performance
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Fig. 9. Ground-Truth datasets (Lung and Bladder): Qualitative
comparison of MoT-CT and MoT-ON. The former provides results
smoother than the latter. The difference is more noticeable in the
specular regions and their neighbourhoods.

is attributed to the ex-vivo lung because some areas
have changed color and texture due to the contact
with the air. In this case, as for the veins of the
bladder and the pericardium, the different areas have
to be identified before estimating the reflectance
parameters for each one of them. This identification
is not obvious and will be part of future work.

In summary, these results show that combining
motion and shading cues is better than using only
motion cues. Indeed, since in surgery only few
correspondences can be established between the 3D
template and the deformed image, it is hard for these
methods to recover all the details of deformation.
It appears also that the estimation of the Cook-
Torrance reflectance model and its usage in shading
performs better than the classic Lambertian model
and the Oren-Nayar model. Indeed, the moist char-
acteristic of the living organ’s tissue is closer to the
Cook-Torrance model than to a Lambertian model
which assumes perfect diffuse surfaces. The as-
sumption of the Oren-Nayar model is not sufficient
to represent the specular reflectance. It represents it
as Lambertian microfacets while the Cook-Torrance
represents it as mirror-like microfacets. These last
statements are further confirmed by Figure 9 that
shows a qualitative comparison between MoT-CT
and MoT-ON. In this figure we can appreciate the
performance of the Cook-Torrance model in the
specular regions and their neighbourhoods.

F. More Qualitative Surgery In-Vivo Data
Finally, to highlight the performance of the pro-

posed approach on real surgery data, we use in-
vivo sequences of a human uterus acquired using a
monocular Karl Storz laparoscope. The frames are
acquired at 30 fps and have a resolution of 1280×

MoT-CT MoT-ON MoT-LaM

Ex-Vivo

Lung
Median 2.52 3.72 5.03

Min 1.00 1.54 2.02
Max 3.20 4.02 6.25

Liver
Median 1.22 2.49 3.35

Min 1.03 1.54 1.70
Max 2.11 2.42 3.75

In-Vivo

Bladder
Median 1.72 3.79 5.35

Min 1.02 3.04 5.20
Max 2.10 4.00 6.02

Pericardium
Median 1.72 3.39 4.05

Min 1.00 2.43 3.03
Max 3.79 4.27 6.52

Lung
Median 0.83 2.97 4.25

Min 0.50 1.84 3.21
Max 0.97 3.92 5.75

Uterus
Median 0.92 3.96 5.75

Min 0.70 3.54 4.02
Max 1.03 4.00 6.12

TABLE I
DETAILED QUANTITATIVE RESULTS FOR DIFFERENT TISSUES. THE

ERRORS ARE IN MILLIMITERS.

720. The 3D template of the uterus is generated dur-
ing the laparosurgery exploration step as previously
described. The Cook-Torrance parameters and the
light are then calibrated as described in section IV.
Complex and unpredictable deformations may occur
on the uterus when the surgeon starts to examine
it. A set of 500 images of deformations have been
used for this experiment. An average of 25 cor-
respondences between the uterus template and the
deformed images were used. They were generated
using SIFT [25]. Outliers and points outside the
uterus were removed by the method proposed in
[26] (Figure 11, row 2). In Figure 11, rows 3-4,
we show the 3D reconstructed deformations with
the corresponding deformed image in row 1. In row
4, we show synthesized views from novel camera
views, and show qualitatively that the deformed
uterus has been reconstructed well.
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VII. CONCLUSION

In this paper, we presented a new method to
reconstruct deforming living tissue in 3D using a
single laparoscopic image and a 3D geometric and
photometric template that is reconstructed in-vivo.
Our 3D reconstruction pipeline DSfMS presents
novel technical contributions and also a new way
of tackling the 3D vision problem in laparoscopy.
Ex-vivo and in-vivo experimental results show the
effectiveness of combining both conformal motion
cues and Cook-Torrance reflectance priors. We pro-
vided quantitative comparison with other methods
which combine motion cues with a Lambertian or
an Oren-Nayar reflectance models.

We showed that for moist tissue with the same
reflectance property, the Cook-Torrance model is the
best candidate. Future developments of our work
will be focused on the detection of areas with
different reflectance parameters.

APPENDIX

ERROR MEASUREMENT

In order to evaluate the performance of our ap-
proach, we computed the RMS 3D error in mm as:

√∑N
i=1 ‖ v′

i − vi ‖2
N

,

where {v′
i}i=1,...,N are the vertices of the 3D recon-

structed mesh and {vi}i=1,...,N are the vertices of
the ground truth mesh.
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