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Examinators : Prof. Fabien Feschet, Université d’Auvergne
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Co-Advisor : Ph.D. Chafik Samir, Université d’Auvergne.
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Abstract

Endometriosis is a multifocal gynecologic disorder which forms during the reproduc-

tive cycle, mainly causing severe pelvic pain and sometimes infertility. Even though

findings at physical examination may be suggestive, medical imaging is mandatory

for diagnosis and preoperative surgical planning. The imaging modalities that have

mostly been employed for preoperative diagnosis of endometriosis are Transvaginal

Ultrasonography (TVUS) and Magnetic Resonance (MR) scanning. TVUS is a re-

liable method for detecting small endometrial tissues and estimating their depth of

infiltration. MR scanning is used as a complimentary examination, since it reveals

the patient’s pelvic anatomy and large endometrial tissues, and gives high resolution

and fine detail 3D images of the patient’s pelvis. The radiologists are faced with an

overwhelming amount of information when comparing these two imaging modalities

but the visual interpretation of these images is not an easy task. Therefore, to ease

the task of the medical experts in both interpretation and decision making, we need

to move towards more comprehensive visualization techniques. To achieve this, the

automatic fusion between TVUS and MR images is needed to remove many of the

hurdles involved in determining the best plan and transferring it to surgery to reduce

the trauma done to healthy tissues and to avoid under-cutting the implants, which

may cause recurrence.

This thesis investigates the applicability of various deformable registration meth-

ods to align preoperative 2D TVUS and 3D MR images of the female pelvis. These

methods facilitate the transfer of two types of information from TVUS to MR data:

1) the location and shape of endometrial implants, and 2) the implants’ depth of

infiltration in the host tissue. The major advantage of mapping this information
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into the MR data is that the implant’s location and the resection lines can then

be clearly defined with respect to the patient’s anatomy. We provide comparisons

and experimental results for some deformable intensity- and feature-based registra-

tion methods including non-parametric and parametric (e.g. spline-based methods)

deformation models. The deformable intensity-based multimodal image registration

method is computationally costly and is not well-suited to TVUS-MR registration.

Our first goal is to propose a 2D/2D feature-based multimodal image registration

and fusion method to cope with the limitations of the MR and TVUS imaging in

observing the endometrial implants in the pelvic area. In order to make sure that

we obtain clinically meaningful deformations, we use a nonparametric model which

is not defined on the basis of a finite set of parameters and is more suited in the

absence of prior knowledge. The solution of this energy functional minimization is

obtained by a joint-minimization of the contour alignment of the segmented pelvic

regions and the internal energy. The main drawback of the feature-based methods

is that they highly depend on an expert user’s inputs. To reduce user interaction,

we use a parametrization-based approach between manually segmented contours to

define dense correspondences. Although this framework decreases the dependency of

the method on the expert users, it still needs an expert user to establish a few point

correspondences manually which is a challenging and time-consuming process. It is

challenging because: 1) There is a huge deformation between the two modalities. 2)

In many TVUS data, the implants’ neighboring organs are only partially visible due

to the small field of view of the TVUS scanner. 3) The tissues which are exhibited in

both MR and TVUS images do not belong to the same slice. Therefore, we further

investigate upon an automatic method for determining pairs of corresponding points

to decrease the amount of user interaction. To achieve this, we take advantage of

the Iterative Closest Point algorithm. Even though this method establishes point

correspondences automatically, it still relies on the user to segment the correspond-

ing contours. However, this is clinically acceptable, since manual segmentation of

the pelvic organs can be achieved in a reasonable amount of time. Moreover, from a

technical point of view, automatic segmentation in this context is virtually impossible
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due to three main reasons. First, the endometrial implants can be anywhere in the

patient’s pelvic area, so that we need a segmentation algorithm to be able to detect

all the tissues and lesions in this region. Second, the small endometrial implants,

which can be seen in TVUS images, infiltrate through the walls of organs, therefore

it is difficult to automatically segment both the implants and the host tissue with

a high precision. Third, the MR images cannot clearly show the organs’ boundary

when the endometrial implants connect two pelvic organs, so that the segmentation

process is prone to errors. Consequently, we use manual segmentation to avoid incor-

porating the segmentation errors in TVUS-MR registration process. In the proposed

2D/2D TVUS-MR registration methods, the problem mainly lies in finding the 2D

MR slice from an MR volume that matches the 2D TVUS image. Therefore, to fur-

ther improve the user experience, we propose a slice-to-volume registration method

that directly registers a set of 2D curves in the 2D TVUS image to a set of cor-

responding 3D surfaces in the 3D MR volume. Besides its advantages on avoiding

to change the dimensionality of the MR data, slice-to-volume registration is further

useful in making a more accurate preoperative surgical planning. This is due to the

fact that a computer-aided reconstruction system can precisely reconstruct 3D models

of the patient’s pelvic organs from the MR volumetric data, which simply enhances

the anatomy of this complex part of the body. Therefore, mapping the endometrial

implants and highlighting the resection lines on the 3D models of the patient’s pelvic

organs may ease the task of surgeons in planning.
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Chapter 1

Introduction

Contents
1.1 Computer-Aided Diagnosis . . . . . . . . . . . . . . . . . . . . . 1
1.2 Endometriosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Laparoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Transvaginal Ultrasound . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . 11

1.4 Surgical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Computer-Aided Diagnosis

Computer-aided diagnosis has drawn the attention of researchers for decades. A

great number of works related to diagnostic radiology and medical imaging has been

proposed [1]. The key idea of computer-aided diagnosis is to assist radiologist and

surgeons in the interpretation of medical images by employing computer systems

to provide complimentary information [2]. Generally, computer-aided diagnosis is

considered as a second reader by analysing data and finding abnormalities using digital

signal processing, computer vision, and machine learning techniques [3]. Thus, it may

ease the task of the medical experts in decision making. Studies on computer-aided

diagnosis systems reveal that these systems can improve diagnosis and the accuracy

of the radiologist’ decision making. Moreover, these systems reduces the increasing
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demand of radiologists’ time caused by the increasing data volume, decrease risk of

obtaining a false-negative result for detecting malignant and cancerous tissues due to

fatigue or distraction, and overcome differences in diagnosis which may occur because

of differences in radiologists’ experiences. The majority of computer-aided diagnosis

systems are designed to help the physicians for the following organs: colon, prostate,

liver, heart, lung, chest, breast, vascular, skeletal, retina, and the brain.

The concept of computer-aided diagnosis in radiology was established in the 1960s.

At that time, many researchers believed that computers could help or even replace

radiologists in estimating abnormalities, since machines are more accurate at perform-

ing certain tasks than human. In 1963, Lodwick et al. [4] investigated the usefulness

of using a computer in the evaluation of bone cancer. In 1964, Meyers et al. [5] de-

veloped an automatic system to investigate chest photofluorograms to separate the

normal chest radiographs from the abnormal ones by measuring the cardio-thoracic

ratio [2]. In 1967, Winsberg et al. [6] proposed a computer-aided diagnosis system to

individually analyze breast X-ray images of each patient for detecting abnormalities

based on density patterns in different regions inside each breast and between right and

left breasts. Although many interesting attempts had been made to understand the

usefulness of using a computer in aiding diagnosis, these early reports were not very

effective. This is due to the fact that at that time, computers were not enough pow-

erful and advanced digital signal processing techniques and medical imaging scanners

were not available.

With advances in digital signal processing, computer vision, and machine learning

techniques and the availability of powerful computers, many medical imaging tech-

niques, and large databases of cases, the field of computer-aided diagnosis has grown

considerably since the 1980s [7]. Since the mid-1980s, many researchers have tried

to employ computers to help physicians in several manners. Generally, computer-

aided analysis of medical images obtained from different imaging systems involves

two stages: (i) Preprocessing and enhancement, (ii) Image registration, image seg-

mentation, and classification.
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Preprocessing. Preprocessing is a vital task in medical image analysis, since medi-

cal imaging acquisition technologies introduce artifacts and noise in the images. Gen-

erally, noise often exist in medical imaging, such as ultrasound, Magnetic Resonance

(MR) imaging, Computed Tomography (CT), Single Photon Emission Computed To-

mography (SPECT), and Positron Emission Tomography (PET). However, removing

noise from medical images is not an easy task, since linear filtering algorithms usually

fail. Therefore, the effect of noise may be attenuated by much more sophisticated

denoising algorithms such as Bayesian algorithms. This is due to the fact that the

denoising process should not destroy anatomical details. This property of the de-

noising algorithms becomes very important in the case of ultrasound images where

the noise corrupting the images often contains relevant medical information useful for

diagnostic purposes. Many attempts have been made to develop precise algorithms

to discard noise without destroying the anatomical structures. For instance, Sanches

et al. [8] propose a Bayesian algorithm which removes additive white Gaussian as well

as multiplicative noise. The algorithm is based on the maximum a posteriori criterion

and edge preserving priors which preserve the anatomical details. Their algorithm is

used for heart tracking in ultrasound images. They show that the ultrasound images

present a poor quality, so that the boundaries of the cardiac left ventricle can hardly

be seen when the heart has a sudden motion. Therefore, each ultrasound sequence

is first passed through their denoising algorithm to estimate the boundary of the left

ventricle during the whole sequence. Using their method, a tracker is then able to

show the abnormalities in the patient’s heart more accurately.

In recent years, the demand for resolution enhancement of pictorial data in medical

images has increased in order to assist clinicians to make accurate diagnosis. The task

of resolution enhancement in medical images is generally to enlarge a region of interest.

However, the main issue of concern is preserving details in the enlarged image. In

general, interpolated images have some problems such as losing the contrast and

blurring the details. Thus, a robust medical image resolution enhancement technique

must be able to cope with these two issues. In this manner, we propose a method for

3D image resolution enhancement based on discrete stationary wavelet transforms
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to generate sharp high resolution images (for more details, see Appendix A). The

proposed algorithm is applied to the full 3D pelvic MR data volume and we show

that the results preserve edge features which help the radiologist to more precisely

investigate small lesions in the pelvic area to find abnormalities.

Image registration. Detecting abnormalities in medical data can be performed by

comparing different images of the same patient. Comparing different images is not

an easy task, since there are misalignments and dissimilarities between the images

which are related to many factors such as sensor noise, patient movement, different

imaging scanners, and different radiation exposure. Therefore, in order to precisely

and efficiently compare the images and avoid misalignments, an image registration

technique must be used. In this way, Dı́ez et al. [9] propose a deformable registration

method to detect abnormal structures in mammographic images which are acquired

at different time intervals. They show that after performing the registration, the

malignant lesion is clearly visible in the difference image. Moreover, the information

which is obtained from the registration process can be used to deeply compare and

analyse the lesions in the current image with the previous images.

Segmentation. Segmentation is an important step in computer-aided diagnosis. It

can be defined as a process of dividing an image into regions of similar attributes.

Typically, the aim of segmentation algorithms is to extract important features from

the image data, from which a description and interpretation of the image can be

provided by the computer. Currently, there is a vast number of segmentation methods

proposed for medical data. Image segmentation algorithms can be classified in many

ways [10]. Segmenting anatomical structures such as the heart, different regions of

the brain, and liver in a medical image is a vital and important step for many clinical

applications (e.g. visualization, surgical planning, radiation therapy). Segmentation

can be considered as an important tool which helps to make accurate decisions for

diagnostic purposes. The rapid development of medical imaging scanners such as

CT and MR enables us to generate high resolution and fine detail 3D images of
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the human body. This improves the accuracy of diagnosis and understanding of

diseases. However, the interpretation of the 3D volumetric data requires a lot of time

and energy. Therefore, there is a great demand of automated methods to segment

multiple organs in an image and to reconstruct the 3D shape of the organs and tissues

to decrease the interpretation burden. In this manner, Ulén et al. [11] propose a multi-

region model segmentation method to segment different lesions in an image at a time.

They apply their method to heart and lung CT images. They show that automatic

segmentation and 3D reconstruction of the segmented organs can significantly help

the understanding of this huge quantity of data.

Classification. After extracting the desired objects in an image, one can use them

as an input of classifier to detect what the extracted features are, for instance,

lesion/non-lesion or benign/malignant tissues. In this manner, Osareh et al. [12]

propose a computer-aided diagnosis system to automatically classify the breast tis-

sues into cancerous/non-cancerous data.

The above-mentioned studies demonstrate that computer-aided diagnosis is ca-

pable of improving the radiologists’ performance. Therefore, our main goal in this

thesis is to propose for the first time a computer-aided diagnosis system to improve

radiologists’ performance and surgical planning for endometriosis diagnostic purposes.

5



Figure 1-1: The most common localisation of endometriosis. Taken from Wikipedia
and modified, http://en.wikipedia.org/wiki/Endometriosis.

1.2 Endometriosis

Endometriosis is a progressive gynaecological disease in which the cells from the

lining of the uterus appear and grow outside of its cavity, typically in the pelvic area

[13]. The term endometriosis is derived from the Greek language where “end” means

inside, “metra” defines as womb or uterus, and “osis” means disease or abnormality.

Endometriosis affects approximately 10% of women of reproductive age [14]. In other

words, more than 175 million women across the world must deal with the symptoms

of endometriosis during their lives [15].

The most common site of involvement is the ovary, followed in descending order

of frequency by deep lesions of the pelvic sub-peritoneal space, the intestinal and the

urinary systems [16]. Figure 1-1 shows the most common locations of endometrial

lesions in the pelvic cavity. In rare cases, it has been also found inside the bladder,

inside the vagina, in the lung, in the nerves, on the skin, spine, and brain.

The symptoms of endometriosis vary widely from patient to patient, with some

experiencing no symptoms, and others experiencing the whole gamut. The symptoms
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are usually chronic pelvic pain, abnormal bleeding, dysmenorrhea1, dyspareunia2, and

infertility [17]. Among patients that have been diagnosed with endometriosis, up to

30% − 40% may not be able to have children. Note that dysmenorrhea is one of

the most common symptoms, and half of the patients with this symptom have been

diagnosed with endometriosis [18]. As the disease grows, the pain may progress over

time and eventually, the patient may have constant pain, with increased strength

during their menstrual cycle. Therefore, this disease may have a substantial negative

influence on the patient’s daily life. Consequently, pain is the most prevalent side

effect of the disease. In addition to struggling with this tough pain, endometriosis

can also have significant influence on patients’ mental well being. In other words, it

may cause anxiety, depression, irritability and hopelessness [19]. This is more due to

the fact that living with the unknown reason of pain can be far more stressful than

living with a chronic medical condition.

Endometriosis has been seen as a progressive disease. Each month during a

woman’s menstrual cycle, the endometrial implant responds to the growth and shed-

ding signals as the cells inside the uterine cavity, resulting in internal bleeding. Unlike

the cells inside the uterine cavity, there is no outlet for endometrial implant bleeding,

which leads to an inflammation due to an immune response. This response results

in the formation of scar tissue as part of the healing process and causes severe pain.

Sometimes, the scar tissue comes into contact with another inflamed area and forms

a band of scar tissue. This process, also known as an adhesion, connects two inter-

nal body surfaces that are not naturally connected. This phenomena may lead to

urination or bowel movements which also cause chronic pain. Figure 1-2 shows an

endometrial implant that connects the uterus to the rectum; those are not connected

in healthy patients.

Endometriosis is a common gynaecological disorder associated with infertility and

chronic pain. Although this disease has drawn the attention of many for more than

a hundred years, the pathology of endometriosis remains unclear, which makes the

1Dysmenorrhea is painful menstruation.
2Dyspareunia is painful sexual intercourse.
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Figure 1-2: An example of endometrial implant which causes forming adhesions. In
this example, the endometrial implant connects the uterus to the rectum.

facilitating factors for diagnosis and treatment of symptoms unknown. Regarding the

exact cause and pathogenesis of endometriosis, various theories have been proposed.

Even though just one theory cannot be able to explain what the cause of endometriosis

is, the retrograde menstruation theory, proposed by Sampson in 1924, is the most

widely accepted debate on the pathogenesis of endometriosis. Sampson states that

the endometriosis is related to retrograde menstruation of endometrial tissue, slough

at the duration of menstruation, which retrogrades through the fallopian tubes and

into the peritoneal cavity [20]. Retrograde menstruation happens in more than 70%

of all women, but more commonly in those with endometriosis [21]. Besides of this

theory, another indication to whether a patient has endometriosis is to check the

patient’s genetic background such as family medical history. The reason is that the

patient who has a first-degree relative with endometriosis has a seven times greater

chance of developing endometrial lesions [22,23].

1.3 Diagnosis

Many patients with endometriosis experience an average delay of eight years from

presenting with symptoms to diagnosis and treatment [21]. This significant delay

has a harmful effect on the patients’ daily lives and activities, and in some cases

fertility [24]. Since patients present with a wide spectrum of symptoms, the diagno-

sis of endometriosis is difficult. The diagnosis process starts with the observation of
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certain symptoms, perusing a comprehensive documentation of the patient’s medical

history, and physical examination. Physical examination can be useful just if the

endometrial implants were located at vulva, vagina, and cervix. However, the exis-

tence of endometriosis in these locations is not often. Therefore, physical examination

mainly fails to reveal whether the patient has endometriosis or not. Visual inspection

by laparoscopy is used as a gold standard for the diagnosis of pelvic endometriosis.

However, this method is shown to be inaccurate. Over the time other imaging tech-

niques such as Transvaginal Ultrasound (TVUS), MR, and CT scanning have evolved

to greatly ease preoperative diagnosis [13, 16, 17, 25, 26]. However, many researchers

believe that CT scanning should not be used to diagnose endometriosis, due to its

radiation exposure and lack of contrast resolution. Nowadays, imaging techniques

are an important diagnostic tool in the assessment of endometriosis, mapping of the

disease’s extent, and for creating a preoperative plan for surgical treatment.

1.3.1 Laparoscopy

Laparoscopic visualization is the gold standard for diagnosis of pelvic endometrio-

sis. In laparoscopy, diagnosis is confirmed intraoperatively. During laparoscopy, the

pelvic area must be carefully investigated for the existence of endometriosis. After

endometriosis has been found, the size, location, and extent of all lesions and ad-

hesions may be recorded [27, 28]. Diagnostic laparoscopy is the most widely used

staging system for endometriosis, but only for subtle lesions. In the case of deep

infiltrating endometriosis, the value of laparoscopy is limited, as lesions hidden un-

der dense pelvic adhesions are mostly impossible to detect during laparoscopy. In

other words, it does not allow the surgeon to see the endometrial implants that are

located inside or under the organs and to quantify the depth of infiltration. Figure

1-3 shows an example of laparoscopic visualization for the diagnosis of endometriosis.

In this figure, the endometrial implant has infiltrated through the rectal wall, and the

depth of infiltration cannot be seen. To cope with these limitations, it is important

to construct an endometrial map preoperatively using both MR and TVUS.
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Figure 1-3: A laparoscopic image with the endometrial implant. The yellow line
drawn on the laparoscopic image shows that the implant has infiltrated through the
rectal wall, though the depth of infiltration cannot be seen.

1.3.2 Transvaginal Ultrasound

2D TVUS is normally the first medical imaging modality in patients with pelvic

disorders and has shown good accuracy in the diagnosis of endometrial implants.

The TVUS procedure involves laying the patient down on a table with bent knees

permitting easy insertion of the ultrasound probe. A 6.5 MHz transducer probe

combined with saline solution is gently inserted into the vagina, and then an expert

moves the probe around the area of interest to see the pelvic organs. In this manner,

an acoustic window is generated between the transvaginal probe and the surrounding

structure of the vagina tube (e.g. the vagina walls, cervix, uterus, ovaries, rectum,

and bladder). Since there is no clue about the location of endometriosis, a radiologist

moves the probe in any direction in order to precisely investigate the patient’s pelvic

area. As the probe moves freely in any direction and the TVUS scanner has a small

field of view, a 2D TVUS image cannot include all the pelvic organs. Therefore,

multiple 2D TVUS images must be stored in order to allow an expert to carefully

investigate the pelvic area. The results of ultrasonography, compared with other

diagnostic imaging techniques, allow the radiologist to detect small implants, see the

implants that are located inside or under the organs, and determine their depth of

infiltration. The main TVUS limitations include their limited field of view and low

signal to noise ratio [29]. Figure 1-4 shows TVUS images for two different patients
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with different types of endometriosis. Figure 1-4 (a) shows a small implant which is

located above the bladder without adhesion, whereas Figure 1-4 (b) shows an implant

which cause adhesion. TVUS image in Figure 1-4 (b) clearly indicates the depth of

infiltration.

(a) Small Implant (b) Depth of Infiltration

Figure 1-4: 2D TVUS images. (a) shows a small endometrial implant. (b) illustrates
the endometrial implant with its depth of infiltration.

1.3.3 Magnetic Resonance Imaging

MR imaging is a noninvasive medical test which is based on the absorption and

emission of energy in the radio frequency range of the electromagnetic spectrum [30].

This imaging modality is accepted as the most precise technique for assessment of

large endometrial implants, since it provides superior soft-tissue contrast resolution.

In contrast with TVUS scanning, MR imaging is not operator dependent.

T2 MR imaging scan with or without contrast agent is the standard imaging tech-

nique used for detection and anatomical localization of large endometrial implants.

Generally, MR images are generated using a 1.5 Tesla whole-body MR system. In

this manner, a dedicated phased-array coil is used as a signal receiver. The patient is

placed in supine position. The phased-array coil is tuned to be around the patient’s

pelvic area. In some cases, contrast agents are given to the patients in order to im-

prove the visibility of internal body structures such as the rectum and vagina. Then,

a sagittal, axial, and coronal 2D MR sequences are acquired to form a 3D volume of

the patient’s pelvic region.

The MR images present a global map of the location of the lesions and provide
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Figure 1-5: An example of a 2D MR slice. This imaging modality is used for visual-
ization of the complex pelvic anatomy. In the case of large endometrial implant which
causes adhesion (see Figure 1-2), this imaging technique can show abnormalities, but
cannot visualise depth of infiltration.

good contrast between the normal and malignant tissues. However, MR imaging

cannot show the small endometrial implants and the depth of infiltration [13, 26].

Figure 1-5 is an example of pelvic MR image. Note that this MR image matches

with the TVUS image in Figure 1-4 (b). In this figure the abnormality between the

uterus and the rectum is obvious, but the depth of infiltration and the boundary of

the uterus and rectum, in which there is an adhesion, are not clearly visible.

1.4 Surgical Treatment

There is currently no cure for endometriosis, but there are treatments for pain and in-

fertility related to endometriosis. After preoperative imaging examination, an expert

must investigate all the images in order to decide whether a woman has endometrio-

sis. However, an accurate diagnosis should not just indicate the existence of the

endometriosis, but should also include such information as depth of infiltration, size

of implants, and exact location. This information is necessary to create a preoperative

surgical plan in which the desired resection lines are defined and then performed in

the operating room. Therefore, completeness of excision highly depends on the pre-

cision of diagnosis. Note that the goal is to treat the endometriosis without harming

the healthy tissue around it, but to achieve this, one needs very accurate diagnosis

which is not easy by current imaging technologies.
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Based on the preoperative surgical planning, the surgeon makes at least two small

cuts in the abdomen and inserts a laparoscope and other surgical instruments to

remove implants or destroy them with intense heat and seal the blood vessels. Some

surgeons also remove scar tissues at the surgery time because the scar tissues may be

causing pain and reforming adhesions. Although most women have relief from pain

with surgery in the short term, pain often returns. This is due to the excision of

deep infiltrated implants be left incomplete due to inaccurate planning, so that the

implants grow again. Inaccurate pre-operative surgical planning can be because of

lack of knowledge of interpreting the preoperative medical images by surgeons. This

leads to recurrence or starting surgery off the place where the implant is located.

1.5 Objectives

As previously mentioned, preoperative TVUS and MR scanning have formed the

most reliable diagnosis procedure for the assessment of endometriosis [13]. These

imaging modalities are complementary. Small implants and depth of infiltration are

only visible in TVUS while MR visualizes the complex pelvic anatomy [26]. There

is currently no system available to construct an endometrial map by combining MR

and TVUS.

The registration and fusion between TVUS-MR data can be used to solve the

limitations of MR and TVUS at observing endometriosis. This is a difficult tech-

nical problem due to the disparity in gray-level intensities (multi-modality), multi-

dimensionality, soft tissue deformations, and the limited field of view and low signal

to noise ratio of TVUS images.

The TVUS image may exhibit some deformations under certain conditions. The

inserting of the transvaginal probe inside the vagina during the TVUS procedure,

full bladder, bowel or gas inside the rectum and altered patient positions between

the TVUS and MR scanning procedures may deform the pelvic organs. In order

to cope with these deformations, deformable registration methods need to be used.

The registration process facilitates the transfer of two types of information from

a TVUS image to a MR data, which contains superior information on the pelvic
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Figure 1-6: The general TVUS-MR registration schema.

anatomy, including the location and shape of endometrial implants and their depth

of infiltration in the host tissue. The general TVUS-MR registration schema is shown

in Figure 1-6. As it is shown in this figure, the TVUS that we have used in our

experiments is a 2D image, or slice, of a three-dimensional object (organs, tissues).

This image is deformed by external forces. The MR data volume is a set of 2D slices

of a three-dimensional of the pelvic organs and tissues. Then by registering a 2D

TVUS image with a MR data, we can retrieve the deformations that was applied to

the patient’s organs during TVUS acquisition.

Since there is no algorithm to register a TVUS image with an MR of the woman

pelvis, we have explored the possibility of various deformable registration methods.

The primary goal of this work is to propose deformable registration methods that

may be applied to register a 2D TVUS and a 2D MR data to accurately localise

endometrial implants and clearly define resection lines. We have observed from a

literature that many existing deformable US-MR image registration methods need to

manually establish correspondences between the two modalities. However, the main

drawback of these methods is that manually selecting point correspondences are often

a challenging and time-consuming process. To reduce the potential expert error and
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interaction time, we propose two different methods which take advantage of the organs

segmented by the radiologist whilst they inspect the images. We have shown that

2D/2D TVUS-MR registration can improve diagnosis procedures by transferring the

extra information from TVUS images into MR images. This information can assist

the surgeons to make more accurate preoperative surgical planning, since they do

not need to investigate both TVUS and MR individually. Our 2D/2D registration

results provide accurate information about location of the implants and their depth

of infiltration on the pelvic anatomy. Moreover, we outline the resection lines to ease

the surgery planning to prevent over- or under cutting of the endometrial implants

during surgery.

To achieve 2D/2D TVUS-MR registration, a reference 2D MR slice from the MR

volume that corresponds to a moving 2D TVUS image must manually be chosen by an

expert. We have seen from a literature that for registering US to MR images, methods

in the state of the art carry out the registration process with the same strategy. This

is a limitation since the standard TVUS and MR imaging techniques used for diag-

nosing endometriosis are 2D and 3D, respectively. Hence, this registration problem

is actually a 2D/3D registration, and more specifically a slice-to-volume registration.

Then, the secondary goal of this work is to propose a deformable registration method

that may be applied to register a 2D TVUS with a 3D MR volume to find a cross-

section of volume by a plane or smooth surface, from which the endometrial implants

and their depth of infiltration can be mapped into the reconstructed patient-specific

organ model from the 3D MR volume. Since the pelvic organs have complex 3D

structures, 3D virtual reality models of the patient’s organs enhanced the anatomy

of this complex part of the body. The advantages of using the 3D MR volume for

diagnosis of those large endometrial implants which are visible in MR data are dis-

cussed in details by Giusti et al. [31]. They show that the 3D reconstruction of the

pelvic organs (namely the uterus, vagina, rectum, and bladder) and large endometrial

implants from the 3D MR volume improves the accuracy of diagnosis and can be used

for visualization of the complex pelvic anatomy for treatment planning purposes. The

surgeon may also use the reconstructed patient-specific model to create a preopera-
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tive plan in which the desired resection lines are defined and then performed in the

Operating Room. Defining an accurate preoperative plan is only possible when the

boundary of organs and implants are precisely defined. However, this is not always

possible as the depth of infiltration is generally not visible in the MR data. In order to

solve this issue and to improve the accuracy of diagnosis as well as surgery planning

for small implants, which are also not visible in an MR volume, we propose to fuse

the 2D TVUS image to the 3D MR volume.

1.6 Overview of the Thesis

The remaining of the thesis consists of 8 chapters as well as an appendix.

Chapter 2. This chapter presents the general tools used in this thesis. In particular,

we give the convention and notation, the basic principles of minimization depending

on functionals followed by the most relevant spline approximation methods.

Chapter 3. This chapter deals with some preliminary concepts related to image

registration such as the general registration methodology, the similarity measures, the

transformation models, the optimization techniques, and the interpolation methods.

Chapter 4. This chapter reviews , without restriction, US-MR image registration

methods for other organs and other settings (2D/2D and 3D/3D). The registration

methods are categorized into intensity-based, feature-based, and hybrid methods.

Moreover, this chapter provides a literature review related to Iterative Closest Point

(ICP) based registration algorithms and 2D/3D medical image registration methods.

Chapter 5. Since there is no existing system to register TVUS to MR images,

this chapter provides a comparison between two different registration approaches

—intensity- and feature-based— and investigates their applicability in the case of

the TVUS-MR registration problem. The experiments show that the feature-based

approach provides more accurate registration results.
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Chapter 6. This chapter describes a variational approach to map endometrial im-

plants from 2D TVUS to 2D MR images. The proposed method lies in the feature-

based approaches. In our registration process, the expert first segments the organs

and selects a few corresponding points. More point correspondences are then created

using arc-length parametrization between each adjacent points. Then, a deformable

registration method is employed to locally register the TVUS image with the cor-

responding MR slice. We use different non-parametric transformation models and

regularization functions such as diffusion, divergence and curl, and curvature. In ad-

dition, we also use one of the most popular parametric transformation models which

is Thin-Plate Spline (TPS). Our experiments show that the curvature registration

method provides more accurate displacement fields than the compared methods.

Chapter 7. This chapter presents an automatic 2D/2D deformable registration

method to establish point correspondences and estimate deformation between curve

correspondences. In this method, we register a 2D TVUS image to a 2D MR image

using curve correspondences through a novel variational one-step deformable ICP

method. The MR and TVUS data are manually segmented by an expert. Thereafter,

a deformable one-step ICP method is used to compute a dense deformation field while

establishing point correspondences automatically. This algorithm improves the state

of the art algorithms in that it decreases potential expert error and interaction time

in selecting point correspondences.

Chapter 8. This chapter presents a new deformable slice-to-volume registration

method to map endometrial implants from a 2D TVUS image into a 3D MR data. Our

technical contribution lies in extension of our 2D/2D one-step ICP method to slice-

to-volume registration problem. Moreover, our new formulation can handle multiple

curves to surface correspondences, while estimating a deformable transformation.

This method markedly extends the current literature on ICP and US-MR image

registration.
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Chapter 9. This chapter provides general conclusions on the various proposals of

this manuscript and outlines some of the avenues of future work.

Appendix A. This appendix studies 2D and 3D wavelet domain medical image

resolution enhancement method. The proposed approach is based on the interpolation

of the low resolution input image and the derived high frequency sub-band images

obtained using Discrete Wavelet Transform (DWT). Experimental results on both

2D and 3D images show how our method enhances the image’s details and preserves

edges.
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Chapter 2

Background

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Generalizing the Variational Problem . . . . . . . . . . . . . . . 25

2.4 Function Models Based on Splines . . . . . . . . . . . . . . . . 26
2.4.1 B-Spline Basis for Polynomial Splines . . . . . . . . . . . . . . . 28
2.4.2 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Introduction

This chapter presents the mathematical background used in the rest of the manuscript.

We first summarize the most common notations that have been used in this thesis. We

then present the basic principles of minimization depending on functionals followed

by describing the most important spline approximation methods.

Here, our aim is to provide the basic tools required to formulate the variational

problems in image registration. In this work, we are interested in seeking optimal

solutions for minimization problems based on functionals. Since the solution of this

energy functional minimization problem is an optimum function, rather than an op-

timum point, which has to fulfill certain needs based on the application at hand, it

is sensible to discuss about the calculus of variations. Thus, in section 2.3, the basic

principles of the calculus of variations are discussed. The variational problems wind

up with Partial Differential Equations (PDEs) that make such a problem rather hard
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to solve. To solve the variational problems, several numerical methods for approx-

imating the solution are known. Spline functions are one of the most widely used

approximation approach for solving variational problems. The spline-based functions

are special functions in the space of which approximate solutions of the PDEs can be

computed. Therefore, in Section 2.4, various spline functions are presented to find

approximate solutions to variational problems.

Since the mathematical concepts in this chapter are well-known, we only provide

the necessary information and avoid to describe these concepts in more details.
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2.2 Notation

In this thesis, we use the following notation:

X Pixel coordinate

M 2D TVUS image

F Set of 2D MR slices

CM Set of 2D curves in TVUS image

CR Set of 2D curves in MR image

γ Set of space curves in 2D TVUS surface

S Set of 3D surfaces in MR volume

q Set of 2D points (e.g. q ∈ CM)

p Set of 2D points (e.g. p ∈ CR)

Q Set of 3D points (e.g. Q ∈ S)

E Energy functional

φ Deformation vector field

U Displacement vector field

λ Smoothing parameter

∇ Gradient operator

∇· Divergence operator

∇× Curl operator

4 Laplace operator

U (i) ith derivatives of U

Π Plane projection

‖·‖p The p norm

(
n∑
i=1

|.|p
) 1

p

A ⊂ B A is a subset of B

B ⊃ A B is a superset of A

a ∈ B a is a member of B

∀ Universal quantification

∃ Existential quantification

b·c Floor function
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2.3 Calculus of Variations

Calculus of variations is a branch of mathematical analysis which is related to the

problem of seeking a function for which the solution of a definite integral is either the

smallest or the largest possible value. This integral which consists of functions and

their derivatives is known as a functional. The interest of using calculus of variations

is in extremal properties of functions which force the functional reaches a minimum or

maximum value when the functions’ derivatives (rate of change of the functional) is

zero. Many important problems which involve functions of single or several variables

are relatively easy to state and perform, however their concept is difficult to prove

mathematically, as their solution contains differential calculus. Therefore, calculus of

variations includes Ordinary Differential Equations (ODEs) when there is a function

with single variable or PDEs when there is a multivariate function.

The modern history of the calculus of variations began in June of 1696 when

Johann Bernoulli issued an open challenge to the mathematical world known as the

brachistochrone1 curve problem. Bernoulli gave the world until the end of 1696 the

chance of solving the problem, and promised to announce the solution. The problem

immediately drew the attention of Jacob Bernoulli, Leibniz, Newton, and Marquis

l’Hôpital, and they correctly solved the problem. The idea behind the problem was

to create an integral for the traversal time in terms of the unknown curve, and thus

change the curve thereby minimum time is achieved. This approach, which is vari-

ational calculus, results in an ODE whose solution is a curve. As early as 1728,

Leonhard Euler became interested in the calculus of variations. In 1777, Euler pub-

lished his book “A method for discovering curved lines that enjoy a maximum or

minimum property, or the solution of the isoperimetric problem taken in the widest

sense”. Many mathematicians believe that this book is the birth of the theory of the

calculus of variations [32]. The history of the calculus of variations and its application

is wide, and we refer the reader to [33] for more details.

To ease the understanding of the reader, some standard terminologies relating to

1A brachistochrone curve is the path that will carry a point from one location to another in the
shortest period of time.
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the calculus of variations are shown in Table 2.1. These information will help the

readers to better understand the following sections and chapters.

Term Definition

Calculus of Variations A field in mathematics concerned with the minimization of
a functional over the defining function.

Functional A scalar function of a function. It can be a definite integral
including a function and its derivatives.

Function A functional depends on one or more functions as input.
Definite Integral The integral over a domain that defines the functional.
Variational Problem The estimation of the function which minimizes or maxi-

mizes the functional. This kind of problem is known as a
variational problem. Note that the estimated function is
called an extremal.

Table 2.1: Calculus of variations terminology.

2.3.1 Basic Principles

2.3.1.1 Definition of a Functional

Let Ω be an open bounded set in Rn+1 (n dimensional Euclidean space) and it is

simply connected. A point in Ω has known coordinates (x, f1, · · · , fn) = (x, f). Let

L = L
(
x, f, f (1)

)
∈ Cr (Ω× Rn) with r > 1. We also assume (x1, a) and (x2, b) be

two arbitrary points in Ω. The space

Γ :=
{
f : x 7→ f(x) ∈ Ω

∣∣f ∈ C1 [x1, x2] , f (x1) = a, f (x2) = b
}

includes all continuously differentiable functions that start at (x1, a) and finish at

(x2, b). The integral functional E ∈ Γ can be defined as follows:

E[f ] =

x2∫
x1

L
(
x, f, f (1)

)
dx (2.1)

A functional E can be described as a scalar function of a function. This takes one

or more functions as input. The output of E is a real number. Since real numbers

are ordered, one can compare functionals E [f1] , E [f2] , · · · of different admissible

functions f1, f2, · · ·, and build minimizing sequences of functions f1, · · · , fn with this

property: E [f1] ≥ E [f2] ≥ · · · ≥ E [fn]. Thus, we can say that f ∗ ∈ Γ delivers the

23



minimum of E if

E[f ] ≥ E[f ∗], ∀f ∈ Γ.

There are different groups of methods aimed to find the optimum f including methods

of sufficient conditions, methods of necessary conditions (variational methods), and

direct optimization methods [34]. Since the aim in this section is to define variational

problems, we only provide the fundamental information about the variational methods

and avoid to describe the other methods (for more details, see [34]). In variational

methods, we only searche for necessary conditions of optimality as it is assumed that

the compared trajectories are very close to each other. These methods are robust and

useful for various extremal problems called variational problems.

2.3.1.2 The Variational Problem

The purpose of the variational problem is to find the function f that minimizes

(maximizes) the functional E. A minimum and maximum (extremum) of a given

function can be found where its derivative vanishes (∇E = 0). If the functional

attains a local minimum at f , and η = {f ∈ C1 [x1, x2] |f (x1) = f (x2) = 0} is an

arbitrary function, then for any number ε close to 0

E[f ] ≥ E[f + εη]

The term εη is called the variation of the function f . Since Ω is open and f ∈ Ω,

then f + εη ∈ Ω for small enough η. Substituting f + εη into the functional E, leads

to:

E[f + εη] =

x2∫
x1

L
(
x, f + εη, f (1) + εη(1)

)
dx (2.2)

Equation (2.2) has only a single variable which is ε. Therefore, to obtain the minimum

or maximum (extremum), we take the derivative of Equation (2.2) with respect to ε,

and set it to be zero. This yields:

dE

dε
[f + εη] =

x2∫
x1

(
∂L

∂f
η +

∂L

∂f (1)
η(1)

)
dx = 0 (2.3)
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Now, we can use integration by part to rewrite ∂L
∂f (1)

dη
dx

. This results in:

dE

dε
[f + εη] =

x2∫
x1

(
∂L

∂f
− d

dx

(
∂L

∂f (1)

))
ηdx+

∂L

∂f (1)
η

∣∣∣∣x2
x1

= 0 (2.4)

The last term vanishes as η = 0 at the endpoints by definition an thus:

x2∫
x1

(
∂L

∂f
− d

dx

(
∂L

∂f (1)

))
︸ ︷︷ ︸

χ

ηdx = 0 (2.5)

To derive the Euler-Lagrange(EL) from Equation 2.5, we need the fundamental lemma

of the calculus of variations.

Lemma. Let g be of class Ck (k times continuously differentiable) on [a, b], and let

b∫
a

g(x)f(x)dx = 0

hold for any function f that is differentioable on the interval [a, b] and vanishes in

some neighbourhoods of a and b. Then g(x) ≡ 0.

According to the fundamental lemma of calculus of variations, χ is set to zero so

that:
∂L

∂f
− d

dx

∂L

∂f (1)
= 0 (2.6)

Equation (2.6) is known as the EL equation for the functional E. This is the equation

that must be used in practice to obtain the extremal f .

2.3.2 Generalizing the Variational Problem

In the previous section, we examined a Lagrangian function with a single input func-

tion. Now, we assume that the Lagrange function L contains n input functions

L
(
x, y1, · · · , yn, y(1)

1 , · · · , y(1)
n

)
. Under this condition, the EL equation can be refor-

mulated as:
∂L

∂yi
− d

dx

∂L

∂y
(1)
i

= 0 (2.7)
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where i = {1, · · · , n}. Since we have n conditions, n possible differential equations

must be generated.

In some cases, we might have a function y with variables x1, · · · , xn. In this

situation, the Lagrange function is L (x1, · · · , xn, y, yx1 , · · · , yxn) with yxi = ∂y
∂xi

. The

EL equation can be written as:

∂L

∂y
− ∂

∂x1

∂L

∂yx1
− · · · − ∂

∂xn

∂L

∂yxn
= 0 (2.8)

In this case, we end up with a single PDE.

Sometimes, we also must deal with higher order derivatives of function y. So, the

Lagrangian is written as L
(
x, y, y(1), y(2), · · · , y(n)

)
. y(i) defines the ith derivative of

the function y. The EL becomes:

∂L

∂y
+

n∑
i=1

(−1)i
di

dxi
∂L

∂y(i)
= 0 (2.9)

This leads to a higher-order PDE.

In this thesis, several of the above cases may simultaneously be used to meet the

requirements. Therefore, we would have to combine the above conditions. Note that

to solve the EL equations, one can use a spline-based approximation approach.

2.4 Function Models Based on Splines

A spline is a sufficiently smooth polynomial function that is constructed piecewise

by gluing together polynomials. The idea of using splines as a smooth piecewise

polynomial approximation has its roots in the aircraft and shipbuilding industries. In

these industries the aim was to construct smooth shapes having desired properties.

Researchers have long made use of splines which consist of a bendable strip fixed

in position at a number of points that generate a smooth curve passing through

those points. The malleability (elasticity) of the spline material combined with the

constraint of the control points would cause the strip to take the shape that minimizes

the energy required for bending it between the fixed points, this being the smoothest

possible shape. Figure 2-1 demonstrates a historical drafting spline.
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Figure 2-1: A historical spline (Taken from Pearson Scott Foresmann,
www.pearsonschool.com).

Mathematically, a spline is a curve, which is mainly needed to be smooth and

continuous. It is a piecewise polynomial function of degree n with function values

and n − 1 derivatives that agrees at the points where they meet. The places where

these points meet are known as knots or control points. Note that in this section, the

knots are denoted as k. These knots define m knot intervals [ki, ki+1] for i ∈ [0,m− 1].

On each knot interval, a spline of degree n must be defined by a polynomial function

of degree at most n. Note that the knots determine the shape of the curve —they let

the curve bends in order to closely follow the data. In other words, splines with few

knots are smoother than splines with many knots; though increasing the number of

knots increases the fit of the spline function to the data.

Mathematically speaking, a spline S : [k0, km] → R is a piecewise polynomial

function on an interval [k0, km] divided into m interval knots [ki, ki+1]. The restriction

of S on each knot interval is a polynomial pi : [ki, ki+1]→ R, so that:

S(x) =
n∑
j=1

pij (x− ki)j

if x ∈ [ki, ki+1] and i ∈ [0,m− 2]

if x ∈ [km−1, km]

(2.10)

where pij is a polynomial function. An example of using a cubic spline is illustrated

in Figure 2-2.
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Figure 2-2: An example of using a cubic spline. A cubic spline is a sufficiently smooth
polynomial function that is piecewisely defined. It made of 6 polynomial pieces with
C2 continuity over the whole domain [k0, k6]. The width of each knot interval is not
necessarily equal.

2.4.1 B-Spline Basis for Polynomial Splines

Splines can be expressed as linear combinations of B-splines with a set of knots.

These types of splines are commonly referred to as B-splines, where B being short

for basis. Therefore, a B-spline is a spline function which has minimal support with

respect to a given degree, smoothness, and domain partition. Moreover, a B-spline

is a generalisation of a Bézier curve, and it is effective in preventing the Runge’s

phenomenon2 without increasing the degree of the B-spline.

B-splines were introduced in the early nineteenth century by Nikolai Lobachevsky.

Lobachevsky proposed an infinite univariate spline function with uniform knots,

whom classic B-splines are directly connected [35]. In the twentieth century, for

the first time, the term B-spline was coined by Isaac Jacob Schoenberg. Schoenberg

applied B-splines to statistical data smoothing [36]. Actually, the modern theory

of spline approximation has its roots in Schoenberg’s work [36]. Gordon et al. [37]

formally investigated B-splines in computer aided design.

Basis functions are the fundamental core of the B-spline. The traditional definition

of B-spline basis functions employs the idea of divided differences of a truncated power

function and is mathematically involved. In the twentieth century, Carl de boor [38]

2Runge’s phenomenon is a problem of oscillation at the ends of an interval that can happen when
using higher degree polynomial interpolation.
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proposed a recursive relationship for the B-spline basis. By using the Leibniz theorem,

Carl de boor was able to derive the following formula for B-spline basis functions:

Ni,n+1 (x) =
x− ki
ki+n − ki

Ni,n (x) +
ki+n+1 − x
ki+n+1 − ki+1

Ni+1,n (x) (2.11)

Ni,1(x) =

1 if x ∈ [ki, ki+1)

0 otherwise

(2.12)

where Ni,n is the ith B-spline basis function of degree n (order n + 1) with knots

ki < · · · < ki+n+1 and x is a parameter variable. Equations (2.11) and (2.12) show

that the B-spline basis functions of an arbitrary order can be stably evaluated as

linear combinations of basis functions of one degree lower.

The knot ki ∈ R represents the active area that defines the basis function. It

takes i + 1 knots or i intervals to define a basis function. Since the basis functions

are based on knot sequences, the shape of the basis function is just dependents on

the knot spacing and not knot values.

Another important feature of the B-spline is its ability to handle situations where

the knot vector includes coincident knots. Notably if knots are coincident, the conti-

nuity of derivative order is decreased by one for each additional knot. Therefore, the

order of continuity of a spline is reduced at the location of coincident knots. Figure 2-

3 shows the relationship between a cubic basis function and its knot sequence. Some

of the properties of the B-spline basis functions are:

• The sum of the B-spline basis functions for any parameter value x within a

specific interval is always equal to one:

m−1∑
i=−n

Ni,n+1 (x) ≡ 1 (2.13)

• Each basis function is greater or equal to zero for all parameter values:Ni,n+1 (x) = 1 x ∈ [ki, ki+n+1]

Ni,n+1 (x) = 0 otherwise

(2.14)
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Figure 2-3: An example of B-spline basis function.

• For a given degree n, the B-splines belong to the highest possible class of con-

tinuity for a piecewise polynomial function:

Ni,n+1 (x) ∈ Cn−1 ([ki, ki+n+1]) (2.15)

• Each basis function has only one maximum value.

2.4.1.1 B-Spline Curve

As mentioned before, splines of a given degree can be expressed as linear combinations

of B-spline basis functions of that degree. They are piecewise polynomials of degree

n with Cn−1 continuity at the common points between adjacent knot segments. B-

splines result of mapping the elements of a knot sequence in parametric space into

Cartesian space. A spline curve estimated at a knot leads to a junction point that

is the common point shared by two adjacent knot segments. As a reminder, let us

take back to knot sequence which we used when we introduced the spline functions:

k = k0 < · · · < km. Since a B-spline of degree n spans n + 1 knot intervals, m − n

independent B-splines can be defined using knots k. Then, we need 2n B-spline

functions to form a basis of Sn (k0, · · · , km). B-splines are totally specified by the

curve’s data points, knots, curve’s order, and B-spline basis functions as seen in
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Figure 2-4: : A C2 cubic B-spline curve with its control polygon.

Equation (2.16).

S(k) =
m−1∑
i=−n

ωiNi,n+1 (k) (2.16)

where S is written as a linear combination of m+n basis functions Ni,n+1, and ω is the

weight of B-splines. Note that in B-splines, the data points are known as the weight

or the point coefficients. Each point on a B-spline is a weighted combination of the

local data points, which create a control polygon enclosing the curve. An example of

using a cubic B-spline is illustrated in Figure 2-4.

Generally, B-splines are divided into two categorise: 1) uniform and 2) nonuni-

form B-splines. When the knots are equidistant the B-spline is uniform and oth-

erwise nonuniform. If the B-spline is uniform, the active segment of all the basis

functions forms the same shape over each knot interval. On the other hand, if the

B-spline is nonuniform, the active segment of all the basis functions forms a different

shape over each knot interval. Therefore, the previously discussed recursive algorithm

(Equation (2.11)) is needed to estimate the basis functions. Normally, to determine

the spacing between the adjacent knots in a knot vector, different parametrization

techniques are employed. Parametrization methods are vital for the modelling of B-
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splines, since the spacing of the knot sequence influences the basis functions. In this

chapter, we focus on uniform B-splines, therefore a general survey on non-uniform

splines is beyond the scope of this chapter. We refer the reader to Brunet [39] for

more details.

2.4.1.2 Uniform Cubic B-Spline

The uniform cubic B-Spline is a special B-spline which is commonly used for its

simplicity and efficiency. It is a B-spline of degree three. This degree is a good

trade-off between flexibility and simplicity of the induced computations. As discussed

before, the term uniform means that all the knots have equal distances. In this

case, the cubic B-spline basis functions are just shifted copies of each others. Using

Equation (2.11), we can obtain a closed form expression of the uniform cubic B-

spline basis functions. With no loss of generality, we assume that the knot interval is

normalized to [0 1]. Since each interval is transformed to an interval between 0 and

1, a periodic basis can be used to evaluate each curve segment. The ith basis function

of the uniform cubic B-Splines is written as:

Ni (x) =



b3 (x) = 1
6
x3 if x ∈ [ki, ki+1)

b2 (x) = 1
6

(−3x3 + 3x2 + 3x+ 1) if x ∈ [ki+1, ki+2)

b1 (x) = 1
6

(−3x3 − 6x2 + 4) if x ∈ [ki+2, ki+3)

b0 (x) = 1
6

(1− x)3 if x ∈ [ki+3, ki+4)

0 otherwise

(2.17)

The bi (i = {0, 1, 2, 3}) are weighting functions that indicate how much weight is

given to four neighbourhood data points, respectively, based on the value of point x.

The estimation of a cubic B-spline at a point x is then proportional to a blending of

the four weights closest to the point x. The blending functions are defined as the four

polynomials b0, · · · , b3 of degree three that forms the cubic B-spline basis functions.

Equation (2.18) illustrates a matrix relationship which is used to estimate a periodic
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(a) B-spline basis function (b) Approximate graph

Figure 2-5: Anatomy of a B-spline basis function of uniform cubic B-spline. (a) A
B-spline basis function is made of four pieces, each one of which being a polynomial
of degree 3. (b) On a given knot interval, the value of a B-spline can be viewed as
the blending of the four adjacent coefficients of the B-spline with weights given by
the basis functions.

cubic curve at each knot interval.

S (x) =
[
x3 x2 x 1

] 1

6


−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0




ωi

ωi+1

ωi+2

ωi+3

 (2.18)

It obviously indicates that, on an active knot interval, a uniform cubic B-spline is a

polynomial function of degree three with coefficient obtained by blending the weights

of the four non-zero basis functions that belongs to this knot interval. Figure 2-5

gives an illustration of the B-spline basis function for the uniform cubic B-spline.

2.4.1.3 Uniform Cubic B-Spline in Higher Dimensions

In this section, the B-splines presented in the previous section are extended to higher

dimensions. To achieve this, one can use the tensor product B-spline to extend the

univariate B-splines to multivariate. Let {k−nx , · · · , kmx+nx} and
{
`−ny , · · · , `my+ny

}
be two knot sequences. The tensor product B-spline of degree nx along the x-direction

and ny along the y-direction is the function S from [k0, kmx ] ×
[
`0, `my

]
to R defined
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Figure 2-6: A bi-cubic B-spline surface and its control polygon.

as:

S (x, y) =
mx−1∑
j=−nx

my−1∑
i=−ny

ωjiNj,nx+1 (x)Ni,ny+1 (y) (2.19)

This equation reveals that the B-spline surface basis functions are products of two

univariate B-spline curve basis functions. In other words, the surface is a weighted

sum of surface basis functions. The weights are a rectangular array of knots and it

forms the control polygon. Like the B-spline curve, the B-spline surface estimates

the shape of the control polygon. Figure 2-6 shows a cubic B-spline surface and the

corresponding control polygon. Note that as with the B-spline curve, the B-spline

surface is also a set of polynomial pieces. Each piece of the B-spline surface is a two

dimensionally represented part of a surface. Thus, each patch of a B-spline surface

can be eliminated by a periodic relationship, when the knot spacing is uniform in

each direction.

2.4.1.4 Natural Spline

One of the most useful and important application of the splines is to interpolate a

set of data points in order to generate either a smooth curve or surface. Natural

cubic B-Splines are cubic B-splines whose second derivatives at the two endpoints are
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zero. We suppose that {xj}mj=1 and {yj}mj=1 are the known data points and a spline

interpolates n+ 1 knots with a piecewise cubic polynomial. It is well known that the

natural spline is the minimum bent function which interpolates the data set. In other

words, the shape of natural spline has the minimum strain energy. Generally, it is

the solution of the following variational problem:

min
f∈C2

B [f ]

subject to f (xj) = yj ∀j ∈ [1,m] (2.20)

where B is the energy functional that provides the curvature energy over its domain

Ω. Therefore, it can be written as:

B [f ] =

∫
Ω

(
∂2f

∂x2
(x)

)2

dx (2.21)

2.4.2 Radial Basis Functions

The approximation of multivariate functions may also be done by radial basis func-

tions (RBFs). The RBF method is a standard tool for interpolating multidimensional

data points. The main advantages of this method are threefold: 1) Its ability to han-

dle arbitrarily scattered data. 2) It can easily generalize to several space dimensions.

3) It provides high spectral accuracy3 which has made it highly useful in several dif-

ferent types of applications such as medical imaging, cartography, neural networks,

and the numerical solution of PDEs. Unlike B-splines which are using linear combi-

nations of a set of basis functions that are independent of the data points, in RBFs,

one takes a linear combination of translations of a single fundamental radial basis

function which is radially symmetric about its centre.

The RBF approach was introduced in 1971 by Rolland Hardy [40]. Hardy pre-

sented the method for the multiquadric (MQ) radial function. The method came out

from a cartography problem, where a smooth bivariate interpolant to scattered data

was required in order to generate curves and to illustrate the topography. Hitherto

3Spectral Accuracy is a measure of the similarity between the measured curve or surface and the
theoretical one.
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showed that the interpolation methods such as Fourier, polynomial, and bivariate

splines were over smooth or too oscillatory. Hitherto also showed that in one dimen-

sional problems, these interpolation methods can lead to the nonsingular interpolation

processes. However, Haar’s theorem states that the existence of a set of different nodes

for which the interpolation matrix associated with node-independent basis functions

is singular in two or higher dimensions [41]. The MQ method was popularized in

1982 by Richard Franke with his famous report on 32 of the most commonly used

interpolation methods [42]. Complete tests of these 32 methods were presented and

revealed that the MQ method provided the best results among all compared methods.

Franl also implied that the interpolation matrix associated with the MQ radial basis

function is unconditionally nonsingular, however could not prove it. In 1986, Charles

Micchelli [43] was able to prove it, making use of work by Schoenberg from the 30’s

and 40’s. Later, the MQ method was generalized to other radial functions, such as the

Thin Plate Spline [44], the Gaussian, the cubic, and so on. In 1990, the RBF method-

ology once again became popular when Ed Kansa presented a procedure to employ

it for solving parabolic, elliptic and (viscously damped) hyperbolic PDEs [44,45].

2.4.2.1 The Interpolation Problem

Generally, The RBF method works in the n dimensional Euclidean space Rn, which

is fitted with the Euclidean norm ‖.‖. Note that the norm need not necessarily be

the Euclidean norm; it can be any norm. The function to be approximated has m

known data points denoted as x1, · · · , xm. Moreover, these points are assumed to be

all different from each other, otherwise the interpolation matrix associated with the

radial basis function would be singular.

Let f : Rn −→ R be an RBF. The RBF interpolant f takes the following form:

f (x) =
m∑
j=1

ωjρ (‖x− cj‖) (2.22)

where x is the free variable, ωj are scalar parameters (weight of the RBF), and ρ is

the RBF kernel. It is univariate and normally continuous function f : R+ −→ R.

The vector cj ∈ Rn are known as the centres of the RBF.
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Name of RBF ρ (r) r > 0 Coefficient Matrix Properties Smoothness

Multiquadratic
√(

1 + (εr)2) Positive Symmetric Definite Infinitely smooth

Inverse multiquadric 1√
(1+(εr)2)

Positive Definite Infinitely smooth

Generalized multiquadric
(
1 + (εr)2)β Positive Definite Infinitely smooth

Gaussian exp (−εr)2 Positive Definite Infinitely smooth

TPS r2 log (r) Positive Symmetric Definite Piecewise smooth

Linear r Positive Symmetric Definite Piecewise smooth

Cubic r3 Positive Symmetric Definite Piecewise smooth

Table 2.2: Definitions of some RBF kernels [39].

The coefficients ωj can be obtained by solving a linear system Aω = f , based on

Equation (2.22). The system takes the form
ρ (‖x1 − cj‖) · · · ρ (‖x1 − cm‖)

...
...

ρ (‖xm − cj‖) · · · ρ (‖xm − cm‖)


︸ ︷︷ ︸

coefficient matrix


ω1

...

ωm


︸ ︷︷ ︸

variable matrix

=


f (x1)

...

f (xm)


︸ ︷︷ ︸

constant matrix

(2.23)

Generally, there are two types of RBFs: 1) the piecewise smooth and 2) the

infinitely smooth RBFs. In the latter one, we must have a shape parameter, ε. Note

that as ε approaches zero, the RBF becomes smoother. Table 2.2 gives a list of the

most widely used RBFs ρ (r). It is worth to note that among the basis functions

listed in Table 2.2, the TPS is the most popular RBF method in image registration.

2.4.2.2 The Thin-Plate Spline

The TPS is an interpolation and smoothing technique and it is the generalisation of

bivariate cubic B-splines. Therefore, it may be used with two or more dimensions.

The TPS approach was pioneered by Duchon [46]. The reason that TPS is considered

as a natural extension of the cubic B-splines is that both methods must minimize the
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following variational problem:

min
f :Rn→R

B [f ] (2.24)

where n = 1 in the natural spline case and n ≥ 2 in the TPS case. The functional B

is the curvature energy. If n = 2, it is defined as:

B [f ] =

∫
R2

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)
+

(
∂2f

∂y2

)2

dxdy (2.25)

The TPS has been commonly used in medical image registration [47–51].
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Chapter 3

Image Registration
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3.1 Problem Definition

This chapter provides a basic overview of an image registration framework and its

components. Different similarity measures, spatial transformations, optimization

techniques, and interpolation methods are defined. The registration methods have

been broadly categorized as intensity- and feature-based methods. In the last section,

we present various techniques to validate the accuracy of 2D/2D and 3D/2D registra-

tion of medical images. Note that the accuracy measurement techniques for 2D/2D

registration, can be simply extended to 3D/3D registration problem by considering

all coordinates are given in 3D.

Image registration is the process of determining the optimal spatial transformation
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that bring one image into spatial alignment with the other. Generally, one of the

images is referred to as the reference and the other one as the moving image. Image

registration is a classical problem and often serves as a vital task for many applications

where it is necessary to match two or more images of the same scene [52]. The images

to be registered might be acquired with different sensors (multi-modality) or the same

sensor (mono-modality) at different times or different subjects.

Image registration can be handled by feature-based or intensity-based methods

[53]. The intensity-based approach compares intensity patterns in images via differ-

ent correlation costs whereas the feature-based approach uses a set of features from

the reference images beforehand and match them with their correspondences in the

moving images. Besides what type of image registration approach to use, generally a

cost functional E can be defined to find the optimum transformation:

E[φ] = λEd[φ] + (1− λ)Es[φ] (3.1)

where φ is the transformation, Ed is a similarity (or an alignment) measure, Es is the

smoothness (or regularizer) functional, and λ is a smoothness parameter. Therefore,

registration consists of four components:

• Energy functional: This is a core component of the problem formulation. It

consists of a data term (alignment measure) and a regularization term to use

in the optimization process. Depending on the input data and the transfor-

mation model, the registration problem may be ill-posed based on Hadamard’s

definition of well-posed problems [54]. If the problem is ill-posed, it generally

requires additional assumptions, such as smoothness of the transformation for

numerical treatment. This process is known as regularization.

• Transformation: maps each pixel coordinate of the image from moving do-

main into reference domain. Typically, there are two groups of transforma-

tions: global (e.g. rigid and affine) and local transformations. In the first group,

0 < λ < 1.

• Optimization technique: searches for optimum transformation that best aligns
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Figure 3-1: A general schematic for the image registration algorithm.

two images according to an energy functional.

• Interpolation: determines the intensity value at the point in the reference image

after transformation.

An overview of image registration is depicted in Figure 3-1.

Let the moving image M and the reference image F be defined in Ω = [0, 1]d, that

is a bounded set of Rd, where d ∈ Z+ indicates dimensionality. The mapping between

the reference and the moving images can be expressed as:

F = M (φ (X)) (3.2)

where φ : RdM → RdF is the optimum transformation that models the misalignment

between two images. In other words, φ is a function from RdM (dM indicates dimension

of the moving image) to RdF (dF indicates dimension of the reference image). The

aim of the registration is to estimate φ, by minimizing (or maximizing) Equation

(3.1).
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3.2 Alignment Measure

Generally, the alignment measures are either based on the distance between corre-

sponding features or intensity variations in two images. Accordingly, image regis-

tration can be divided into two classes such as feature-based and intensity-based

methods.

3.2.1 Feature-Based Image Registration

In feature-based registration methods, firstly, features are identified in the two im-

ages and then the corresponding features are used to estimate the transformation by

minimizing the distance between them.

Ed [φ] =
N∑
i=1

‖pi − φ (qj)‖p (3.3)

where q and p are two sets of N points and p ≥ 1. Note that if p = 1 we get the

L1 norm, p = 2 we get the Euclidean norm, and as p approaches ∞ the p-norm

approaches the infinity norm. Feature-based registration is an effective registration

approach for clinical application, since it can greatly reduce computational costs. The

methods based on this approach can be classified into point-based approaches [48,55],

curve-based algorithm [56,57], and surface-based methods [58]. The most important

task in the feature-based registration approach is to extract corresponding features.

Therefore, a preprocessing step is mainly needed to identify features manually or

semi-automatically [59]. This makes feature-based registration a user dependent ap-

proach. To decrease operator interaction and still take advantage of the computa-

tional efficiency of this approach, many researchers try to handle feature extraction

and identification automatically. The features can be anatomical features or markers

attached to the subject.

3.2.1.1 Extrinsic Features (Fiducial Markers)

Extrinsic features can be defined as the artificial markers attached to the patient.

These markers such as dental adapter, skin markers, a mold, or frame, can be non-
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invasive [53, 59]. However, some of these noninvasive markers (e.g. skin markers) are

not reliable landmarks and provide low registration accuracy because of the elasticity

of human skin. On the other hand, the invasive markers such as screw markers [60]

and stereotactic frames [61] are reliable features, so that they provide a robust basis

for registration. However, they are undesirable and uncomfortable. Extrinsic fea-

tures can be employed in both mono-modal and multi-modal image registration as

they are easily and automatically detectable in both images. Once the correspon-

dences are established, complex optimization to estimate transformation parameters

are not required. Therefore, the registration process is swift. Extrinsic features can

provide high registration accuracy, but they are more invasive and uncomfortable for

the patient and are difficult to attach to the patient.

3.2.1.2 Intrinsic Features

Intrinsic features can be geometrical or anatomical points, lines, curves, or surfaces

in the images. These features must be unique and evenly scattered over the im-

ages. Moreover, they must carry substantial and characteristic information of the

images. Establishing feature correspondences is a challenging task. In this approach,

intensive operator interaction is usually involved to identify the correspondences. In

addition, the accuracy of the registration is highly dependent on the experience of

the user [59]. Identifying features such as corner points, intersection points, local

extrema, and boundary of organs [62] can be automatic; however, the accuracy of

the registration highly depends on the precision of the detection algorithm. There-

fore, a drawback of using intrinsic features is the sparse nature and the difficulty of

automatic identification of these features [59].

3.2.2 Intensity-Based Image Registration

Registration using intensity similarity measures involves calculating the registration

transformation by optimizing some measure calculated directly from the intensity

distribution in the images. The most important intensity similarity measures used

for medical image registration are described below. With all these similarity measures
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it is necessary to use an optimization algorithm to iteratively find the transformation

that maximizes or minimizes certain criterion.

3.2.2.1 Intensity Alignment Measures

Intensity-based registration can directly use the image intensity information without

segmentation or user interaction, and thus can be achieved fully automatically. It

can be done by minimizing an energy functional (Equation (3.1)) which is based on

an alignment measure of both images’ intensities by estimating the transformation

parameters. One of the standard alignment measures is the sum of squared intensity

differences (SSD) between the images.

SSD =
∑
X∈Ω

(F (X)− (M (φ (X))))2 (3.4)

whereX is the pixel coordinate. This method assumes that the images to be registered

differ only by Gaussian noise, which is not always the case. The SSD measure is very

sensitive to a small number of pixels that have very large intensity differences between

the two images. The effect of these pixels can be decreased by applying the sum of

absolute differences [63].

Another method is correlation-like alignment measures which is typically com-

puted for window pairs of the reference and the moving images. This is related with

the well-known Pearsons correlation where a linear relationship is assumed to exist

between the pixel intensities of the reference and the moving images.

CC =

∑
X∈Ω

(
F (X)− F̄ (X)

) (
M (φ (X))− M̄ (φ (X))

)
[ ∑
X∈Ω

(
F (X)− F̄ (X)

)2 ∑
X∈Ω

(
M (φ (X))− M̄ (φ (X))

)2
]1/2

(3.5)

where F̄ (X) and M̄ (φ (X)) are the mean intensities of the reference and the trans-

formed moving images, respectively. This method was presented for multi-modal

image registration by Van den Elsen et al. [64]. Recently, there has been an enor-

mous interest in using Cross-Correlation (CC) in multi-modal image registration [65].

In this field, the pixel intensities of the same anatomy are different in the source and
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the moving images due to different imaging sensors. With the assumption of existence

of a correlation function between the pixel intensities in the two images, CC can still

be employed efficiently. One of the well-known variants of CC in this case is called

Local Correlation (LC):

LC =

√√√√√ 1

N

∑
sj∈M

CC2 (sj)

 (3.6)

where CC is the cross correlation coefficient for the jth subregion sj , and N is the

number of subregions contained in M . LC has been successfully implemented in rigid

and deformable registration tasks [66]. There have been numerous modifications on

CC in the literature to address the specified registration conditions [67]. Flatness of

the similarity measure maxima due to the self-similarity of the images is the main

drawback of the CC. This flatness can be resolved and sharpened by pre-processing

and using a vector or edge correlation.

Mutual Information (MI) can also be used as a similarity measure. MI was intro-

duced by two research groups of Viola et al. [68] and Collignon et al. [69] to measure

the statistical dependency of two images. MI is widely accepted as a multi-modal

registration criterion [70]. The fundamental concept in the definition of MI lies in the

statistically significant relationship between intensities distribution of the input im-

ages of the registration. Based on Shannon’s definition of entropy [71], MI is defined

in terms of the marginal and joint probability density functions (pdfs) of the refer-

ence and the moving images derived from their normalized joint intensity histograms.

Mathematically, this can be written as:

MI =
∑
XR∈Ω

∑
XM∈Ω

p (F (XR) ,M (φ (XM))) log2

p (F (XR) ,M (φ (XM)))

p (F (XR)) p (M (φ (XM)))
(3.7)

where p (F (XR) ,M (φ (XM))) is the joint probability of the intensities in the ref-

erence and moving images, p (F (XR)) and p (M (φ (XM))) are the marginal dis-

tributions of F and M (φ (XM)). Note that if F and M are completely identical,

p (F (XR) ,M (φ (XM))) = p (F (XR)) · p (M (φ (XM))) and MI = 0 converges to its

45



minimum; if F and M (φ (XM)) are identical MI reaches its maximum. Therefore,

the transformation parameters can be estimated by maximizing the MI. This method

cannot always provide accurate registration results. For example, the changing over-

lap between two images may result in inaccurate registration with maximum MI [72].

A Normalized Mutual Information (NMI) is used to improve the conventional MI.

This method can be seen as the symmetric uncertainty between the reference and the

moving images [73]:

NMI = 2
MI

H (F (XR)) +H (M (φ (XM)))
(3.8)

where H (M (φ (XM))) and H (F (XR)) are the marginal entropies of the moving and

the reference images, respectively. H (M (φ (XM))) and H (F (XR)) can be written

as: 
H (M (φ (XM))) =

∑
XM∈Ω

p (M (φ (XM))) log2 p (M (φ (XM)))

H (F (XR)) =
∑

XR∈Ω

p (F (XR)) log2 p (F (XR))

(3.9)

On the other hand, NMI is also defined by Studholme et al. [72] as follows:

NMI =
H(F ) +H(M)

H (F,M ◦ φ)
(3.10)

where H (F,M ◦ φ) is the joint entropy of the reference and the transformed moving

images.

H (F,M ◦ φ) = −
∑
XR∈Ω

∑
XM∈Ω

p (F (XR) ,M (φ (XM))) log2 p (F (XR) ,M (φ (XM)))

(3.11)

The transformation parameters are estimated by maximization of NMI in which the

joint entropy is minimized with respect to the marginal entropies.

3.3 Transformation Models

The vital task of registration is to seek a transformation to superimpose and corre-

late the input images with differences and deformations introduced during imaging

acquisitions. The transformation can be divided into the two main categories includ-
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ing global transformation and deformable transformation. Global transformations

include rigid, affine linear, and perspective transformations. A rigid transformation

(isometry) refers to a transformation that preserves distances between every pair of

points. Furthermore, it contains rotations, translations, and reflections. In an espe-

cial case, reflections are not included in the definition of rigid transformation. This

can be achieved by imposing that the transformation also preserve the handedness of

data in the Euclidean space. Thus, the rigid registration tries to find the rotations

and the translations which map any point in the source image into the corresponding

point in the target image. An affine transformation is an important transformation

which map any point in the source image into the corresponding point in the target

image by applying a linear combination of translation, rotation, scaling and shearing

operations [74]. It maps straight lines to straight lines and preserves the parallelism

between lines. The perspective transformation differs from the affine transformation

in the sense that the parallelism of lines does not need to be preserved.

For most medical images, and for accurate inter-subject registration, more com-

plex geometric transformations which contain many more degrees of freedom are nec-

essary to define the tissue deformation with sufficient accuracy. Therefore, deformable

transformations that allow the mapping of straight lines to curves are desired. Com-

monly, these transformations are divided into two main categories: parametric and

nonparametric deformation models. The first approach employs a small number of pa-

rameters to define the deformation, whereas the latter method defines a deformation

vector at each pixel location.

3.3.1 Nonparametric Deformation Models

Commonly, nonparametric deformable transformations can be separated in four cat-

egories: 1) elastic body models, 2) viscous fluid flow models, 3) diffusion models, and

4) curvature models.

47



3.3.1.1 Elastic Body Models

In this deformation model, the object being deformed is modeled as an elastic body.

This regularizer has been introduced to image registration by Broit [75] and is prob-

ably one of the most used regularizer. The Navier-Cauchy PDEs describing the

deformation can be written as:

λS[φ] + (1− λ)
(
α∇2φ+ (α + β)∇ (∇ · φ)

)
= 0 (3.12)

where S[φ] is the force field that derives the registration based on the alignment mea-

sure, ∇ is gradient, α is the stiffness of the material, and β is Lamé’s first coefficient.

Elastic-based registration has its advantages and its disadvantages. It is very easy to

implement, which is making it quick to use, and its physical motivations make it use-

ful in some cases. However, the deformation must be small and local. In other words,

the main limitation of elastic models is their inability to cope with large deformations.

3.3.1.2 Viscous Fluid Flow Models

These models do not assume small deformations, and therefore are able to retrieve

large deformations. This is relatively easy and straightforward to understand; instead

of directly taking the smoothness of a deformation φ, this regularizer finds the velocity

v of φ, and takes the elastic smoothness of v. The Navier-Stokes equation defines the

deformation as:

λS[v] + (1− λ)
(
α∇2v + (α + β)∇ (∇ · v)

)
= 0 (3.13)

where α and β are the viscosity coefficients. The first term in Equation (3.13),

constrains neighbouring points to deform similarly by smoothing the velocity field

(v). The v can be written as:

v (x, t) =
∂φ (x, t)

∂t
+∇φ (x, t) v (x, t) (3.14)

Equation (3.14) must be integrated to find φ. The fluid model was proposed by

Christensen [76], and is used in cases where the object being modeled is fluid-like; it
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does not accurately represent elastic objects, and can be used to obtain deformations

completely altering the nature of an image.

3.3.1.3 Diffusion Models

Instead of trying to imitate physical properties as in the elastic or fluid models, this

method attempts to estimate the smoothness of the deformation field itself. It has

been proposed for optical flow problems by Horn and Schunck [77]. In this method,

the deformation is modeled by the diffusion equation:

λS[φ] + (1− λ)4φ = 0 (3.15)

where 4 is the Laplacian Operator. This regularizer, ideally, reduces penalties for

smooth deformations. Furthermore, its setup allows easily computed EL equations.

The diffusion method is named as such because the PDEs can be viewed as a

generalized diffusion equation. Furthermore, these PDEs can be solved through an

iterative process. The main advantage of this method is that spatial directions are

decoupled, allowing block diagonalization. Additive operator splitting, as proposed by

Fischer and Modersitzki [78], permits a linear-complexity solution technique for each

block. Hence, diffusion registration is quick, particularly on high-dimensional data.

However, the disadvantage of this method is that each component of the resulting

deformation is akin to a solution to a heat equation, but a unified model for the

resulting deformation field is not clear.

3.3.1.4 Curvature Models

This method has been proposed for intensity-based image registration problems by

Fischer and Modersitzki [79]. In this case, the deformation is modeled by the equi-

librium equation:

λS[φ] + (1− λ)42φ = 0 (3.16)

The curvature regularizer does not penalize affine transform and consequently does

not require an additional affine preregistration step.
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3.3.2 Parametric Deformation Models

Parametric methods provide a group of global transformations that can handle local

distortions. Typically, they consists of knots and basis functions. Popular choices

for basis functions are the TPS and B-splines (for mathematical details, see Chapter

2). In the parametric approach, the smoothing term may be unnecessary, because

the spline basis functions are inherently smooth [80]. However, in order to avoid

folding effects (singularities) in the deformation field, an additional smoothing term

is needed. The main advantage of parameterized techniques is that the dimensionality

of the problem is relatively low and thus fast optimization is possible.

3.4 Optimization

The purpose of optimization is to infer the optimal transformation that best aligns

two images based on an energy functional (see Equation (3.1)). Therefore, the quality

of the registration results highly depends on the choice of the optimization method.

Therefore, the choice of an optimization method must depend on the properties of the

energy functional. Sotiras et al. [54] classify optimization methods into two categories

based on the nature of the variable they attempt to infer: 1) continuous and 2)

discrete.

The first categories try to solve an optimization problem where the variables take

real values and the cost function is differentiable. There exists a vast amount of

continuous optimization algorithms. Continuous optimization methods are mainly it-

erative algorithms. This simply means that they start from an initial value φ0 which

is then iteratively updated. Therefore, this class of optimization methods builds a

sequence {φi}i
∗

i=1 that may converge towards a local minimum of the cost function

along the search direction. The search direction can be specified by utilizing only first-

order information or by also considering second-order information. Note that when a

cost function contains several minima, the initial value φ0 determines which minimum

must be considered as a solution. This initial value is thereby significantly important.

Commonly used continuous optimization methods include: 1) gradient-descent and
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its variants [68, 80–82], 2) Powell’s method [83], 3) downhill simplex method [84], 4)

Newton’s method [85,86], 5) Gauss-Newton algorithm [87], 6) Levenberg-Marquardt

optimization [88], 7) Factorization methods (e.g. the Cholesky factorization, QR fac-

torization, and singular value decomposition), 8) Jacobi method, and 9) Gauss-Seidel

and its variants [89]. A detailed survey of all these methods is available in [39, 90].

Kelin et al. [80] reported a study comparing some of the continuous optimization

strategies in image registration using MI as a similarity metric and cubic B-spline as

a deformation model.

Discrete optimization methods aim to solve an optimization problem where the

variables takes values from a discrete set. Discrete optimization methods can be

classified into three categories: 1) Graph-based methods [91, 92], 2) Message passing

methods [93, 94], and 3) Linear programming approaches [95, 96]. A detailed survey

of all these methods is available in [54].

3.5 Interpolation

Interpolation is a fundamental component in image registration, and is mainly re-

quired to approximate the intensity value at a pixel which does not lie on the trans-

formed image grid. For instance, after transforming the moving image, some points

are mapped to non-grid positions. Interpolation is then performed to estimate the

values for these transformed points. Note that in the interpolation procedure, the

more the number of neighbouring points taken into consideration for the estimation,

the higher the precision. The choice of interpolation is dependent on the transforma-

tion used for the registration. The most common interpolation methods are bilinear,

nearest-neighbor, bicubic [97], spline and inverse-distance weighting [98].

3.6 Evaluation of Registration Methods

3.6.1 2D/2D Evaluation Metrics

The registration accuracies are evaluated using some standardized measures. The

registration accuracies that measure global overlap are assessed based on Mean Square
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Error (MSE), Dice Similarity Coefficient (DSC) [99], and Hausdorff Distance (HD)

[100]. Local registration accuracies are evaluated by Target Registration Error (TRE).

The MSE is mean square distance between the N transformed moving points

(φ (q) ∈ R2) in the moving image and the corresponding ground truth points (pGT ∈

R2) in the reference image. Mathematically, this can be written as:

MSE =
1

N

N∑
j=1

∥∥φ (qj)− pGTj
∥∥2

2
(3.17)

If registration was fully accurate, points φ (q) and pGT would coincide, and then MSE

would be zero. Therefore, a low MSE value shows good registration accuracy.

DSC is employed as a statistical validation metric to evaluate the performance

of image registration algorithms. It is a measure of the spatial overlap of same

foreground labels (f) between the reference image (F (f)) and the moving image

(M (φ (f))) and is defined by:

DSC =
2 (M (φ (f)) ∩ F (f))

M (φ (f)) + F (f)
(3.18)

The value of a DSC ranges from 0, indicating no spatial overlap between two regions,

to 1, indicating complete overlap. This means that a high DSC value indicates a good

overlap between the tissue regions after registration. Note that a high DSC does not

mean a good contour overlap. Therefore, the HD measure must be used.

HD measures similarity between the deformed moving image contour φ (CM) and

the reference image contour CR. Given a finite set of points φ (CM) = {φ(q1), · · · , φ(qN)}

and CR = {p1, · · · , pN}, the HD between the point sets is given by:

HD(φ (CM) , CR) = max (h (φ (CM) , CR) , h (CR, φ (CM))) (3.19)

where

h (φ (CM) , CR) = max
φ(q)∈φ(CM )

(
min
p∈CR

‖φ(q)− p‖
)

(3.20)

The HD is used to evaluate the contour accuracy. A low HD value shows good

contour overlap.

To quantify the local registration error, we also use the TRE. It is described as
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the mean square distance between j∗ corresponding points not used in estimating the

deformation. The main challenge in calculating TRE lies in finding corresponding

target landmarks. The best target landmarks are those generated by a mechanical

device which allows for an accurate positioning of the anatomy. However, this is not

achievable for our study. The next best option is to choose anatomical landmarks in

the patient’s body and the centroid of an organ. We opt for this type of target points

to estimate the local registration accuracy to validate our result. TRE is measured

by:

TRE =
1

j∗

j∗∑
j=1

∥∥φ (qTARj

)
− pTGTj

∥∥2

2
(3.21)

where φ
(
qTARj

)
is the position of target moving points after registration and pTGTj

are the position of the corresponding target points from ground truth. The target

points used in our experiments are centroids and a few boundary points which are

not used to estimate the deformation. A low TRE value shows good local registration

accuracy.

In some experiments we also use CC (see Equation (3.5)) as a registration accuracy

measurement. A CC shows how precise the relationship is between two segmented

regions. The value of CC ranges from 0, indicating no correlation between two overlap

segmented regions, to 1, indicating very high correlation.

3.6.2 3D/2D Evaluation Metrics

The first measure is the mean square distance between the N transformed moving

points embedded in 3D space and the corresponding ground truth points (GT ). This

is defined by:

MSE =
1

N

N∑
j=1

∥∥φ (qj)−QGT
j

∥∥2

2
(3.22)

where φ (qj) ∈ R3 is the position of moving points after registration and QGT
j ∈ R3

are the position of the corresponding points from ground truth.

Since the MSE does not evaluate the shape of the 2D curves embedded in the 3D

space, we used another error measure which does not take the position into account,
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but only assesses the organ’s shape. Being able to compare the curve after registration

with the corresponding ground truth curve is essential to verify registration accuracy.

To compare curves, we must first find an appropriate representation. To achieve this,

the 2D space curves are simply parameterized by their arc-length and N points are

sampled uniformly. Then, in order to evaluate the similarity between curve pairs, we

compare the angle formed by adjacent points. This measure is known as the Shape

Error (SE) [101] and is given by:

SE =
1

N − 2

N−1∑
j=2

∣∣∣∣∣arccos
(φ (qj−1)− φ (qj))

> (φ (qj+1)− φ (qj))

‖φ (qj−1)− φ (qj)‖ ‖φ (qj+1)− φ (qj)‖

− arccos

(
QGT
j−1 −QGT

j

)> (
QGT
j+1 −QGT

j

)∥∥QGT
j−1 −QGT

j

∥∥∥∥QGT
j+1 −QGT

j

∥∥
∣∣∣∣∣ (3.23)

The SE measure plays a significant role in identifying the similarity between the

deformed moving curve and the ground truth curve. A low value of SE means that

the curve shapes after registration are very similar even if misplaced.

We use the TRE in a similar way that we have explained in Section 3.6.1. TRE

is measured by:

TRE =
1

j∗

j∗∑
j=1

∥∥φ (qTARj

)
−QTGT

j

∥∥2

2
(3.24)

where φ
(
qTARj

)
∈ R3 is the position of target moving points after registration and

QTGT
j ∈ R3 are the position of the corresponding target points from ground truth.

Similarly, the target points are centroids and a few boundary points which are not

used during registration process.
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4.1 Introduction

In general, the main goal of image registration is to estimate the spatial transforma-

tion by minimizing an objective functional in order to align a moving image with a

reference one. Image registration has been an active topic of research for decades.

Since numerous techniques were proposed, many researchers have tried to provide

general reviews of the field. In these instances, a first general survey of image reg-

istration methods was presented in 1992 by Brown [63]. In 1998, Maintz et al. [53]

proposed a survey of medical image registration. In 2000, Rohr et al. [102] provided

a general survey of elastic registration of multimodal medical images. Chmielewski

et al. [103] presented various image registration methods in 2001. In the same year,

Pluim et al. [70] presented a survey of entropy-based image registration techniques. In

2003, a comprehensive survey of image registration methods was presented by Zitova

et al. [67]. This paper classified image registration techniques as feature-based and
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intensity-based methods. Since 2004, many other researchers have tried to summarize

the existing image registration methods, e.g., [54, 104–107]. A thorough categoriza-

tion of deformable medical image registration techniques has been presented in 2013

by Sotiras et al. [54]. However, most of these reviews are to a certain extent outdated

due to the rapid progress of the field.

It is obvious that, due to the diversity of images to be registered and due to the

various types of deformations it is impossible to design a general method that can be

applied to all registration problems. Therefore, a general survey on image registration

methods is outside the scope of this chapter, as many of them are not applicable to

our TVUS-MR registration problem. Since there is no state of the art algorithm to

register TVUS images with MR images of the female pelvis, our primarily purpose in

this chapter is to review the current literature related to US-MR image registration for

other organs. We classify US-MR image registration techniques as intensity-based,

feature-based, and hybrid methods. Furthermore, this chapter includes ICP-based

registration algorithms and 2D/3D medical image registration methods.

4.2 US-MR Image Registration

4.2.1 Intensity-Based Methods

Intensity-based US-MR registration is a tremendously challenging task and is rarely

used to find transformation parameters. The main reason of this difficulty is that

US contains a speckle image of tissue boundaries, whereas MR provides information

on tissue density. Various similarity measures have been proposed to solve US-MR

registration specifically. Roche et al. [108] rigidly register 3D US with 3D MR images

of the brain. Their similarity measure is based on the correlation ratio method [109].

They correlate the US images with both the MR and the MR gradient magnitude;

this procedure allows them to account for intensity variations at tissue boundaries.

They use Powell’s method as an optimization technique. Their method significantly

outperforms the conventional correlation ratio and mutual information measures in

terms of robustness. However, their method is designed for the brain which is mostly
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rigid and would fail if applied to the deformable soft tissues of pelvic organs.

Craene et al. [110] employ the MI and the finite element deformation model to find

the deformation between MR and US images of the liver. Beside this, they introduce

a new optimization technique called Perturbation Stochastic Approximation (PSA).

It contains an MI term and a weighted term based on the linear elastic energy, to

balance the action of the similarity measure. In each step, the gradient of the cost

function is determined using the finite difference method, and in the next step different

perturbations of the subset of the active vertices, to stochastically estimate the mutual

information gradient, are performed. Then, the average of MI is estimated and added

to the cost function.

Mitra et al. [51,111] present a method to register Transrectal US with MR prostate

2D images which employs B-spline free-form deformations with a new procedure of

computing the NMI. The B-spline registration uses uniform pixel grids over the MR

domain whereas NMI is used as an intensity similarity measure. In their work, the

NMI is computed from the texture images generated from the amplitude responses

of the directional quadrature filter pairs. They show that the entropy between Tran-

srectal US and MR images is typically more than the entropy of texture images due

to variations in the gray levels. Therefore, B-spline registration with NMI computed

from texture images is more accurate than that with NMI computed from inten-

sity images. The optimization is done with the quasi-Newton optimization method

as Limited Memory Broyden-Fletcher-Glodfarb-Shanno (L-BFGS) algorithm [112].

However, in their tests, the feature-based image registration method using TPS de-

formation model mainly provides the best result. Although their NMI-based method

is used in prostate Transrectal US-MR image registration, it does not mean that it

is applicable to our registration problem because of mainly two reasons. First, their

images just include prostate with its internal structures, so that, applying directional

quadrature filter to both images can smooth the intensity variations. However, in

our data we mainly deal with multiple organs in the female pelvic area, and each

organ has a completely different internal structures, thus applying the directional

quadrature filter cannot provide homogeneous signal intensity. Second, the MR and
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TVUS acquisition procedures for detecting endometriosis is completely different from

the prostate. Therefore, our data has completely different intensity pattern. Our MR

images are acquired after injection of the contrast agents which helps an expert to

clearly distinguish between organ boundary and its internal structure by obtaining

homogeneous white pixels inside the organs (i.e. bladder, uterus, rectum, and bowel).

However, the contrast agents are not used during TVUS acquisition which leads to

obtain TVUS images with inhomogeneous hyperintense signal intensity, especially

inside the organs. However, this is not the case in prostate, since both Transrectal

US and MR images have very similar patterns.

4.2.2 Feature-Based Methods

It is clear that the advantage of using an intensity-based method is that it operates

directly on the image gray values, without prior data reduction by the user or segmen-

tation. Therefore, it must lead to high registration accuracy. However, relationship

between US and MR intensities mainly does not exist so that the minimization can

get easily stuck in a local minimum which leads to low registration accuracy. To dis-

card the limitations of the intensity-based US-MR registration methods, researchers

have used feature-based registration approach to superimpose US with MR images.

Singh et al. [98] develop a manual deformable registration method to fuse MR

data volume to Transrectal US data volume. However, the procedure of placing

control points to align both the surface and structure inside the prostate would require

significant user interactions. Thus, in order to decrease user interaction various semi-

automatic and automatic registration methods have been proposed in the literature.

Reynier et al. [113] propose a surface-based registration method for prostate in-

ternal radiotherapy. In their method, the prostate from the MR and Transrectal US

volumes is first manually segmented and then, the segmented surfaces are used to

manually establish point correspondences. The Transrectal US surface is then rigidly

registered with the MR surface. Finally, elastic registration is used to estimate the

deformation between the two modalities. The advantage of their method is its ability

to model the deformation using octree-spline [114]. Optimization is done with the
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Levenberg-Marquardt algorithm. Clinical and phantom images are used to assess

their algorithm.

Daanen et al. [115] use octree-spline elastic registration to fuse 3D Transrectal

US into 3D MR image prostate volumes for dosimetric planning of brachytherapy.

Their registration determines prostate motion between the two acquisitions as well as

prostate deformations. To achieve this, the prostate from the MR and Transrectal US

volumes is manually segmented and then, the segmented surfaces are used to manually

establish point correspondences. A pre-registration, consisting of superimposing the

centres of gravity of Transrectal US surface and MR surface, initializes the unknown

transform. From this initial estimate, rotation and translation parameters between

two surfaces, as well as local deformations are estimated. The method is derived from

the octree-spline elastic registration proposed by Reynier et al. [113]. A total of 8

patient data sets are used to assess their algorithm.

Narayanan et al. [116] propose a method to elastically register Transrectal US-MR

prostate surfaces. The prostate from MR and US volumes is first segmented via a

discrete dynamic contour [117] using manual selection of a few boundary points. In

the next step, the MR surface is rigidly registered with the Transrectal US surface via

extended weighted procrustes analysis [118]. After the rigid registration, a deformable

model [119] is employed to locally register the MR surface with the Transrectal US

surface. Finally, the 3D MR image is elastically aligned with the 3D Transrectal US

image using these boundary conditions. In this work, the prostate from the MR and

Transrectal US volumes is first manually segmented and then, the segmented surfaces

are used to manually establish point correspondences.

Natarajan et al. [120] elastically register the MR volume with the Transrectal

US volume for prostate biopsy. In their method, the prostate from the MR and

Transrectal US volumes are first manually segmented. Thereafter, an expert manually

selects corresponding points on each pair of surfaces. Their registration method

involves two main steps. First, the US volume is rigidly registered with the MR

data and then, the method of Narayanan et al. [116] and Karnik et el. [121] are used

to estimate surface deformation.
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Lange et al. [122] propose a 3D/3D feature-based deformable registration method

in which the center lines of the portal veins in liver are used as features. In their

work, the vessels are first segmented and their center lines extracted from MR and

US image volume. Corresponding points on the center lines of both modalities are

determined by ICP algorithm with B-Spline transformations. To achieve this, the

search is restricted to a radius and the direction of the vessels.

Mitra et al. [48,49] register 2D Transrectal US to 2D MR to assist prostate biopsy.

This work uses TPS deformation model with automatic chosen correspondences to

map the 2D MR prostate images into the Transrectal US images. They assumed that

the 2D MR/Transrectal US corresponding slices are found on visual inspection by an

expert. Then, the prostate regions are segmented using the method Ghose et al. [123]

from corresponding MR and Transrectal US images. The corresponding points are

generated by a triangulation approach based on geometry of the segmented prostate

contours in the respective modalities. The principle component analysis of the con-

tours are used as the underlying framework for their algorithm. The Transrectal US

image principle axes are projected and centered on the MR prostate contour. Then,

triangles are generated by joining the adjacent intersection of principal axes forming

a quadrant and dropping a perpendicular from the midpoint of the line joining these

intersection. The adjacent intersection points and the point of intersection of the

perpendicular dropped on the prostate contour comprise a triangular approximation

of the prostate region in the quadrant. Likewise, other quadrants of the shape are

processed for both images. Moreover, instead of considering only the contour points

for deformable registration, certain points inside the prostate contour are also con-

sidered for a smooth deformation of the internal glandular structure of the prostate.

After establishing point correspondences, deformable registration is then solved with

a TPS. The drawback of this method is that it cannot handle concave shapes.

Biomechanical models have also been used to model the organs and their sur-

rounding tissues with applications in US-MR image registration problems. In this

manner, Hu et al. [124, 125] use a biomechanical model of prostate to simulate de-

formation and learn a statistical shape motion model. This model is then used to
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constrain registration.

4.2.3 Hybrid Methods

Cosse et al. [126] propose a method to register 3D US prostate and rectum images

onto 3D MR images. The MR image is first segmented using graph-cut while the US

image is manually segmented. Segmentation results in a set of 3D surfaces in both

modalities. Registration is then carried out in two steps. First, rigid ICP is performed

using the surface of the rectum and the prostate. Finally, a deformable demons

algorithm presented by Pennec et al. [127] is applied to distance maps resulting from

globally registered surfaces.

Lu et al. [128] develop a semi-automatic hybrid registration algorithm to register

3D high intensity focused US kidney and liver images onto 3D MR images with the

purpose of mapping therapy planning into coordinate system of US. At first, linear

affine transformation parameters are computed by a set of points which are manually

selected by an expert. Afterwards local deformation is described by the Free-Form

Deformation model based on B-splines and MI [129]. In their work they show that US-

MR registration using [129] is not possible, since mutual information function must be

quasi-convex with as few local extrema as possible. However, the speckle noise in US

images and interpolation artifacts often make it difficult to have such behaviours. In

order to remove the undesired local extrema and create smooth mutual information

function, the algorithm use the following steps. Firstly, the US images are filtered

by total variation minimization and oscillatory functions [130]. Then, the Histogram

Partial Volume (HPV) interpolation algorithm [131] is used to estimate the joint

histogram, which uses an approximation function of Hanning windowed sinc [132] as

kernel function of partial volume interpolation. A simple iterative gradient descent

technique is used to optimize the cost function.

Lange et al. [133] Combine anatomical landmark information as a constraint and

normalized gradient field as the symmetric measure. Their method improves the mean

of point distances comparison with the rigid and the TPS registration which are based

only on landmarks. In their method TPS registration is the fundamental method of
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deformable registration. To obtain a better match, the intensity information is also

integrated into the optimization problem as a constraint. The objective function

consists of a normalized gradient field as a similarity measure and a regularization

term, which indicates the level of smoothness of the deformation field. A Discretize-

Optimize approach is used as an optimization technique.

4.3 The Iterative Closest Point Algorithm (ICP)

ICP algorithms establish a set of correspondences by searching for closest point to

moving data on the reference data, estimate a transformation which superimpose the

moving data to those correspondences established by searching from the transformed

moving data. In other words, ICP algorithms establish correspondences based on a

closest distance criterion and estimates least-square rigid transformation relating two

data sets. The algorithm then reestablishes the correspondences and continues until

it converges to the local minimum. As rigid ICP, deformable ICP has also two inner

steps. However, instead of finding rigid transformation parameters, a deformation

field must be found [134]. This can be done by minimizing a cost function including a

data term and a smoothing term. Besl and MacKay [135] and Chen and Melioni [136]

estimate a global rigid transformation. In both methods each step of the iteration

is optimal with respect to the estimated correspondences. The main difference in

the two methods is that in the method propose by Besl et al. [135] correspondences

are established by using the closest-point heuristic, while in Chen et al. [136] corre-

spondences are determined only along the surface normal. Besl et al. [135] present a

general registration strategy called Iterative Closest Point (ICP). For each iteration

of registration process, the closest point in one surface is determined from all the

points relative to another surface. These point correspondences are used to align the

image by optimizing the transformation. Note that, the iterations in ICP algorithms

are due to the fact that they iteratively improves the assigned correspondences. Due

to ICP’s simplicity and efficiency, many different ICP algorithms have been proposed

that affect all phases of the algorithm from the minimization procedure to the selec-

tion and matching of points [137–139]. Therefore, ICP methods are distinguished by
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type of deformation they recover, and by the way in which these deformations are

found.

Although ICP algorithms have been applied to various registration problem, there

are multiple critical issues that need to be considered. Generally, ICP methods con-

verge to the correct solution when the initial position of the two data sets is ade-

quately close. If not, ICP may get stuck in a local minimum. To solve this issue, pre-

registration which is also known as coarse registration has been used. In ICP methods,

the closest point computation step is the bottleneck of the algorithm because of the

quadratic complexity (O (n2)) in establishing the correspondence of each point. We

can conclude that the most computationally expensive step in the ICP algorithm is

finding the closest points. However, as suggested by Besl [135] and demonstrated by

Zhang [140], the closest point complexity can be decreased to O (n log n) by use of k-d

tree structure [141]. Friedmankd et al. [142] use the closest point algorithm based on

the k-d tree to significantly improve the execution time of the classical ICP [135]. In

this work, the k-d tree structure converts the closest point computation to the search

of a binary tree. At each node of the tree, a test is performed to decide which side of a

hyperplane the closest point will lie on. Using this method, large regions of the search

space can be pruned at each level in the search. ICP based on caching closest points

proposed by Simon [143] is another approach to improve the speed of the classical

ICP [135]. In this work, the data point correspondence search is only among a subset

of model points which are the closest at the previous iteration. Nuchter et al. [144]

combine k-d tree with caching in order to further improve the speed of ICP.

In order to improve the accuracy of ICP-based algorithms different strategies have

been proposed. The simplest and easiest strategy that can be used is outlier rejection.

Closest point computation may easily find wrong correspondences because of errors or

the existence of non-overlapping between two data sets. Normally, an outlier rejection

technique thresholds the error. The threshold can be tuned manually, or can be 10%

of worst pairs [137,145,146]. Some other techniques employ a simple and an efficient

outlier rejection rule, called X84 [147, 148]. In addition, Phillips et al. [149] use

statistical analysis in order to remove outliers from point correspondence procedure
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of ICP method. To achieve this, a new data term called Fractional Root Mean Square

Distance is added to the ICP’s formulation of finding point correspondences.

Another way to improve the robustness of the classical ICP is to use fuzzy cor-

respondences. Note that all the methods thus far mentioned, treat the correspon-

dences as strictly binary variables. Other methods relax this constraint using fuzzy

correspondence [150]. Generally, two different approaches are exist in literature.

Wells [151], Cross et al. [152], and Hinton et al. [153] propose a probabilistic ap-

proach. the point sets registration explicitly formulate as a maximum likelihood

(ML) estimation problem, to fit Gaussian Mixture Model (GMM) centroids to the

data points. The well-known Expectation Maximization (EM) algorithm is employed

to solve the registration problem. This algorithm consists of two steps: 1) the E-step

estimates the correspondence under the estimated transformation from previous it-

eration. 2) the M-step updates the transformation parameters based on the current

correspondences. Wells [151] includes an extra uniform distribution term to handle

outliers. Hinton et al. [153] propose a very similar algorithm that can deal with the

local deformations between two handwriting digits. B-spline as well as linear affine

transformation are used to estimate the deformation. Note that Wells [151] and Cross

et al. [152] only solve for rigid transformations. The key problem shared by all prob-

abilistic approaches is that they do not enforce one-to-one correspondence. To solve

this problem Gold et al. [154], Rangarajan et al. [155], and Chui et al. [150, 156]

model point sets registration as a joint linear assignment-least square optimisation

problem. To solve this optimisation problem, deterministic annealing and softassign

are used. Combination of this two methods guarantee one-to-one correspondence.

The resulting methods are very similar to EM-ICP algorithm.

In order to improve both the robustness and the computational efficiency of clas-

sical two-step rigid ICP, a distance transform is also introduced by Fitzgibbon et

al. [138]. The distance transform allows one to merge the two inner steps into only

one. Fitzgibbon et al.’s one-step ICP computes rigid 2D/2D and 3D/3D registration

of a single pair of shapes. The registration error is minimized using the Levenberg-

Marquardt algorithm. The literature on ICP is wide, and we refer the reader to the
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recent survey by Castellani et al. [146] for more details.

4.4 Slice-to-Volume Registration

2D/3D medical image registration has received considerable attention and has been

applied to various problems. 2D/3D registration may refer either to registration of

projective data to 3D data (for example, a 2D projective X-ray image with 3D CT

images [101,157,158]) or to registration of a single tomographic slice to 3D volumetric

data (for example, a 2D US slice with 3D CT images [159]). The first case, which is

known as projective registration, tries to find correspondences between a 2D image

and a projection of a volume to planes. The second case, which is also known as slice-

to-volume registration, seeks to find correspondences between a 2D image and a cross-

section of volume by a plane or warped surface. This can be considered as an extreme

case of 3D/3D registration where one of the images reduces to one slice. Note that

in projective registration, there does not exist a one-to-one correspondence between

the 2D and 3D data. This leads to fundamentally different registration methods in

comparison to slice-to-volume registration. In this work, we focus on slice-to-volume

registration, therefore a general survey on projective registration methods is beyond

the scope of this section. We refer the reader to Markelj et al. [160] for a recent

comprehensive review. Note that many researchers adapt the ICP algorithms to the

projective 2D/3D registration problem [161].

To date, different slice-to-volume registration methods have been proposed. How-

ever, there are no report of slice-to-volume TVUS-MR registration for female pelvis

organs. One of the approaches to solve slice-to-volume registration problem is to use

a so-called compounding technique [162–164]. Heldmann et al. [165] try to register a

CT volume with US slices using this technique. In this manner, the US slice is com-

pounded into volume by interpolating and then a 3D/3D image registration method

is employed. However, they practically show that registration using compounding

technique cannot provide reasonable results. They also reveal that matching a CT

volume to artificially reconstructed volumetric US data does not provide comprehen-

sive information for the surgeon. Therefore, various other approaches have been used
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to solve slice-to-volume registration problem. Below we summarize some of them.

Fei et al. [166] investigate intensity-based registration methods to rigidly align real

time interventional MR image slices with a high resolution preoperative MR volume.

They algorithm uses for interventional MR-guided radio frequency thermal ablation

of prostate cancer. They use a multi-resolution and multi-start strategies with two

intensity similarity measures to avoid local maxima. The multi-start strategy is used

to restart registration process with randomly perturbed parameters obtained from a

uniform distribution about the initial transformation values at the current resolution

being used. They employ MI and correlation coefficient as similarity measures. The

correlation coefficient is used at two lower resolution whereas MI is used at full reso-

lution. This is due to the fact that correlation coefficient surfaces are much smoother

than MI. In other words, at low resolution, MI surfaces are noisy and contain many

local maxima. However, at full resolution, MI has sharper peak than correlation

coefficient. For optimisation, they use downhill method [84] or Powell’s method [83].

Gill et al. [167] propose a similar method to Fei et al.’s method [166] to register

the prostate interventional MR image slices with a high resolution preoperative MR

volume. In contrast with Fei et al.’s method [166], their algorithm completely discards

the multi-start strategy and only use multi-resolution strategy with two levels of

resolution. Firstly, their algorithm register a single slice, but it did not provide

good registration accuracy. The reason is that a single slice may not contain enough

information, thus the registration can easily stuck in local minima. Therefore, they

use two slices in unison to boost the precision of their registration results.

Xu et al. [168] propose an intensity-based method to align a small region of CT

fluoroscopy image with a corresponding region in a CT volume in order to provide

information about the position of the target lesion with respect to the imaging plane.

Their registration algorithm assists lung biopsy. It is used a hieratical multiresolution

and multi-start strategies to avoid local minima. The local deformation between

the two regions is modelled by an affine transformation. The Levenberg-Marquardt

algorithm is employed to solve the sum of square difference cost function. Since

a multi-start strategy is used, multiple candidate transformations between the two
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regions are obtained. The true transformation of the CT fluoroscopy region is chosen

from these candidate using similarity voting. The chosen transformation is then

combined with a Kalman filter to predict the lesion’s position for the next frame.

Helmann et al. [165] propose a variational deformable slice-to-volume registration

to align series of 2D MR slices with 3D MR volumes. They minimize an objective

function made up from a distance term (sum of square differences) and a smoothing

term (curvature-based) with respect to a 3D nonlinear deformation field by using

Gauss-Newton optimisation method. In contrast to compounding techniques, they

evaluate the distance of the images only on the two-dimensional manifold where the

data is known. The vital task in their algorithm is the choice of regularizer. They

show that at least second-order regularization is needed to successfully avoid kinks

and to estimate smooth deformation.

Ferrante et al. [169] propose a deformable intensity-based mapping algorithm be-

tween a 2D MR slice and a 3D MR volume. They try to find a linear plane transfor-

mation and an in-plane deformation field. This is achieved by using Markov Random

Fields.

Osechinskiy et al. [170] propose a deformable intensity-based registration to map

a 2D histology image to a MR brain volume. Their registration method involves

two main steps. First, a rigid transformation is estimated and then a 3D dense

deformation is found. Note that the deformation field is parameterized by various

classes of spline functions such as TPS, Gaussian elastic body splines, or cubic B-

splines. TPSs are used in a novel way to parameterize a smooth 3D deformation of

a 2D surface. More specifically, control points are placed in a regular grid on the 2D

image domain, and a 3D warp is modeled by three independent TPS functions. Their

registration framework provides a flexible selection of cost function similarity measure

such as SSD, CC, MI, NMI. Finally, the conclude that the CC cost function works

better than other similarity measures, and registration with TPS model is the fastest.

Multiresolution Levenberg-Marquardt optimization strategy is used to minimize the

cost function.

Dalvi et al. [171] propose a feature-based slice-to-volume approach to rigidly reg-
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ister 2D MR images to 3D MR volumes of the human brain. Their algorithm extracts

phase congruency image features that are then matched using classical ICP [135].

4.5 Conclusion

Since there is no method to register TVUS images with MR images of the female

pelvis, we have reviewed the current literature related to US-MR image registration

for other organs. All these methods compute transformation 2D/2D or 3D/3D reg-

istration of a pair of 2D images or a pair of 3D volumetric data, respectively. The

methods have been classified into three different categories such as intensity-based,

feature-based, and hybrid-based methods. We see that US-MR intensity-based regis-

tration is a relatively unexplored topic. This is due to the fact that US-MR intensity-

based registration is difficult task since the US contains a speckle image of tissues

boundaries, whereas the MR provides information on tissues intensity. Feature-based

registration is mainly used to register US with MR images, since it can be applied to

any image. To improve both intensity- and feature-based methods, some researchers

combine both approaches. It is observed from all these methods that spline-based de-

formable models have been mainly used for US-MR fusion. Since there is no system

available to register TVUS to MR images, in next chapter, we provide a comparison

of the two different registration approaches and investigate the applicability of these

methods in TVUS-MR registration problem.

We have also discussed the state-of-the-art of iterative closest point algorithm.

Many different ICP algorithms have been proposed that try to improve the com-

putational time or robustness. In order to improve both the robustness and the

computational efficiency of classical two-step rigid ICP, a distance transform is in-

troduced. The distance transform allows one to merge the two inner steps into only

one. In contrast to Fitzgibbon et al.’s one-step rigid ICP, in this thesis, we use a

variational procedure to obtain nonlinear deformations and handle multiple curve to

surface correspondences. Moreover, in chapter 8, the proposed method attempts to

solve slice-to-volume deformable registration whereas Fitzgibbon’s method solves the

3D/3D or 2D/2D rigid registration problems.
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We have also shown that the 2D to 3D medical image registration can be clas-

sified into two categories: projective methods and slice-to-volume methods. We see

2D/3D image registration has received considerable attention in the topic of projec-

tive registration. However, there are few publications in the context of slice-to-volume

registration. This approach tries to find correspondences between a 2D image and

a cross-section of a volume by a plane or a warped surface. Most methods in the

literature rely on an intensity-based similarity measure. However, US-MR registra-

tion with an intensity similarity measure may easily fail. In chapter 8, we propose a

new deformable feature-based slice-to-volume registration method to establish point

correspondences and to estimate deformation between a set of curves (from TVUS)

and a set of corresponding 3D reconstructed surfaces (from 3D MR).
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Chapter 5

Registration Strategy

Contents
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5.3.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Introduction

In this chapter, we provide a comparison of the two different registration approaches

—intensity- and feature-based— and investigate the applicability of these methods

in the TVUS-MR registration problem. After analysing Chapter 4, we may realize

that feature-based registration based on a spline representation of the deformation

field has been widely used as the deformable model in US-MR alignment. Among

all spline-based point driven deformable image registration techniques, the TPS tech-

nique introduced by Fred Bookstein [47] is one of the most commonly used methods

for deformable medical image registration and anatomical shape analysis. We also

find that NMI is among the most applied measures of similarity in the literature

of multimodal image registration [53, 54, 63, 67, 70, 102, 104, 105, 172]. Therefore, in

this chapter, we consider a point-based registration using TPS deformations [47] and

an intensity-based registration using NMI and B-splines deformation [173] to align
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pre-operative TVUS to MR images whereby we can experimentally discover which

strategy and technique works best in our problem.

5.2 Image Registration

Let us point out again that registration methods try to optimize an objective func-

tional or a similarity measure that indicate how accurately two images are registered.

The similarity measures can be based on the differences or probability density of the

intensity values and/or the distances between certain homogeneous features in the

two image sets to be registered. Consequently, medical image registration has been

divided roughly into two categories: 1) feature-based or 2) intensity-based methods.

Here, we focus on two widely used methods in multimodal medical image registration;

we choose one method from each category. In this manner, we choose a feature-based

registration using TPS deformations with manual point selection [47] and an intensity-

based registration using NMI and B-splines deformations [173] to register and fuse

pre-operative TVUS into MR images. Note that, Mitra et al. [51] subjected these

methods to thorough test of Transrectal US-MR registration for prostate biopsy, and

found that both methods can successfully register 2D Transrectal US to 2D MR im-

ages. However, in their tests, the TPS method proposed by [47] was the best one.

Although these methods are used and shown to be applicable in Transrectal US-

MR image registration, it does not mean that they are applicable to our registration

problem since we deal with different soft tissue organs and anatomical structures. In

addition, in both MR and Transrectal US images, the prostate region has homogenous

intensity which is not mainly the case in our problem. Therefore, it is necessary to

apply these two methods to our data to find out whether they are applicable or not,

as well as their advantages and disadvantages.

5.2.1 Point-Based Image Registration Based on Thin-Plate
Splines

In point-based registration, the spatial transformation which is required to mini-

mize the distance between point correspondences can be computationally efficiently
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estimated and applied to image data sets. However, it usually require to extract

corresponding points manually or semi-automatically, which makes this an operator-

intensive and -dependent approach. Here, since the aim is to investigate the applica-

bility of the TPS method proposed by Bookstein [47] in TVUS-MR registration prob-

lem, we consider the simplest way of resolving the correspondence problem. Therefore,

an expert manually establishes the dense correspondences between soft tissue organs

i.e. bladder, rectum, uterus and ovaries in both TVUS and MR. To achieve this, the

following strategy has been used to establish point correspondences. First, the avail-

able soft tissue organs in the TVUS moving image M and in the corresponding 2D

MR reference slice F were segmented by an expert. This step helps to construct two

sets of curves, CM and CR, representing the boundary of the corresponding organs

in both images. Second, an expert manually selects points on each pair of curves.

Therefore, two new sets of N points, qi = (xi, yi) and pi = (x′i, y
′
i) (i = 1, · · · , N),

between the two images are established.

To date, numerous different image registration algorithms which are employing

point correspondences have been proposed. Indeed the TPS technique pioneered by

Fred Bookstein [47,174–176] is the most commonly used point driven image registra-

tion algorithm. A thin-plate is conceived as a 2D thin metal plate which when tacked

by a point or a set of points produces bending of the surface in the z-direction:

z(x, y) = −ρ(r) = −r2 log (r) (5.1)

where r is the 2-norm distance (Euclidean distance) of the points on the surface from

the tacked points. Here, ρ is a fundamental solution of the biharmonic equation

42ρ = 0, the equation for the shape of a thin steel plate lofted as a function z(x, y)

above the xy-plane.

As mentioned before, The TPS is a widely used basis function for representing

coordinate mapping fromR2 toR2, when a set of corresponding points are established.

In its regularized form, the TPS transformation involves the affine model as a special

case. Following is a brief mathematical description of the 2D image registration based

on TPS model.
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The TPS minimizes the quadratic variation functional of the potential energy

that reflects the amount of variation that should be small for a good mapping func-

tion. Then, the TPS interpolant φ(x, y) minimizes the bending energy or the integral

bending norm:

R [φ] =

∫
Ω

((
∂2φ

∂x2

)2

+ 2

(
∂2φ

∂x∂y

)
+

(
∂2φ

∂y2

)2
)
dxdy (5.2)

Notably the transformation function has the form

φ (x, y) =
N∑
i=1

ωijρ (‖(xi, yi)− (x, y)‖) + aj1 + aj2x+ aj3y (5.3)

where j = 1, 2, ρ = r2 log r is the radial-basis function and ωij’s are the weights

allocating to each of control point of the moving image. φ (x, y) must have square

integrable derivative if

N∑
i=1

ωij = 0 and
N∑
i=1

ωijxi =
N∑
i=1

ωijyi = 0 (5.4)

The boundary conditions in Equation (5.4) guarantee that the thin-plate does not

rotate or bend when influenced by the loads of the points.

Once the interpolation conditions are considered as φ (xi, yi) = pi, we rewrite

rij = ‖qi − qj‖, i, j = 1, · · · , N as the distances between all the data points qi and qj.

Then, the following linear system is obtained:K Q

Q> O

W
A

 = P (5.5)

The matrices are defined as

K =


0 ρ (r12) · · · ρ (r1N)

ρ (r21) 0 · · · ρ (r2N)

· · · · · · · · · · · ·

ρ (rN1) ρ (rN2) · · · 0


N×N
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(a) Moving Image (b) Reference Image (c) TPS Warp

Figure 5-1: Example of exact principal warp. (a) shows a reference image with
selected control points (+). (b) shows a moving image with selected control points
(×). (c) shows the exact principle warps of the configuration.

Q =


1 x1 y1

1 x2 y2

· · · · · · · · ·

1 xN yN


N×3

; W =


ω11 ω12

ω21 ω22

...
...

ωN1 ωN2


N×2

A =


a11 a12

a21 a22

a31 a32


3×2

; P =

x′1 x′2 · · · x′N 0 0 0

y′1 y′2 · · · y′N 0 0 0

>
2×(N+3)

where W is the unknown matrix for the TPS weight parameters, A is the unknown

matrix for the affine parameters, and O is a 3 × 3 matrix of zero. Thus, the linear

system of equations can be solved by least-squares estimation as the coefficient matrix:W
A

 =

K Q

Q> O

−1

P (5.6)

The interpolation conditions (φ (qi) = pi) exactly map the points on the moving

image onto the reference corresponding points. An example TPS transformation is

shown in Figure 5-1. However, since there might be errors in the localization of the

point correspondences across two images, mapping exactly one point to its correspon-

dence is not always a desirable approach. To solve this problem, the localization errors

of the correspondences can be considered by substituting the interpolation to approx-
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imation and regularization TPS [177]. This is accomplished by the minimization of

the following variational problem:

E [φ] =
n∑
i=1

(pi − φ (qi))
2

σ2
i︸ ︷︷ ︸

data term

+λ R [φ]︸︷︷︸
smoothing term

(5.7)

where R [φ] is defined in Equation (5.2), σ2
i is the sum of the covariances of the points

pi and qi across both images, and λ is a smoothing parameter. λ is a positive scalar and

balances the amount of smoothing. Thus, as λ approaches zero (λ −→ 0), Equation

(5.7) turns out to behave more similar to the TPS interpolant. In other words, when

λ is small, we obtain a solution with good approximation behavior. Notably in the

limit of λ → 0, we have an interpolating transformation. On the other hand, when

λ has high value, we obtain a very smooth transformation. Consider that, when λ

approaches infinity, we have an affine transformation that has no smoothness energy

R [φ] at all. The weighting of the correspondence localization error with the inverse

of the variances guarantees that when the variance is high (i.e. the measurements are

uncertain), less penalty is given to the approximation error at this point.

Finally, the quadratic approximation term of Equation (5.7) can be analytically

introduced into the linear system of equations of Equation (5.5) as:K + nλC−1 Q

Q> O

W
A

 = P (5.8)

where:

C−1 =


σ2

1 0
. . .

0 σ2
n


Introducing the term nλC−1 leads to a better linear system and a robust numerical

solution. After obtaining the affine and TPS weight parameters, the moving image

pixels are transformed using φ as in Equation (5.3). An example of approximating

TPS is shown in Figure 5-2.
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(a) Reference Image (b) Moving Image

(c) λ→ 0 (d) λ = 0.01 (e) λ→∞

Figure 5-2: Performance of approximating TPS visualized by deforming a regular
grid. (a) shows a moving image with selected control points (×). (b) shows a reference
image with selected control points (+). (c) shows the exact warps of the configuration
(λ→ 0). (d) and (e) depict the smooth warps with different choice of the smoothing
parameter (λ = 0.01 and λ → ∞, respectively). In the limit of λ → ∞ we obtain a
very smooth transformation which is nearly an affine transform.
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5.2.2 Intensity-Based Image Registration with NMI

In this part, we focus on an intensity-based registration using NMI and B-splines

deformations [173] to register pre-operative TVUS with MR images. In Rueckert et

al.’s method [173], the local deformation of the soft tissue organs is described by

cubic B-splines. The basic idea of this method is to deform an object by estimating

an underlying control polygon (also known as mesh of control points) [178–180]. The

estimated deformation controls the shape of the 2D or 3D objects and provides a

smooth and continuous C2 transformation.

5.2.2.1 Deformation Modeling with B-Splines

We consider that Ω ∈ R2 be an image domain, Ψ as a mesh of nx × ny (nx and ny

are width and hight of the image, respectively) knots ki,j with a uniform spacing δ.

Then a cubic B-spline may be defined as a 2D tensor product of 1D cubic B-spline:

φlocal(x, y) =
3∑
l=0

3∑
m=0

bl(u)bm(v)ki+l,j+m (5.9)

where j = by/δc − 1, i = bx/δc − 1, u = x/δ − bx/δc, v = y/δ − by/δc, and bl

represents the lth basis function of the 1D cubic spline [181] given as:

Ni (x) =



b3 (u) = 1
6
u3

b2 (u) = 1
6

(−3u3 + 3u2 + 3u+ 1)

b1 (u) = 1
6

(−3u3 − 6u2 + 4)

b0 (u) = 1
6

(1− u)3

In contrast with the TPS [47], cubic B-splines are locally adjusted, which de-

creases computational cost even for a large number of knots. It is apparent from

Equation (5.9) that the deformation at any knot (x, y) is estimated by its 16 (4× 4)

surrounding neighbourhood. More specifically, each knot ki,j has an effect on its

(4 × 4) area that is a sub-domain of Ω. Therefore, the basis functions of cubic B-

splines have just a limited supports. For instance, changing a knot influence the

transformation just in the local area of that knot. The knots k behave as parame-
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ters of the cubic B-splines, and the resolution of control polygon Ψ (mesh of knots)

changes the degree of non-linear deformation. More specifically, when the distance

between knots are large, the estimated deformation would be much more similar to

an affine transform. On the other hand, a small spacing of knots permits modeling

of nonlinear deformations. Therefore, we can conclude that the computational cost

and degrees of freedom highly depend on the resolution of the control polygon. The

trade-off between computational complexity and degree of deformation is still an em-

pirical choice that is chosen by the precision needed to model the deformation of the

object versus the increase in computing time. In spite of this, the best approach is

to use a hierarchical multiresolution approach proposed by Lee et al. [179]. In this

method, the resolution of the control polygon is increased together with the image

resolution in a coarse to fine fashion.

Now we consider that Ψ1, . . . ,ΨL be a hierarchy of control polygons at different

resolutions. The interval between the knots decreases as the resolution increases from

ΨL to ΨL+1. Note that, the interval between the knots in ΨL is double of the those in

ΨL+1. The new locations of the knots in ΨL+1 can be calculated from ΨL employing

the B-splines subdivision algorithm [182]. Note that each control polygon ΨL defines

a local transformation φLlocal at each level.

A penalty term which regularizes the deformation is introduced to force the cubic

B-spline generates smooth transformation. The general form of such a penalty term

has been deeply discussed by Wahba [183]. Note that, in 2D case, the cubic B-spline is

equivalent to the TPS integral bending norm defined in Equation (5.2) and is written

as:

R [φ] =

∫
Ω

((
∂2T

∂x2

)2

+ 2

(
∂2T

∂x∂y

)
+

(
∂2T

∂y2

)2
)
dxdy (5.10)

where φ is the transformation that consists of φglobal, i.e. an affine transformation and

φlocal a non-linear transformation. It is to be noted that the regularization term is

zero for affine transformation. A step-by-step description of the cubic B-spline based

deformation is given in Algorithm 5.1.
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Algorithm 5.1 The NMI-based registration method using B-splines [173].

1: Input: A moving image (M) & a reference image (F )
2: Initialization:
3: Compute the optimal affine transformation parameters Θ by maximizing DNMI

4: Ψ← Ψ0 % Initialize the control points Ψ
5: Repeat

6: Compute ∇E =
∂E(Θ,ΨL)

∂ΨL

7: while ‖∇E‖ > ε do % Gradient descent procedure
8: ΨL ← ΨL + µ ∇E‖∇E‖ % update the control points ΨL

9: Compute ∇E
10: end while
11: Increase the resolution of the current control points ΨL to ΨL+1

12: Increase the resolution of the both images
13: Until finest level of resolution is achieved

5.2.2.2 Similarity

As mentioned before, the multimodal image registration proposed by Rueckert et

al. [173] uses B-splines and tries to maximize the similarity of pixel intensities using

the NMI. Studholme et al. [72] has experimentally proved that NMI is more robust

in multimodal registration than MI proposed by Maes et al. [184]. Here, the NMI

image similarity is denoted as DNMI and defined in Equation (3.10).

5.2.2.3 Optimization

The energy function consists of two terms. The first term corresponds to the cost

associated with the image similarity DNMI . The second term represents the cost

associates with the smoothness of the transformation R as in Equation (5.10). The

cost function is defined as:

E (Θ,Ψ) = −DNMI (F, φ (M)) + λR[φ] (5.11)

where Θ is the affine transformation parameters, φ is the deformation field and de-

pends on Θ and Ψ, λ is a smoothing parameter, F is a reference image, and M is a

moving image. λ is the trade-off between alignment of the images and the smooth-

ness of the transformation. It is to be noted that the smoothness factor is of more

importance at finer resolutions than coarser resolutions.
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The optimization procedure involves two main stages. In the first stage, an itera-

tive multiresolution search strategy [185] is used to find the affine parameters Θ. To

achieve this, we must maximize the image similarity measure defined in DNMI . In the

second stage, the nonlinear transformation parameters are estimated as a function of

the cost functional in Equation (5.11). A simple gradient descent optimization is used.

The algorithm stops since the magnitude of the gradient of the cost function ‖∇E‖

be less than a small variation ε. An example of NMI-based image registration [173]

is shown in Figure 5-3.

(a) Reference Image (b) Moving Image

(c) Deformed Image (d) Deformed Mesh (e) Overlap

Figure 5-3: Example of multimodal image registration. (a) shows a T1 MR image
which is selected as a reference image. (b) shows a T2 MR image selected as a
moving image. (c) shows the registration result and (d) indicates its deformed mesh.
(e) shows the overlap images.
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5.3 Experimental Results

5.3.1 Material

The study is carried out on ten patients. For each patient, TVUS and MR imaging

are used to examine their pelvic organs. TVUS is performed using a high-frequency

Siemens Endocavity Curved Array Ultrasound probe (6.5 MHz) and Siemens Sono-

line Elegra Ultrasound machine. Axial T2 MR slices with slice thickness of 5 mm,

repetition time of 44083− 49397 ms and echo time of 82.18− 85.09 ms are acquired

with a 1.5 Tesla GEM Suite. Images used for the experiments have an average image

size of 192 × 192. The reference MR slice from MR volume that corresponds to the

moving TVUS image is manually chosen by an expert. Therefore, we assume that

the TVUS slice is parallel to the corresponding MR slice. Note that in principle the

MR slice which is corresponding and parallel to the TVUS slice must be obtained by

rotating the MR volume with respect to the rotational angle of TVUS image and then

retrieving the MR slice parallel to the TVUS slice. However, we do not have any infor-

mation regarding to the TVUS rotational angle in our current experimental process.

The soft tissue organs (i.e. bladder, uterus, ovary, rectum) in both TVUS and MR

slices are manually segmented by an expert and then manually selects points at each

pair of curves. We compare the registration using TPS that uses point correspon-

dences [47] against the registration using NMI computed from raw intensities of the

multimodal images [173]. In NMI-based registration, we use a multi-resolution strat-

egy to reduce processing time whereby the TVUS and MR images are subsampled by

a factor of three. These dimensions are subsequently doubled until the optimisation

of the parameters is completed with both images at their full resolutions. The cubic

B-splines deform at each resolution to maximize the NMI computed from intensities

of the images. The algorithms are implemented using MATLAB and tested on an i5

core 3.3 GHz with 16 GB RAM.
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5.3.2 Results and Discussion

We demonstrate the accuracy of the TPS-based [47] and NMI-based [173] deformable

registration methods by quantitative and qualitative tests on real world data sets.

Registration accuracy is evaluated in terms of DSC and TRE. The aim of these

experiments is to provide a comparison of the two different registration approaches

and investigate whether they are applicable to TVUS-MR registration problem or

not. Therefore, we apply both methods to four different soft tissue organs including

the bladder, uterus, rectum, and ovary.

DSC assesses the global overlap of the segmented organs. A high DSC value in-

dicates a good overlap between the tissue regions after registration. In addition, to

quantify the local registration error, we use the TRE. It is described as the mean

square distance between corresponding points not used in estimating the deforma-

tion. As mentioned before, the main challenge in calculating TRE lies in finding

corresponding target landmarks. The best target landmarks are those generated by a

mechanical device which allows for an accurate positioning of the anatomy. However,

this is not achievable for our study. The next best option is to choose anatomical land-

marks in the patient’s body such as boundary of organs and their internal anatomical

structures. We opt for this type of target points to estimate the local registration

accuracy to validate our result. Notably a low TRE value shows good local regis-

tration accuracy. In our experiments, the target points are 15 points which are not

used for registration. The DSC, TRE, and computational time for NMI-based regis-

tration [173] and TPS registration [47] are tabulated in Table 5.1. We observe that

the TPS registration which uses point correspondences located over the segmented

contours always has much higher average DSC and lower average TRE values over the

NMI-based registration method, except for patient 9 where the dark shadows near

the boundary of ovary in TVUS image help NMI to register the internal structures

of the ovary more accurately (see Figure 5-4 rows 5 and 6). In addition, the TPS

registration [47] is much faster than NMI-based registration method [173].

Figure 5-4 shows the registration results for patients 1, 3, and 9. Images in rows 1−
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Intensity-based: NMI [173] Point-based: TPS [47]

Patient DSC TRE Time DSC TRE Time
(Pixel) (sec) (Pixel) (sec)

1 0.715 20.287 124.902 0.993 0.848 3.09
2 0.692 26.132 104.190 0.990 1.134 2.78
3 0.944 4.932 119.811 0.984 0.546 2.05
4 0.884 12.119 164.970 0.988 1.774 1.86
5 0.400 44.310 131.041 0.998 0.056 2.07
5 0.595 36.330 201.557 0.991 2.191 2.35
6 0.824 16.880 99.940 0.995 0.112 3.03
7 0.676 27.061 110.733 0.999 0.024 3.28
8 0.375 50.559 50.992 0.997 0.063 2.39
9 0.960 2.074 129.819 0.991 5.586 2.58
10 0.904 7.194 140.056 0.989 0.644 2.91

Mean 0.725 22.532 125.267 0.992 1.180 2.581
σ 0.206 16.099 38.097 0.004 1.630 0.474

Table 5.1: A comparison of registration accuracies of the NMI-based registration with
TPS registration. σ is the standard deviation of the measures. The average DSC and
TRE values indicate that TPS has high local and contour registrational accuracy
whereas NMI-based registration method usually fails.

2 belong to patient 1, rows 3−4 dedicate to patient 3, and rows 5−6 belong to patient

9. In this figure, the checkerboards can visually indicate the accuracy of NMI-based

method and TPS method. As seen in Figure 5-4 for patients 1 and 3, the NMI-based

registration method provides less accurate results which is also evident from Table

5.1. For instance, for patient 1, the NMI-based registration partially aligns the organ

boundary. It is observed that the instant variation in intensities and contrast (i.e.

on the lower contour region), would significantly decrease the registration accuracy.

For patient 3, the checkerboards clear that the NMI totally fail to register the uterus

boundary. This is mainly due to the fact that a probabilistic relationship between

TVUS and MR intensities does not exist as TVUS image contains a speckle image

of tissues boundaries, whereas MR provides information on tissue density. However,

for these two patients, the TPS method provides high registration accuracy; this is

obviously visible at the boundary of organs.

Images in rows 5 − 6 show registration results for patient 9, in which the NMI-
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based registration method provides lower TRE value than the TPS method. As

seen in Figure 5-4 for patient 9, the checkerboards show good region (the ovary)

overlaps that are also evident from Table 5.1 for both methods. The reason that

TPS method provides higher DSC values is that the TPS registration [47] is based

on point correspondences primarily located on the organ boundary which results in

higher contour accuracy. Although the region overlaps for the NMI-based method

is lower than the TPS method, lower TRE value is obtained for the same patient

with the NMI-based registration method as seen in Table 5.1 and Figure 5-4. It is

also obvious from checkerboards that a better internal ovary structure alignment is

achieved by using NMI-based method for patient 9. There may be a reason that

NMI-based provides good registration accuracy for this patient: The dark region at

the top of the ovary in both TVUS and MR images helps NMI to establish a good

probabilistic relationship between TVUS and MR intensities which leads to a better

alignment of the internal structures of the ovary. Moreover, since these probabilistic

relationship between TVUS and MR intensities become weaker at the boundary of

the ovary, the registration accuracy decreases at those points which leads to the lower

DSC value.

Finally, the evaluation and the experimental results show that the TPS regis-

tration method gives accurate registration results whereas the NMI-based method

mainly fails. The reason that NMI-based method has low registration accuracy is

that the intensity variation between the MR and TVUS images is high so that the

maximization of NMI mainly fails to reach a global maximum. Despite of this, the

NMI-based registration method shows that when a probabilistic relationship between

TVUS and MR intensities exists, it can provide better local registration accuracy as

it considers all the pixels on the image rather than considering just set of points on

the boundary of organs.
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Patient1: NMI

Patient1: TPS

Patient3: NMI

Patient3: TPS

Patient9: NMI

Patient9: TPS

(a) Reference (b) Moving (c) Deformed (d) Overlap (e) (d)+Contour

Figure 5-4: Examples for patient 1, 3, 9, respectively. Registration results for NMI-
based registration method [173] and TPS [47] in rows. (a) shows a MR image which
is selected as a reference image. (b) shows a TVUS image selected as a moving image.
(c) shows the registration result. (d) and (e) indicate overlap image with and without
contour, respectively. In the overlap images, the top right and the bottom left belong
to the deformed TVUS data and also the top left and the bottom right belong to the
MR data.
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5.4 Conclusion

In this chapter two image registration methods such as TPS registration method and

NMI-based method are used to register 2D TVUS with 2D MR images. The main

purpose of this chapter is to provide a comparison of the two different registration

approaches and investigate the applicability of these methods in TVUS-MR registra-

tion problem. This is an important task as there is no system available to register

TVUS to MR images. NMI approach makes direct use of the original image data and

the other is based on matching discrete geometric feature points. Both approaches

have their relative advantages and disadvantages.

The advantage of using NMI-based method is that it operates directly on the

image gray values, without prior data reduction by the user or segmentation. The-

oretically, it is the most flexible of the registration approach, since it does not start

by reducing the gray-level image to relatively sparse extracted information, but uses

all the available information throughout the registration process which may lead to

high local registration accuracy. However, NMI-based method has two main disad-

vantages. First, probabilistic relationship between TVUS and MR intensities mainly

does not exist so that the maximization of NMI mainly cannot reach to an optimum

value. This results in low contour accuracy (i.e. related to DSC measures). Sec-

ond, this method requires estimating the joint histogram between two images which

cause to increase computing time significantly. Since, the probabilistic relationship

between TVUS and MR intensities does not exist and we need to have high contour

accuracy to precisely localize endometrial implants, one must use point-based regis-

tration approach (e.g. the classical TPS method) to cope with the limitations of the

multimodal intensity-based registration approach. Point-based registration is versa-

tile in the sense that it, at least in theory, can be applied to any image, no matter

what the object or subject is. Another advantage of this method is that since the set

of identified points is sparse compared with the original image content, a point-based

method has very fast optimisation procedures. A drawback of this method is that

manually selecting point correspondences are often a challenging and time-consuming
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process.

Based on the advantages and drawbacks of the feature- and intensity-based ap-

proaches and our experimental results, we find that the feature-based registration

approach is an appropriate choice as it can apply to any image and provides high reg-

istration accuracy, even though it is a user-dependent method. On the other hand,

the intensity-based approach is a limited method, since the probabilistic relationship

between TVUS and MR images does not mainly exist. In the next chapter, different

feature-based registration methods will be proposed to decrease user interaction by

performing certain registration steps automatically while still relying on the user to

guide the registration. Moreover, our experiments show that spline transformations

do not perform well in the presence of local distortions. In order to cope with this

problem, we will consider formulations of registration based on diffusion, first-order

div-curl, and curvature regularizer. These lead to a range of non-parametric trans-

formations.
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Registration
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6.1 Introduction

In this chapter, we develop a variational approach to map endometrial implants from

2D TVUS to 2D MR images. In the previous chapter, we showed that one of the

main challenges in TVUS-MR image registration is to correlate TVUS images to MR

images. Generally, the small endometrial implants and their depth of infiltration are

only visible in TVUS (see Fig. 6-1 (a)) while MR gives an accurate anatomical location

of large implants (see Fig. 6-1 (b)) [26]. TVUS has relatively poor spatial and tissue

contrast resolution compared with MR. Its images have low resolution. It has a small

field of view and has a short range of penetration due to the use of a high-frequency

transducer. These artifacts as well as multi-modality and soft tissue deformations

make TVUS-MR registration challenging, especially in the design of a robust intensity
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(a) TVUS Slice (b) MR Slice

Figure 6-1: The most commonly used preoperative imaging modalities for detecting
endometriosis: (a) TVUS and (b) MR images with a small endometrial implant. This
example illustrates that TVUS reveals the depth of infiltration when MR does not
but provides a global map of the location of the lesions with respect to the anatomy.

similarity measure. Therefore, our solution to this problem must lie completely in

features-based approach, as concluded in Chapter 5. However, the main drawback of

this method is that manually selecting dense point correspondences is a challenging

and time-consuming process. To reduce the potential expert error and interaction

time, we use a parametrization-based approach between shape contours to define

dense correspondences. To this end, the expert first segments the organs and selects

a few point correspondences. More point correspondences are then created using

parametrization between each adjacent points. It is worth to note that the implants

can be just seen in the TVUS images, so that there is no corresponding points at

implants. We use a variational method to obtain a high accuracy solution of the PDEs

representing the displacement field. The idea for our variational approach is to model

the deformable image registration as a deformation process of certain material driven

by internal forces. We use three different types of regularizer (internal forces). The

first regularizer is the sum of the norm of the gradients of the deformation field in each

dimension. The major disadvantage of first-order regularization is that it penalizes

flow variations too much. To alleviate this limitation we use div-curl regularizer.

Since the first-order and div-curl regularizations are sensitive to the global affine

transformation, another smoothness term which is known as curvature regularizer is
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used. This regularizer penalizes the curvature of the displacement field. Note that the

usage of the regularization functional is to maintain the quality of the deformation

field such that the deformation is an injective mapping. Furthermore, our model is

not defined on the basis of a finite set of parameters (i.e. parametric methods) and

is more suited in the case of no prior knowledge. Therefore, it has greater flexibility

than spline-based methods such as TPS and B-splines [105]. We compare our method

with the TPS [186] registration method. Experimental results illustrate the potential

and efficacy of our method and visually show that the displacement field based on

the TPS method is not as accurate as ours.

6.2 Registration Procedure

This section consists of two main parts, the first part discusses the procedure of

selecting corresponding points on the moving and reference images. In part two, we

provide solutions for three different nonlinear PDEs which are driven from different

differential operators (regularizers). In this chapter, a numerical technique based on

the finite difference method is used to solve the PDEs. Finite difference formulas for

first, second, third, and fourth derivatives are given in Table 6.1.

f (1) (x) ≈ f(x+h)−f(x−h)
2h

f (2) (x) ≈ f(x+h)−2f(x)+f(x−h)
h2

f (3) (x) ≈ f(x+2h)−2f(x+h)+2f(x−h)−f(x−2h)
2h3

f (4) (x) ≈ f(x+2h)−4f(x+h)+6f(x)−4f(x−h)+f(x−2h)
h4

Table 6.1: Central finite difference formulas for first, second, third, and fourth deriva-
tives.

6.2.1 Correspondence by Arc-Length Parametrization

Finding the dense correspondences between soft tissue organs i.e. bladder, rectum,

uterus and ovaries in both TVUS and MR data is a challenging task, even for an
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(a) Arc-length parametrization (b) Bisection arc-length parametrization

Figure 6-2: Examples of establishing correspondences by arc-length parametrization.
(a) shows equally spacing point on each contour with a known starting and ending
points. (b) shows equally spaced point on each curve segment (◦). Looking blue
points on (b), we can see that points on (a) are wrong
.

expert. Therefore, the following strategy has been developed to resolve this problem.

First, the available soft tissue organs in the TVUS moving image M and in the cor-

responding 2D MR reference slice F are segmented by an expert. This step helps

to construct two sets of curves, CM and CR, representing the boundary of the corre-

sponding organs in both images. The simplest approach to establish correspondences

between shape contours is to select a starting point on each contour and equally space

an equal number of points on each boundary. However, as we see in Figure 6-2 (a),

equally spacing point on each contour with a known starting point does not give a

reasonable group-wise correspondence, and can lead to very poor models. To solve

this problem, an expert manually selects a few points (normally, five to ten points) at

each pair of curves. Finally, arc-length parametrization is used between each adjacent

points to establish dense correspondences. Therefore, two new sets of N points, qj

and pj (j = 1, ..., N), between the two images are established. As we see in Fig-
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ure 6-2 (b), our strategy gives a reasonable group-wise correspondence, and can lead

to accurate correspondences. This figure depicts a moving curve (red curve) and a

reference curve (green curve). Points are shown with two different colors, the blue

points are the manually selected points and black points generated using bisection

arc-length parametrization. One of the main advantages of the bisection arc-length

parametrization method is that selected points are included in the point sets which is

not normally the case in the classical arc-length parametrization method; this leads

to better registration accuracy.

6.2.2 Densification

After establishing dense point correspondences, a general class of rigid transformation

may be applied to remove rotation and translation between the two images. The

operator uses corresponding points to compute the rigid model parameters.

The deformable registration computes the displacement field, U : R2 → R2, that

minimizes an energy functional consisting of sum of square residuals of corresponding

points (qj, pj) and a regularization term:

E[U ] =
λ

2

N∑
j=1

‖qj + U(qj)− pj‖2
2+

(1− λ)

2
R [U ] (6.1)

where Ω = [0, 1]2 is the image domain and 0 ≤ λ ≤ 1 is a smoothing parameter. R is

a regularizer term. The most bewildering point in image registration is ill-posedness

of the problem. Without loss of generality, a problem is well-posed in the sense of

Hadamard if it has a solution which is unique and depends continuously on the data;

otherwise it is known as ill-posed. From a mathematical point of view, the regularizer

should make the registration problem well-posed, i.e., leads to a unique minimizer and

preferably to a convex objective function [105]. In this chapter, we examine different

approaches to address ill-posedness by adding a regularizer R. The idea is to measure

quality of different regularizers in the TVUS-MR image registration problem and to

choose the best candidate with respect to the measure of choice. Since the regularizer

R is a differential operator and the choice of the differential operator is crucial for an
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effective registration, we try different choices of the differential operator which leads

to different displacement fields and also to different EL systems of coupled nonlinear

PDEs. We provide solutions for three different cases:

1. Diffusion regularizer, defined as sum of the norm of the gradients of the defor-

mation field in each dimension:

R[U ] =

∫
Ω

‖∇U‖2
2 dΩ (6.2)

2. Divergence and curl regularizer, by which the deformation is considered as the

result of two types of differential operators, namely the curl and divergence

operators. The curl operator is responsible for the vorticity of the deforma-

tion field while the divergence operator is responsible for compressibility of the

deformation field:

R[U ] =

∫
Ω

‖∇ · U‖2
2︸ ︷︷ ︸

div.

dΩ +

∫
Ω

‖∇ × U‖2
2︸ ︷︷ ︸

curl

dΩ (6.3)

3. Curvature regularizer, penalizes the curvature of the displacement field:

R[U ] =

∫
Ω

‖4U‖2
2 dΩ (6.4)

6.2.2.1 Diffusion Regularizer

The key here is to apply the diffusion regularizer which has already been employed

in the area of optical flow [77] and image registration [78, 187] into our registration

formulation (Equation (6.1)). The resulting scheme is called diffusion registration. To

make Equation (6.1) more general and to permit its formulation as a EL equation we

use an index function δq, with δq : Ω → {0, 1}, δq (X) = 1 if X ∈ q and 0 otherwise.

We rewrite the cost functional of Equation (6.1) as:

E [U ] =

∫
Ω

(
λ

N∑
j=1

δq (X) (qj + U (X)− pj)2 + (1− λ) ‖∇U (X)‖2
2

)
dX (6.5)
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where ∇ is the gradient operator. In order to minimize Equation (6.5) we apply EL.

Let’s assume the energy functional in integral form to be:

E[U ] =

∫
Ω

L
(
X,U (X) , U (1) (X)

)
dX (6.6)

where U (1) (X) = ∂U
∂X

. The EL equation is:

∂L

∂U

(
X,U (X) , U (1) (X)

)
− d

dX

∂L

∂U (1)

(
X,U (X) , U (1) (X)

)
= 0 (6.7)

Therefore, choosing the first-order derivative of the displacement field U = [u1, u2] as

a regularizer leads to an EL system of two second order nonlinear elliptic PDEs:

µ

N∑
j=1

δq (X) (qj + U (X)− pj)−
(
∂2U

∂x2
+
∂2U

∂y2

)
=

 0

0

 (6.8)

where µ = λ
1−λ . To solve the PDEs in Equation (6.8) numerically, a simple finite

difference method is employed with the homogenous Neumann boundary condition.

Discretization of Equation (6.8) with finite differences leads to a sparse linear system

that can be solved by the Successive Over-Relaxation (SOR) method. SOR requires

an initial estimate U = U0, and follows the iteration:

ut+1
h,w,` = βuth,w,` − ω

(4+µδq(X))

[
µ

(
N∑
j=1

δq (X) (qj,` − pj,`)

)

−
(
ut−1
h,w−1,` + ut−1

h+1,w,`

)
−
(
uth,w+1,` + uth−1,w,`

) ]
(6.9)

where t ∈ N is the iteration number, β = 1 − ω, ` = {1, 2}, h = 1, . . . , H,

w = 1, . . . ,W , H and W are the height and width of the moving image, respec-

tively and ω is the relaxation factor. Note that, iterations typically stop when some

measure of the distance between ut+1 and ut falls below a predefined tolerance. After

computation of the new iteration variable ut+1, we are able to obtain a new image

M(x + u1, y + u2) via interpolation. Note that, one of the most interesting features

of the diffusion registration method is its speed. This makes this scheme very useful

for high resolution applications. Figure 6-3 shows the registration results for diffusion

registration. The value of λ is 0.5. Figure 6-3 (d) depicts that the diffusion regularizer
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cannot find the exact deformation between two images. This is due to the fact that,

the diffusion method penalizes flow variations too much. Therefore, it is necessary to

provide solution for Equation (6.1) with different types of regularizer.

(a) MR (b) TVUS

(c) Registered TVUS (d) Contour+Overlap (e) Deformed Mesh (f) Flow Field

Figure 6-3: Registration results for diffusion regularizer. (a) and (b) depicts the
MR and the TVUS image, respectively. (d) shows the overlap images where the top
right and the bottom left belong to the deformed TVUS and also the top left and
the bottom right belong to the MR data. (c), (e), and (f) illustrate the resulting
deformation.

6.2.2.2 Divergence and Curl Regularizer

As described in chapter 3, there are various transformation models that can be used

to disregard the irregularities resulting from the misalignment of the similarity metric

during optimization procedure. Generally, these transformations play an important

role in removing or compensating undesired irregularities in the deformation field

to make it smooth. Another transformation model that is defined in this section

is divergence and curl regularizer. To date, this regularizer has just been used in

intensity-based image registration [188–190]. In this section, we show an application

of this regularizer to feature-based TVUS-MR image registration.

This regularizer is based on Helmholtz’s decomposition theorem [189, 190]. The

theorem states that a vector field with a suitable boundary condition is completely

estimated if both its curl and divergence are defined everywhere. Note that in a

95



bounded region, boundary conditions must be used to uniquely estimate the smooth

vector field. On the other hand, in an unbounded region, both the curl and divergence

of the vector field are assumed to be vanished at infinity [190]. In other words, any

smooth vector field U that vanishes at infinity can be decomposed into an irrotational

(curl-free) and a solenoidal (divergence-free) vector,

U = Udiv + Ucurl (6.10)

By taking the curl Ucurl and divergence Udiv of Equation (6.10), respectively, we

obtain:  ∇ · U = ∇ · Udiv
∇× U = ∇× Ucurl

(6.11)

Equation (6.11) indicates that the solenoidal component is related to the curl of the

function and the irrotational component is related to the divergence of the function.

The curl (vorticity) accounts for the presence of a rotating motion, while the diver-

gence is related to the presence of sinks or sources in the deformation field. Therefore,

once both the curl and divergence of a vector are specified, the function fully deter-

mined [191].

Now, we apply the divergence and curl regularizer into our registration formula-

tion (Equation (6.1)). The resulting scheme is known as div-curl registration. As

mentioned previously, to make Equation (6.1) more general and to allow its formula-

tion as a EL equation we use an index function δq, with δq : Ω → {0, 1}, δq (X) = 1

if X ∈ q and 0 otherwise. We rewrite the cost functional of Equation (6.1) as:

E [U ] =

∫
Ω

(
λ

N∑
j=1

δq (X) (qj + U (X)− pj)2 +

(1− λ)
[
ς ‖∇ · U (X)‖2

2 + (1− ς) ‖∇ × U (X)‖2
2

])
dX (6.12)

where λ is a positive scalar and balances the amount of smoothing and ς is a trade-

off between the vortex particles (curl) and source and sink particles (divergence).

Therefore, choosing divergence and curl of the displacement field U = [u1, u2] as a
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regularizer leads to the EL system of two second order nonlinear elliptic PDEs:

µ
N∑
j=1

δq (X) (qj,1 + u1 (X)− pj,1)−
(
ς
∂2u1

∂x2
+ (1− ς) ∂

2u1

∂y2
+ (2ς − 1)

∂2u2

∂x∂y

)
= 0

µ

N∑
j=1

δq (X) (qj,2 + u2 (X)− pj,2)−
(
ς
∂2u2

∂y2
+ (1− ς) ∂

2u2

∂x2
+ (2ς − 1)

∂2u1

∂x∂y

)
= 0

(6.13)

where µ = λ
1−λ . It is clear from Equation (6.13) that when ς is 0.5 the div-curl

registration behaves exactly similar to the diffusion registration. To solve the PDE

in Equation (6.13) numerically, a simple finite difference method is employed with

the homogenous Neumann boundary condition. Discretization of Equation (6.13)

with finite differences leads to a sparse linear system that can be solved by the SOR

method with an initial estimate U = U0.

ut+1
h,w,1 = βuth,w,1 −

ω

(2 + µδq (X))

[
µ

(
N∑
j=1

δq (X) (qj,1 − pj,1)

)
− (1− ς) (uth+1,w+1,2

− uth,w+1,2 − uth+1,w,2 + 2uth,w,2 − uth,w−1,2 − uth−1,w,2 + uth−1,w−1,2)

−
(
ςut−1

h,w−1,1 + (1− ς)ut−1
h+1,w,1

)
−
(
ςuth,w+1,1 + (1− ς)uth−1,w,1

) ]

ut+1
h,w,2 = βuth,w,2 −

ω

(2 + µδq (X))

[
µ

(
N∑
j=1

δq (X) (qj,2 − pj,2)

)
− (1− ς) (uth+1,w+1,1

− uth,w+1,1 − uth+1,w,1 + 2uth,w,1 − uth,w−1,1 − uth−1,w,1 + uth−1,w−1,1)

−
(
ςut−1

h,w−1,2 + (1− ς)ut−1
h+1,w,2

)
−
(
ςuth,w+1,2 + (1− ς)uth−1,w,2

) ]
(6.14)

where t ∈ N is the iteration number, β = 1 − ω, h = 1, . . . , H, w = 1, . . . ,W , H

and W are the height and width of the moving image, respectively and ω is the

relaxation factor. Note that, iterations typically stop when some measure of the

distance between ut+1 and ut falls below a predefined tolerance. Figure 6-4 shows

the registration results for div-curl registration with different ς, i.e., in the second

row ς is set to 0.5, in the third row ς is set to 0.3, and in the fourth row ς is set
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to 0.7. The value of λ is 0.5. In the second row the div-curl registration behaves

similar to the diffusion registration. Comparing the third and fourth rows show that

when the deformation field is estimated by assigning more weight to the divergence

operator, the registration has more accurate local registration accuracy. The blue

rectangles in Figure 6-4 (d) show how the structure is deformed with different ς. The

disadvantage of this method is that the mesh folding or irregularities in the estimated

deformation field is not guaranteed and the implementation of 3D/2D registration

using this method is not trivial at all.
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(a) MR (b) TVUS

ς = 0.5

ς = 0.3

ς = 0.7
(c) Registered TVUS (d) Contour+Overlap (e) Deformed Mesh (f) Flow Field

Figure 6-4: Registration results for div-curl registration with different ς. (a) and (b)
depicts the MR and the TVUS image, respectively. (d) shows the overlap images
where the top right and the bottom left belong to the deformed TVUS and also the
top left and the bottom right belong to the MR data. (c), (e), and (f) illustrate
the resulting deformation. When ς = 0.5 the registration behaves similar to the
diffusion registration. When ς = 0.3 the divergence operator has less influence on the
estimating deformation field than curl operator. When ς = 0.7 the curl operator has
less influence on the estimating deformation field than divergence operator.
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6.2.2.3 Curvature Regularizer

One of the main problems with the div-curl and diffusion registration is that they are

sensitive to initial positioning of the images to be aligned, since the deformation field

is always estimated iteratively. To estimate a good initial position, generally a rigid or

a linear affine preregistration step must be performed. If the initial rigid registration

is not near the solution, the deformable registration procedure may converge poorly.

To solve this issue, Fischer and Modersitzki [78,79,192,193] propose a non-parametric

fully intensity-based registration technique which relies on a curvature-based penaliz-

ing term. They proof that this approach not only estimate smooth deformation fields

but also permits for an automatic rigid registration. Thus, in contrast to the diffusion

and div-curl registration techniques, the pre-registration step becomes redundant.

Now, let’s apply the curvature regularizer (Equation (6.4)) into our registration

formulation (Equation (6.1)). The resulting scheme is known as curvature registra-

tion. Similar to our two previous methods, to make Equation (6.1) more general

and to permit its formulation as a EL equation we use an index function δq, with

δq : Ω→ {0, 1}, δq (X) = 1 if X ∈ q and 0 otherwise. We rewrite the cost functional

of Equation (6.1) as:

E [U ] =

∫
Ω

(
λ

N∑
j=1

δq (X) (qj + U (X)− pj)2 + (1− λ) ‖4U (X)‖2
2

)
dX (6.15)

where 4 is the Laplacian operator. Choosing second order derivative of the displace-

ment field as a regularizer leads to the EL system of two fourth order nonlinear elliptic

PDEs:

µ
N∑
j=1

δq (X) (qj + U (X)− pj) +

(
∂4U

∂x4
+
∂4U

∂y4

)
=

 0

0

 (6.16)

To solve the PDEs a finite difference scheme was used while the free boundary con-

ditions (4U = 0) are considered. Discretization of Equation (6.16) with finite differ-

ences leads to a sparse linear system that can be solved by the SOR method. SOR
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requires an initial estimate U = U0, and follows the iteration:

ut+1
h,w,` = βuth,w,` − ω(

12+µ
N∑

j=1
δq(X)

)
[
µ

(
N∑
j=1

δq (X) (qj,` − pj,`)

)

+
(
ut−1
h,w−2,` − 4ut−1

h,w−1,` − 4ut−1
h+1,w,` + ut−1

h+2,w,`

)
(6.17)

+
(
uth,w+2,` − 4uth,w+1,` − 4uth−1,w,` + uth−2,w,`

) ]
where t ∈ N is the iteration number, ` = {1, 2}, β = 1 − ω, h = 1, . . . , H, w =

1, . . . ,W , H and W are height and width of moving image, respectively and ω is

relaxation factor. Figure 6-5 shows that the overall accuracies of the registration along

the boundary of organs are good and also the method provides smooth deformation.

However, the curvature regularization provides smoother and more precise results

than the diffusion and div-curl registration schemes.

(a) MR (b) TVUS

(c) Registered TVUS (d) Contour+Overlap (e) Deformed Mesh (f) Flow Field

Figure 6-5: Registration results for curvature regularizer. (a) and (b) depicts the
MR and the TVUS image, respectively. (d) shows the overlap images where the top
right and the bottom left belong to the deformed TVUS and also the top left and
the bottom right belong to the MR data. (c), (e), and (f) illustrate the resulting
deformation.
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6.3 Experimental Results

6.3.1 Material

The experiments are conducted on ten patients who have small endometrial implants

in the pelvic area. For each patient, TVUS and MR imaging are used to examine

their pelvic organs. Images used for the experiments have an average image size of

300× 300. The reference MR slice from MR volume that corresponds to the moving

TVUS image is manually chosen by an expert. Therefore, we assume that the TVUS

slice is parallel to the corresponding MR slice. The soft tissue organs such as bladder,

uterus, ovary, and rectum in both TVUS and MR slices are manually segmented by

an expert and then manually selects 5 to 10 points at each pair of curves. Finally,

arc-length parametrization has been used between each adjacent points to establish

dense correspondences. We compare the diffusion, div-curl, and curvature registration

schemes with TPS which has been proposed by Mitra et al. [186].

6.3.2 Results and Discussion

In this section, the proposed methods are discussed and compared with a method

from state-of the-art. For all the experiments, we assumed that the reference MR slice

from MR volume that corresponds to the moving TVUS image is manually chosen

by an expert and they are rigidly pre-registered for diffusion and div-curl registration

schemes. Curvature and TPS registration schemes do not necessarily require an

additional rigid pre-registration step as they are invariant to such a transformation.

Note that µ and ω are 0.5 and 1.9, respectively for all the experiments. In the div-curl

registration, ς is 0.7 which means that the divergence operator has more influence on

estimating deformation field. The aim of these experiments is to provide a comparison

of the four different registration techniques such as diffusion, div-curl, curvature, and

TPS [186] and discover which regularizer and registration technique work best in our

problem.

We illustrate the registration results on various real-world data. Registration ac-

curacy is evaluated in terms of Dice Similarity Coefficient (DSC), Hausdorff Distance
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(HD), Target Registration Error (TRE), and Correlation Coefficient (CC). Mean-

while, two experts (a pelvic radiologist and a gynecologic surgeon) evaluated the

quality of the results. In this manner, we setup a registration quality score called

1-to-5 rating scale where 5 is excellent, 4 is good, 3 is fair, 2 is poor, and 1 is bad.

Reminder. The DSC assesses the global overlap of the segmented organs. A high

DSC value indicates a good overlap between the tissue regions after registration.

However, a high DSC does not always mean a good contour overlap. Therefore, HD is

used to evaluate the contour accuracy. A low HD value shows good contour overlap.

TRE is described as the mean square distance between corresponding points not

used in estimating the deformation. A low TRE value shows good local registration

accuracy. In our experiments, we select anatomical landmarks in the patient’s body

such as boundary of organs and their internal anatomical structures as target points

to estimate the local registration accuracy to validate our result. The target points are

10 points which are not used for registration. A CC shows how precise the relationship

is between two segmented regions. The value of a CC also ranges from 0, indicating

no correlation between two overlap segmented regions, to 1, indicating very highly

correlation.

Our method is compared with the method proposed by Mitra et al. [186]. The

registration accuracy that measures contour overlap are given in Table 6.2. It is clear

that the curvature registration method outperforms the other methods in terms of

contour overlap accuracy (DSC and HD). TRE and CC are given in Table 6.3. The

TRE values in Table 6.3 indicates that the curvature registration method provides

high local registration accuracy. In this table, the CC values shows that the rela-

tionship between two segmented regions normally is too low. However, the curvature

registration method provides the highest CC value. This is due to the fact that in

the curvature registration method, the boundary of segmented region which has dark

intensities in both TVUS and MR images is aligned more precisely than other com-

pared methods which leads to the higher CC value. Experts’ evaluation are given in

Table 6.4. In all the experiments, the highest value of the DSC, HD, TRE, CC, and
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experts’ evaluation is for the curvature registration method.

DSC HD

Patient TPS Curvature Div-Curl Diffusion TPS Curvature Div-Curl Diffusion
1 0.9955 0.9960 0.9801 0.9743 1.1214 0.6712 3.5942 4.3481
2 0.9708 0.9803 0.9466 0.9276 1.9568 1.1499 2.0544 2.9765
3 0.9904 0.9941 0.9797 0.9422 1.1402 0.7853 1.7014 2.6230
4 0.9781 0.9883 0.9854 0.9597 1.7532 1.0931 5.0176 7.3328
5 0.9925 0.9927 0.9602 0.9548 1.3466 0.8287 2.0016 5.1084
6 0.9902 0.9952 0.9876 0.9882 1.2291 0.3013 1.6174 1.5720
7 0.9889 0.9891 0.9373 0.9301 1.4953 1.1806 8.8649 9.7328
8 0.9948 0.9973 0.9922 0.9915 0.4344 0.0463 0.6659 0.5814
9 0.9916 0.9917 0.9888 0.9831 0.9976 0.5457 1.5029 1.9066
10 0.9910 0.9964 0.9733 0.9718 1.3507 0.1069 2.6997 2.1305

mean 0.9884 0.9921 0.9731 0.9623 1.2825 0.6709 2.9720 3.8312
std. dev. 0.0078 0.0051 0.0189 0.0233 0.4190 0.4171 2.4056 2.8566

Table 6.2: Comparison between TPS [186], curvature, div-curl, and diffusion regis-
tration methods. A high DSC value means a good contour region overlap, while a low
HD value signifies a good boundary overlap. Bold values indicate the best results.

TRE CC

Patient TPS Curvature Div-Curl Diffusion TPS Curvature Div-Curl Diffusion
1 0.6513 0.2849 1.1989 2.7626 0.7473 0.7526 0.7285 0.7184
2 0.5592 0.4486 0.8826 1.3070 0.5564 0.6263 0.5039 0.5426
3 0.3763 0.2478 0.5140 1.4427 0.7843 0.7947 0.7659 0.7323
4 0.5084 0.4356 2.0522 4.3997 0.8563 0.8842 0.8812 0.8708
5 0.5521 0.3315 0.8517 3.1672 0.5741 0.6024 0.4834 0.5312
6 0.4671 0.1265 0.8087 0.8288 0.3395 0.3881 0.3807 0.3067
7 0.6280 0.4545 3.5034 4.9861 0.8080 0.8105 0.7955 0.8027
8 0.2042 0.0913 0.4998 0.6423 0.5112 0.5570 0.4903 0.4891
9 0.4988 0.2238 1.2034 1.2983 0.6969 0.7349 0.6515 0.6738
10 0.7429 0.0866 1.0259 1.1952 0.4096 0.4831 0.4195 0.3862

mean 0.5188 0.2731 1.1541 2.2030 0.6284 0.6634 0.6100 0.6054
std. dev. 0.1509 0.1438 0.9649 1.5403 0.1766 0.1583 0.1759 0.1835

Table 6.3: Comparison between TPS [186], curvature, div-curl, and diffusion regis-
tration methods. A low TRE value means good local registration accuracies around
target landmarks while a high CC value means a good correlation inside segmented
regions after registration. Bold values indicate the best results.

Figures 6-6 and 6-7 depict the registration results for patients 1 and 2. The

registration results for the TPS registration method [186], curvature, div-curl, and

diffusion registration schemes are illustrated in rows. In both figures, the first row

illustrates the reference image (MR) and moving image (TVUS). As shown, endome-

trial implants are seen in TVUS images and there is no evidence of their existence
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Radiologist Surgeon

Patient TPS Curvature Div-Curl Diffusion TPS Curvature Div-Curl Diffusion
1 3 5 3 3 4 5 3 3
2 4 4 4 3 4 4 3 3
3 4 5 2 3 3 5 2 2
4 2 5 4 4 5 5 4 2
5 4 5 2 3 3 5 3 2
6 3 4 3 3 4 5 4 3
7 5 5 4 4 5 5 3 3
8 4 4 2 3 3 4 3 2
9 3 4 3 3 3 4 3 3
10 4 5 3 2 5 5 4 2

mean 3.6 4.6 3 3.1 3.9 4.7 3.2 2.5
std. dev. 0.84 0.52 0.82 0.57 0.87 0.48 0.63 0.53

Table 6.4: Experts’ evaluation of the TPS [186], curvature, div-curl, and diffusion
registration methods.

in MR images. In Figure 6-6 the endometrial implant is located above the uterus, so

that, we chose point correspondences around the uterus to align 2D TVUS image with

the MR image. For localizing the endometriosis we applied the displacement field to

the yellow curve in the TVUS image and we find the location of endometriosis in MR

frame. In Figure 6-7 the endometrial implant is located above the bladder and it is

very close to the ovary, so that, we chose point correspondences around both the blad-

der and ovary to align 2D TVUS image with the MR image. Based on these results,

we can conclude that the diffusion and div-curl registration methods do not provide

an accurate and smooth displacement field to localize the endometriosis. In addi-

tion, these figures show that the diffusion and div-curl registration methods cannot

precisely find the deformation between images. The TPS and curvature registration

methods can find more precise displacement fields. However, the displacement field

for the TPS is not as accurate as the curvature method. For instance, as illustrated

in Figure 6-6 (f), we can see that the localization based on the TPS [186] has problem

at the top of the boundary. The DSC, HD, TRE, CC, and experts’ evaluation results

in Tables 6.2, 6.3, and 6.4 and the experimental results in Figure 6-6 and 6-7 show

that the curvature registration method provides more accurate displacement field and

more precisely preserve information inside the registered images.
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(a) Reference Image (b) Moving Image

Patient1: TPS

Patient1: Curvature

Patient1: Div-Curl

Patient1: Diffusion

(c) Registered M (d) Overlap (e) (d)+Contour (f) Localization (g) Deformed Mesh (h) Flow Field

Figure 6-6: Registration results for TPS [186], curvature, div-curl, and diffusion meth-
ods in rows. (a) and (b) show MR and TVUS image. Small endometrial implant which
is just visible in TVUS image is depicted by yellow curve. (c) shows warped TVUS
image. (d) and (e) demonstrate overlay images where the top right and the bottom
left belong to the MR data and also the top left and the bottom right belong to the
deformed TVUS data. (f) shows the location of the endometrial implant in the MR
frame. (g) and (h) depict the deformed mesh and displacement field, respectively.
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(a) Reference Image (b) Moving Image

Patient2: TPS

Patient2: Curvature

Patient2: Div-Curl

Patient2: Diffusion

(c) Registered M (d) Overlap (e) (d)+Contour (f) Localization (g) Deformed Mesh (h) Flow Field

Figure 6-7: Registration results for TPS [186], curvature, div-curl, and diffusion meth-
ods in rows. (a) and (b) show MR and TVUS image. Small endometrial implant which
is just visible in TVUS image is depicted by yellow curve. (c) shows warped TVUS
image. (d) and (e) demonstrate overlay images where the top right and the bottom
left belong to the MR data and also the top left and the bottom right belong to the
deformed TVUS data. (f) shows the location of the endometrial implant in the MR
frame. (g) and (h) depict the deformed mesh and displacement field, respectively.
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6.4 Conclusion

In this chapter, we have combined bisection arc-length parametrization with varia-

tional point-based registration to semi-automatically register and fuse MR with TVUS

images to localise endometrial implants. The main purposes of this chapter are to pro-

vide a comparison between the variational registration approaches and spline-based

registration as well as to investigate which regularizer and registration technique work

best in TVUS-MR registration. This is a very important task as there is currently

no system available to register TVUS to MR images.

The advantages of using our variational formulation are twofold. First, it allows us

to employ different types of regularizer (a differential operator) such as diffusion, div-

curl, curvature, or even higher order derivatives of the displacement field. Last but not

least, this formulation assumes that the deformation model belongs to some infinite

dimension space of functions and this space is motivated by regularizer properties. In

other words, our variational formulation does not require us to specify a parametric

form as in the spline-based registration method and thus has more flexibility.

The main goal of using variational approach is to model deformation using inter-

nal forces. We use three various transformation models such as diffusion, div-curl,

and curvature to find out which of these would be the best to remove or compensate

undesire irregularities in deformation field to make it smooth while providing precise

registration accuracy. The diffusion regularizer is the sum of the norm of the gradi-

ents of the deformation field in each dimension. The main advantage of the diffusion

registration method is that it is swift. This makes this method applicable for high

resolution applications. The major disadvantage of diffusion regularizer is that it

penalizes flow variations too much, so that to alleviate this limitation we use another

regularizer. Another transformation model that has been used is divergence and curl

operator. The curl operator is responsible for the vorticity of the deformation field

while the divergence operator is responsible for compressibility of the deformation

field. The main advantages of using this regularizer are that a deformation field with
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a suitable boundary condition is completely estimated and it is as fast as diffusion

method. However, selecting ς (the trade-off between the curl and divergence) is not

an easy task, so that, it can easily lead to the mesh folding or irregularities in the esti-

mating deformation field. In addition, implementing of 3D/2D registration using this

scheme is very complex. Since the diffusion and div-curl registration methods are sen-

sitive to global affine transformation, another regularization term that penalizes the

curvature of the displacement field has been also proposed. In contrast with diffusion

and div-curl registration methods, the pre-registration step becomes redundant.

Based on the advantages and drawbacks of variational and spline-based registra-

tion approaches and our experimental results, we find that the curvature registration

method is an appropriate choice as it can provide high registration accuracy. In the

next chapter, an automatic feature-based registration method will be proposed to

even much more decrease user interaction by establishing point correspondences au-

tomatically while still relying on the user to segment corresponding organs in both

TVUS and MR images.
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Chapter 7

One-Step ICP-Based 2D/2D
Registration

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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7.3.2 Variational One-Step ICP . . . . . . . . . . . . . . . . . . . . . . 118
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7.1 Introduction

We have seen already that it is important to establish appropriate dense correspon-

dences between the TVUS and MR images in order to register them to localise en-

dometrial implants and provide information about depth of infiltration. Without loss

of generality, an intuitive definition of appropriate correspondences is that correspond-

ing points must be in physical vicinity when the curves are manually warped [194].

In this context, previously we had discussed three semi-automatic variational point-

based registration methods. In the previous chapter on building correspondences, it

was assumed that an expert segmented the organs in both the TVUS and MR im-

ages and selected a few corresponding points. More point correspondences were then

created using arc-length parametrization between each adjacent points. However, the

110



main disadvantage of this method lies in manual point correspondence selection. It

is often very hard to select points exactly and is a time consuming process. Thus, to

reduce the potential expert error and interaction time, we develop in this chapter an

automatic 2D/2D deformable registration method to establish point correspondences

and estimate deformation between curve correspondences.

Contour-based registration (also known as shape registration) is the basis for

many computer vision techniques [195] and medical image analysis [196]. Therefore,

many methods regarding contour-based registration can be found in the literature,

e.g., [140, 195, 197–201]; see [202] for a general survey. Most of these methods are

based on explicit contour representations given by point sets which can be connected

by lines or a higher order curve (i.e. spline curves) to form a shape. One of the

most used registration algorithms is the ICP algorithm [135], at which we will take

a closer look in Section 7.3.1. As the name suggests, it is an iterative procedure

that assigns an initial correspondence between the point sets, refines the alignment

by means of minimising the distance between pairs of points, then recomputes the

correspondences and repeats the alignment step until convergence. In other words,

classical ICP has two main steps that are iterated until convergence: (1) closest point

computation and (2) transformation estimation. The advantages of ICP algorithms

are obvious: they provide good results, if the sought transformation is not too large

and are easy to implement. In order to improve the robustness and the computational

efficiency of classical two-step ICP, a distance transform was introduced by Fitzgibbon

et al. [138]. It is a slightly different distance-based correspondence approach, since

it uses a distance map as a basis for establishing correspondences. Without loss of

generality, let us briefly discuss about generating a distance transform. Consider

the contour and the space in which the contour lies. For each point in space, we

can assign a number, which is just the distance to the nearest point on the contour.

This then defines a scalar field over the space, which is the distance map. If we

regularly sample this distance map over some region, it reduces to a distance map

image which includes the original contour. In Fitzgibbon et al.’s [138] method, the

distance transform allows them to merge the two inner steps of classical ICP [135]

111



into only one. Fitzgibbon et al.’s one-step ICP computes rigid 2D/2D and 3D/3D

registration of a single pair of curves and surfaces, respectively. The registration error

is minimized using the Levenberg-Marquardt algorithm.

In this chapter, we have extended Fitzgibbon et al.’s one-step rigid ICP by using

a variational procedure to obtain nonlinear deformations. Our registration method

has two main steps: first, the MR and TVUS data are manually segmented by an

expert. Second, our deformable ICP method is used to compute a dense deformation

field while establishing point correspondences automatically. In this work, we use a

variational framework leading to a well-defined one-step formulation of ICP handling

multiple curve correspondences. Experimental results show the potential and efficacy

of our method. The proposed method compares favorably with classical two-step

ICP and Thin-Plate Spline Robust Point Matching (TPS-RPM) [150] on several data

sets. The results obtained from semi-synthetic and real-world data show that the

performance of the proposed method is better than the two other methods.

7.2 2D Euclidean Distance Transform

The Distance Transform (DT) maps each image pixel into its smallest distance to

regions of interest [203]. It is a fundamental geometrical operator with great appli-

cability in computer vision and graphics, shape analysis, pattern recognition, image

registration, optical flow, and computational geometry [195, 196, 204, 205]. The idea

of a DT is quite simple, but it is nevertheless important to explain some concepts

and conventions for a correct understanding of this work, especially Section 7.3.2.

The key problem in DT is to calculate the distance from each point of the domain

to the closest point of the source data set. In image processing terminology, this is can

be defined in the following manner. Let I : Ω ⊂ Z2 → {0, 1} be a binary image where

the domain Ω is convex and, in particular, Ω = {1, . . . , hmax}× {1, . . . , wmax}, where

hmax and wmax are the height and width of the image, respectively. By convention,

1 is white and 0 is black. Hence we have an object O demonstrated by all the white

pixels:

O = {p ∈ Ω | I(p) = 1} (7.1)
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(a) Binary Image (b) Euclidian Distance Image

Figure 7-1: Numerical example of distance transform. (a) shows a binary image. (b)
shows the Euclidean distance of each black pixel to the nearest white pixel.

The set O, which is the white pixel (p) in Ω, is called object whereas the elements of

its complement, O−1, which is the set of black pixel (p′) in Ω, is called background.

In fact, mathematically speaking, the DT is the transformation that generates a map

D whose value in each pixel p′ is the smallest distance from this pixel to O:

D (p′) := min
{
d (p′, p) | p′ ∈ O−1

}
= min {d (p′, p) | I(p′) = 0} (7.2)

The image D is called the distance map of O. D can also be called a distance

transform, if there is no ambiguity between the image D and the transformation

(DT) that generated it. Note that, O must contain at least one pixel, otherwise

the output of the DT is undefined. In addition, d (p′, p) is generally taken as the

Euclidean distance, given by:

d (p′, p) = ‖p′ − p‖2 =

√
(p′x − px)

2 +
(
p′y − py

)2
(7.3)

Figure 7-1 depicts a numerical example of Euclidean DT. For each pixel in Figure 7-1

(a), the corresponding pixel in the DT of Figure 7-1 (b) holds the smallest Euclidean

distance between the black pixel and the object.

Various metrics, in addition to the Euclidean, one can be used to compute the

distance in Equation (7.2). Frequently used examples are the city-block (d1) and
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chessboard (d∞), defined by:

d1 (p′, p) = ‖p′ − p‖1 = |p′x − px|+
∣∣p′y − py∣∣

d∞ (p′, p) = ‖p′ − p‖∞ = max
{
|p′x − px| ,

∣∣p′y − py∣∣} (7.4)

Figure 7-2 shows distance images using different distance functions. Note that in this

chapter, we will consider the Euclidean distance function to generate DT images.

(a) Binary Image (b) Euclidian Distance Image

(a) City-Block Distance Image (b) Chessboard Distance Image

Figure 7-2: An example of generating distance images using (b): Euclidian distance
function, (c) city-block distance function, and (d): chessboard distance function. In
(a), the dot in centre of each green circle (

⊙
) indicates a white pixel.
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7.3 Iterative Closest Point Algorithms (ICP)

A general problem in medical image analysis is the registration of point sets [48–51,

53,54,138,186]. Generally, a set of point samples from the organ or tissue is obtained

from different images. As mentioned in Chapter 3, the main goal of registration is

to bring the data into a common reference frame by estimating the transformations

between the data sets. However, this is a difficult task, as correspondences between

the point sets are unknown a-priori. A common approach to tackle the problem is the

class of algorithms based on the ICP technique introduced by Besl et al. [135]. The

classical ICP [135] has two main steps that are iterated until convergence: (1) clos-

est point computation using the nearest neighbour algorithm and (2) global rigid

transformation estimation. ICP variant methods can be differentiated by the type

of transformation they estimate and by the procedure used to obtain these trans-

formations. As rigid ICP, deformable ICP has two inner steps. Step (2) becomes

deformation estimation [134]. This can be done by minimizing an energy including a

data term and a smoothing term. The reasons that ICP approach has been driving

the attention of researchers over the past decade are due to its simplicity and its

performance. Although the initial estimate must be reasonably close to the solution,

the process converges relatively fast.

In this section, we remove one of the basic characteristics of ICP; its closed-form

inner loop; and employs instead a variational formulation to compute a dense de-

formation field. While this approach has its roots in Fitzgibbon et al.’s one-step

rigid ICP [138], it extends beyond the latter in its emphasis on the estimation of

nonlinear deformation most notably with respect to variational formulation. Since

our new formulation has one energy functional to simultaneously establish correspon-

dences and estimate deformation field, it improves computational time and reduces

the dependence of the classical two-step ICP on the initial estimate.

To employ the ICP approach in order to solve our TVUS-MR registration prob-

lem, firstly, the soft tissue organs and nodules in the TVUS moving image M and

in the corresponding 2D MR reference slice F are manually segmented by an expert.
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This step constructs two sets of curves, CM and CR, representing the boundary of

the corresponding organs in both modalities. This is a middle ground choice uti-

lized by many 2D/2D and 3D/3D US-MR registration methods in order to reduce

the interaction time and decrease the potential expert error in selecting dense point

correspondences. Let Ω be a bounded open set of R2 representing the TVUS image,

q an arbitrary point in CM ⊂ Ω, and φ ∈ W (Ω,R2) a dense deformation vector field.

W is a Sobolev space of sufficiently smooth vector fields over Ω with appropriate

boundary conditions.

7.3.1 Variational Two-Step ICP

Contour-based registration is a difficult problem, especially for non-linear deforma-

tion. Without prior knowledge the problem is ill-posed. As prior, we use curva-

ture regularization, since in previous chapter, it provides high registration accuracy.

To establish point correspondences and estimate deformation between curve corre-

spondences we propose a variational formulation of the two inner steps of ICP with

curvature regularization:

step 1: closest point computation

ζ(q) = argmin
p∈CR

d2 (p, φ (q)) (7.5)

This defines ζ ∈ C1 (CM , CR), a function that estimates the closest-point ζ(q) on CR.

step 2: deformation estimation

φ = argmin
φ∈W

λ

∫
γ

d2 (φ, ζ (q)) dq

︸ ︷︷ ︸
data term

+ (1− λ)

∫
Ω

‖4φ‖2
2 dX︸ ︷︷ ︸

regularization term

(7.6)

where 4 is the Laplacian operator and λ ∈ [0, 1] is a smoothing parameter.

Both steps in ICP must minimize the error, and thus, ICP is guaranteed to con-

verge to a local minimum [138, 150]. Two-step ICP mainly depends on the nearest-

neighbour heuristic used in step 1 which establishes binary point correspondences.

It is easy to see that the procedure of establishing correspondences in two-step ICP
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makes it more vulnerable to local minima [150]. The question that may immediately

arise is how the two steps can be merged into a single step. Indeed merging two steps

into one would result in a single minimization that would improve the convergence

rate [138]. To achieve this, as suggested by Fitzgibbon et al. [138], we can use the

Euclidean DT. Figure 7-3 shows an example of two-step deformable ICP.

(a) Input Curves

(b) Two-Step ICP Resuts

(c) Convergence Curve

Figure 7-3: An example of two-step ICP. (a) shows initial moving (red) and reference
(green) curves. (b) depicts two-step ICP results. (c) shows the MSE at each iteration.
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7.3.2 Variational One-Step ICP

We now present our formulation of the registration problem by combining the two

steps of the classical formulation in a single step. Substituting Equation (7.5) in (7.6)

yields:

φ = argmin
φ∈W

λ

∫
CM

d2

(
φ, argmin

p∈CR

d2 (p, φ)

)
dq + (1− λ)

∫
Ω

‖4φ‖2
2 dX (7.7)

It is clear that d2

(
φ, argmin

p∈CR

d2 (p, φ)

)
= min

p∈CR

d2 (p, φ). This can be interpreted as

the fact that the cost depends on the distance to the closest point but not on the

closest point itself. This allows us to rewrite Equation (7.7) as:

φ = argmin
φ∈W

λ

∫
CM

min
p∈CR

d2 (p, φ) dq + (1− λ)

∫
Ω

‖4φ‖2
2 dX (7.8)

We observe that the data term now involves a Euclidean DT (D), since D ◦ φ =

min
p∈CR

d2 (p, φ) by definition. We can now combine D with Equation (7.8), leading to:

φ = argmin
φ∈W

λ

∫
CM

(D ◦ φ)2 dq + (1− λ)

∫
Ω

‖4φ‖2
2 dX︸ ︷︷ ︸

E[φ]

(7.9)

Equation (7.9) represents a variational problem with E as cost functional. The next

step is to compute the functional form of φ using calculus of variation.

7.3.2.1 Euler-Lagrange Equation

A function φ that minimizes E must fulfill the EL differential equation. Several nu-

merical optimization algorithms [104,105] may then be applied to solve the resulting

nonlinear equation. In Equation (7.9), the data term places constraints on the de-

formation field φ at the curve location. To make it more general and to permit its

formulation as an EL equation we use an index function δCM
, with δCM

: Ω→ {0, 1},

δCM
(X) = 1 if X ∈ CM and 0 otherwise. We rewrite the cost functional of Equa-
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tion (7.9) as:

E[φ] =

∫
Ω

(
λδCM

(D ◦ φ)2 + (1− λ) ‖4φ‖2
2

)
dX (7.10)

Let φ0 be an initial estimate that can be found by rigid registration. We follow the

iteration:

φk+1 = φk + U (7.11)

where U ∈ W is a dense displacement vector field. We restate our problem as:

min
U
E
[
φk + U

]
(7.12)

By substituting Equation (7.11) into (7.10), we obtain:

E
[
φk + U

]
=

∫
Ω

(
λδCM

(
D ◦

(
φk + U

))2
+ (1− λ)

(
‖4U‖2

2 +
∥∥4φk∥∥2

2

))
dX

(7.13)

The distance transform D is nonlinear and can be approximated by its first order

Taylor expansion around φk:

E
[
φk + U

]
=

∫
Ω

(
λδCM

(
D ◦ φk +

(
∇D ◦ φk

)
U
)2

+ (1− λ)
(
‖4U‖2

2 +
∥∥4φk∥∥2

2

))
dX

(7.14)

where ∇ = [ ∂
∂x
, ∂
∂y

]. A function U that minimizes Equation (7.12) must fulfill its EL

equation. This is written as a system of two fourth order elliptic PDEs represented

by a 2× 2 symmetric matrix equation:

µ

∫
CM

(
D ◦ φk +

(
∇D ◦ φk

)
U
) (
∇D ◦ φk

)
dq +

(
∂4U

∂X4

)
= 0 (7.15)

where µ = λ
1−λ .

7.3.2.2 Numerical Approximation

To solve Equation (7.15) numerically, we discretize the curve CM inN points q1, . . . , qN

and Ω on the rectangular pixel grid. Note that δq(X) = 1 if ∃j ∈ 1, · · · , N such that

X = qj and 0 otherwise. We consider the unknown function U = [u1, u2]> on a rect-

angular pixel grid. Therefore, the discretization of Equation (7.15) leads to a system
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Algorithm 7.1 Proposed Algorithm Pseudo-Code.

Input: A set of points from MR (p) & a set of points from TVUS (q)
Result: Warped surface (φ) % Grid of points hmax × wmax to represent φ
Initialization:
k ← 0 % Iteration counter
qk ← q + φ0 % The 2D points q rigidly register; φ0 is an initialization of φ
Compute D and ∇D from p % D and ∇D are used in equation (7.17)
while ‖∇φ‖ > ε do

Compute U by iterating equation (7.17)
qk+1 ← qk + δqkU % Update the TVUS curve
φk+1 ← φk + U % Update the TVUS image
k ← k + 1

end while

of two PDEs:

µδq (X)
((
D
(
φk (X)

)
+Dx

(
φk (X)

)
u1 (X) +Dy

(
φk (X)

)
u2 (X)

)
D`

(
φk (X)

))
+

(
∂4U

∂x4
+
∂4U

∂y4

)
= 0 for ` ∈ {x, y}

(7.16)

where D` is the derivative of D with respect to ` ∈ {x, y}. To solve the PDEs, we use

a finite difference scheme with boundary condition 4U = 0. This leads to a sparse

linear system that can be solved by SOR:

ut+1
1,h,w = βut1,h,w − A

[
µδq (X)

(
D
(
φk (X)

) ∂D
∂x

(
φk (X)

))
+ Cut2,h,w

+
(
ut+1

1,h,w−2 − 4ut+1
1,h,w−1 − 4ut+1

1,h+1,w + ut+1
1,h+2,w

)
+
(
ut1,h,w+2 − 4ut1,h,w+1 − 4ut1,h−1,w + ut1,h−2,w

) ]
ut+1
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[
µδq (X)

(
D
(
φk (X)
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(
φk (X)
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+
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) ]
(7.17)

where A = α

12+µδq(X)( ∂D
∂x (φk(X)))

2 , B = α

12+µδq(X)
(

∂D
∂y (φk(X))

)2 , t ∈ N is the SOR iteration

number, C = µδq (X)
(
∂D
∂y

(
φk (X)

)
∂D
∂x

(
φk (X)

))
, β = 1 − α, h = 1, . . . , hmax, w =
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1, . . . , wmax, hmax and wmax are height and width of M respectively, and α is the

relaxation factor. The pseudo code of our method is given in Algorithm 7.1. In

Algorithm 7.1, ε is prespecified threshold and set to be 10−5. Figure 7-4 shows an

example of one-step deformable ICP. From Figure 7-4 and 7-3, we can see that one-

step ICP provides more accurate results and converges to the global minimum faster.

(a) Input Curves

(b) One-Step ICP Resuts

(c) Convergence Curve

Figure 7-4: An example of one-step ICP. (a) shows initial moving (red) and reference
(green) curves. (b) depicts one-step ICP results. (c) shows the MSE at each iteration.
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7.4 Experimental Results

7.4.1 Material

The experiments are conducted on ten patients who have small endometrial implants

in the pelvic area. For each patient, TVUS and MR imaging are used to examine

their pelvic organs. TVUS and MR Images used for the experiments have an average

image size of 300 × 300. The reference MR slice from MR volume that corresponds

to the moving TVUS image is manually chosen by an expert. Therefore, we assume

that the TVUS slice is parallel to the corresponding MR slice. The soft tissue organs

such as bladder, uterus, ovary, and rectum in both TVUS and MR slices are manually

segmented by an expert. We compare our one-step ICP registration scheme with TPS-

RPM which has been proposed by Chui et al. [150] and two-step ICP. In addition, we

use a point-based registration method [206] as a baseline to evaluate our results.

7.4.2 Results and Discussion

We evaluate the proposed method’s performance in comparison with variational two-

step deformable ICP, TPS-RPM [150] which is one of the best non-rigid point-set

registration methods, and a point-based registration method [206]. We demonstrate

the accuracy of the proposed method by quantitative and qualitative tests on semi-

synthetic and real world data sets. The true point correspondences are established

by an expert in order to be able to use a baseline method to evaluate our results. We

also assess the results with quantitative and qualitative evaluations on semi-synthetic

data sets, generated to faithfully reproduce patient data features. We conduct a hun-

dred experiments using semi-synthetic data with artificial deformations to test various

aspects of the methods. The results are very informative. To demonstrate the appli-

cability in real applications, we also conduct ten tests on patient data. Registration

accuracy is evaluated in terms of DSC, HD, TRE, and MSE. In our experiments to es-

timate TRE, we select anatomical landmarks in the patient’s body such as boundary

of organs and their internal anatomical structures. The target points are 10 points

which are not used for registration.
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7.4.2.1 Tests on Semi-Synthetic Data

Numerous experiments on semi-synthetic data with various degrees of deformation

are performed to evaluate one-step ICP’s performance. We evaluate the proposed

method against two-step ICP and TPS-RPM. In order to generate our semi-synthetic

data, the boundary of soft tissue organs such as the bladder, uterus, ovary, and

rectum are manually segmented from different MR slices. Then, randomly generated

deformations are applied to each curve, and different algorithms are used to recover

those deformations. Note that the contours are deformed through increasingly larger

degrees of deformation by using advection [207] (see Figure 7-5, first row). The rate

of deformation varies between 15% and 75%.

The qualitative results are shown in Figure 7-5. In this figure, we use a single

uterus contour with 15%, 30%, 45%, 60%, and 75% average deformation, respectively.

Here, we use two contours, one is the deformed version (red curves in the first row

of Figure 7-5) of the other (green curves in the first row of Figure 7-5). Note that

in this figure, the green curves are the ground truth solutions. We then use one-step

ICP, TPS-RPM [150], and two-step ICP to find the best transformation to align the

template set onto the ground truth set. The registration results for each compared

method are depicted in rows of Figure 7-5. At first and second deformation level

(15% and 30%), we can visually observe that all the methods provide good results.

This is visually demonstrated by Figure 7-5 (a)-(b). In Figure 7-5 (c)-(d) we make the

registration problem more challenging. We deform the uterus contour with 45%, 60%,

and 75% average deformation, respectively. We can see that two-step ICP has much

poorer performance as compared to the proposed one-step ICP and TPS-RPM [150].

In this figure, we can also see that our method and TPS-RPM provide good results.

However, ours establish more accurate correspondences.

In order to assess the behaviour of the methods in a quantitative way, we use all

the semi-synthetic data sets and measure MSE to estimate the error between corre-

sponding points. The results of MSE for 20 2D contours with 5 degrees of deformation

are shown in Figure 7-6 (a) and (b), respectively. Figure 7-6 demonstrates one-step
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ICP, TPS-RPM, and two-step ICP performances for each average deformation. Both

one-step ICP and TPS-RPM provide accurate results. Two-step ICP gets trapped

in a local minimum. Based on these experiments, we conclude that our method has

high registration accuracy and outperforms TPS-RPM.

Input Data

One-step ICP

TPS-RPM

Two-step ICP

(a) Deformation level 1 (b) Deformation level 2 (c) Deformation level 3 (d) Deformation level 4 (e) Deformation level 5

Figure 7-5: Registration results for semi-synthetic contours. A single uterus contour
is used with 15%, 30%, 45%, 60%, and 75% average deformation, respectively. The
first row shows the reference (•) and moving (×) point sets. The reference point set
is the ground truth solution. The proposed method (second row) is compared with
TPS-RPM (third row) and two-step ICP (fourth row).
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(a) MSE between the closest point pairs

(b) MSE between the true correspondences

Figure 7-6: Comparison of one-step ICP with different methods on the semi-synthetic
data with respect to deformation level. Our method achieves high registration accu-
racy compared to the two other methods.
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7.4.2.2 Tests on Real Patient Data

For real-world data, we use a point-based registration method [206] as a baseline

to evaluate our results. In this manner, an expert manually selects control points

at each pair of curves. The reasons that we chose [206] is a comparison with the

well-known method of the state-of-the-art are given therein. The registration accu-

racy that measures overlap are tabulated in Table 7.1. It shows that our method

outperforms the other methods in terms of contour overlap accuracy. TRE and com-

putational time are tabulated in Table 7.2. It is indicated that the proposed method

provides high local registration accuracy and is fast. Tables 7.1 and 7.2 indicate that

the proposed method provides promising results as the difference with the baseline

method is the smallest one compared to other methods. Moreover, two experts com-

pared our method with the baseline method. In this manner, we setup a registration

quality score called 1-to-5 rating scale where 5 is excellent and 1 is bad. The experts’

evaluation are given in Table 7.3.

DSC HD

Patient Point-based Proposed TPS-RPM 2-step ICP Point-based Proposed TPS-RPM 2-step ICP
1 0.9943 0.9939 0.9934 0.9842 0.0799 1.2632 1.5661 4.1604
2 0.9897 0.9893 0.9867 0.9816 0.2873 1.2605 1.5345 1.9078
3 0.9946 0.9800 0.9771 0.9427 0.8088 1.6623 1.8384 3.6525
4 0.9819 0.9626 0.9147 0.8195 0.7231 1.7258 2.4013 10.8844
5 0.9960 0.9948 0.9910 0.9874 0.7546 1.7821 2.0539 2.6033
6 0.9898 0.9871 0.9839 0.9803 0.4017 1.5577 2.0539 2.0012
7 0.9954 0.9947 0.9940 0.9918 0.1365 1.0390 1.6994 4.1646
8 0.9833 0.9784 0.9755 0.8916 1.0182 1.6569 2.7194 7.7645
9 0.9960 0.9948 0.9910 0.9874 0.7546 1.7821 2.0539 2.6033
10 0.9947 0.9943 0.9935 0.9936 0.0961 1.0586 1.8003 3.6069

average 0.9916 0.9870 0.9801 0.9560 0.5061 1.4788 1.9721 4.3349
std. dev. 0.0053 0.0106 0.0239 0.0574 0.3447 0.2945 0.3713 2.8489

Table 7.1: Comparison between point-based registration, proposed method, TPS-
RPM and two-step ICP. A high DSC value means a good contour region overlap,
while a low HD value signifies a good contour overlap. Bold values indicate the best
results.

Figures 7-7 and 7-8 show the registration results for two different patients. The

registration results for the point-based registration method [206], Proposed method,

TPS-RPM, and two-step ICP are illustrated in rows. The first row illustrates the

reference and moving images. In Figure 7-7, the endometrial implant is infiltrated

into the uterus and rectum, so that, the expert manually segments the boundary of
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TRE Time(sec)

Patient Point-based Proposed TPS-RPM 2-step ICP Point-based Proposed TPS-RPM 2-step ICP
1 0.1700 0.7880 1.8895 2.2052 7.52 12.79 77.53 14.13
2 0.2630 0.5061 1.4825 1.7540 16.12 18.37 90.64 24.34
3 1.1153 2.2757 4.2002 6.6531 9.59 22.68 83.03 27.96
4 0.1929 1.2486 3.1181 8.1541 7.13 14.78 94.82 15.69
5 0.6510 0.7289 0.9000 1.581 11.03 13.07 96.92 15.31
6 0.3254 0.5056 0.8739 1.2263 8.57 15.92 81.41 23.28
7 0.5062 0.8619 1.2014 4.5932 7.08 12.13 104.06 19.92
8 0.9165 1.8361 4.6130 7.5951 10.02 18.34 99.81 32.44
9 0.2324 0.3914 0.7528 2.2097 9.0830 13.59 92.6530 15.21
10 0.1891 0.9893 2.0904 4.5538 2.8818 13.05 97.95 19.94

average 0.4562 1.0132 1.8404 4.0526 10.2780 15.4720 88.5880 20.8220
std. dev. 0.3356 0.6131 1.2042 2.6430 3.6292 3.3797 9.0889 6.1367

Table 7.2: Comparison between point-based registration method (baseline), proposed
method, TPS-RPM and two-step ICP. A low TRE value means good local registration
accuracies around target landmarks. Bold values indicate the best results.

Radiologist Surgeon

Patient Point-based Proposed Point-based Proposed
1 4 4 4 5
2 3 4 4 4
3 2 3 3 3
4 5 5 4 5
5 4 3 4 4
6 4 4 3 3
7 5 4 4 3
8 4 4 4 4
9 5 5 5 4
10 5 4 4 2

average 4.1 4.0 3.9 3.7
std. dev. 0.66 0.67 0.56 0.94

Table 7.3: Experts’ evaluation of the point-based registration and proposed method.
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uterus and rectum in both TVUS and MR images. Note that the depth of infiltration

is not clear in the MR image. Therefore, it is necessary to register TVUS with MR

image to provide more precise information about depth of infiltration. For localizing

the implant, we apply the displacement field to the yellow curve in the TVUS image

and we find the new location of endometriosis in the MR image. In Figure 7-8,

endometrial implant is located at the top of uterus and can be seen in the TVUS

image while there is no evidence of their presence in the MR image. In this example,

the expert manually segments uterus in both modalities. Therefore, we use uterus

curve correspondences to register TVUS with MR image which leads to localization

of endometriosis in the MR frame. From Figures 7-7 and 7-8 we can conclude that

the proposed registration method provides an accurate and smooth displacement field

to localize the implants.

Finally, the evaluations and the experimental results show that the proposed

method gives accurate and smooth displacement fields. Moreover, they demonstrate

that the combination of complimentary information from TVUS and MR images is

more informative than any of the input modalities. Indeed, the registration provides

more precision about implant location and depth of infiltration which consequently

simplifies and improves diagnosis.
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(a) Reference Image (b) Moving Image

Patient1: Point-Based

Patient1: One-Step ICP

Patient1: TPS-RPM

Patient1: Two-Step ICP

(c) Registered M (d) Overlap (e) (d)+Contour (f) Localization (g) Deformed Mesh (h) Flow Field

Figure 7-7: Registration results for base-line, one-step ICP, TPS-RPM, and two-step
ICP methods in rows. (a) and (b) show MR and TVUS image. Small endometrial
implant which is just visible in TVUS image is depicted by yellow curve. (c) shows
warped TVUS image. (d) and (e) demonstrate overlap images where the top right
and the bottom left belong to the MR image and the top left and the bottom right
belong to the deformed TVUS image. (f) shows the location of the endometrial
implant in the MR frame. (g) and (h) depict the deformed mesh and displacement
field, respectively.
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(a) Reference Image (b) Moving Image

Patient2: Point-Based

Patient2: One-Step ICP

Patient2: TPS-RPM

Patient2: Two-Step ICP

(c) Registered M (d) Overlap (e) (d)+Contour (f) Localization (g) Deformed Mesh (h) Flow Field

Figure 7-8: Registration results for base-line, one-step ICP, TPS-RPM, and two-step
ICP methods in rows. (a) and (b) show MR and TVUS image. Small endometrial
implant which is just visible in TVUS image is depicted by yellow curve. (c) shows
warped TVUS image. (d) and (e) demonstrate overlap images where the top right
and the bottom left belong to the MR image and the top left and the bottom right
belong to the deformed TVUS image. (f) shows the location of the endometrial
implant in the MR frame. (g) and (h) depict the deformed mesh and displacement
field, respectively.
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7.5 Conclusion

In this chapter, a new framework for 2D/2D TVUS-MR registration is proposed to lo-

calize and characterize endometrial tissues. The method uses contour correspondences

through a novel variational one-step ICP. In order to obtain point correspondences

and local nonlinear deformations, the method uses Euclidean distance maps resulting

from MR contours. The performance of the proposed method is evaluated against

variational two-step deformable ICP and TPS-RPM. The results obtained from semi-

synthetic and real-world data conclude that the performance of the proposed method

is better than TPS-RPM and two-step ICP other methods.

The main advantages of one-step ICP over traditional deformable two-step ICP

are that it improves computational time and reduces the dependence of the classical

two-step ICP on the initial estimate. We also find that two-step ICP is guaranteed to

converge to a local minimum, since both steps in ICP must minimize the error (one

for establishing correspondences and one for estimating deformation). To improve

the convergence rate, we remove closed-form inner loop of two-step ICP by using

the Euclidean DT which leads to one energy functional to simultaneously establish

correspondences and estimate deformation field.

Up to now, we proposed methods require the selection of a 2D MR slice and

use 2D/2D deformable image registration. This is a limitation since the standard

TVUS and MR imaging techniques used for diagnosing endometriosis are 2D and

3D, respectively. In next Chapter, we introduce a novel deformable slice-to-volume

registration process to overcome this limitation. To this end, we register a 2D TVUS

image to a 3D MR data in order to transform the TVUS planar image to a curved

2D surface in MR volume.
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Chapter 8

One-Step ICP-Based 2D/3D
Registration

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Registration Procedure . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.1 A Variational Formulation for Two-Step ICP . . . . . . . . . . . 137
8.2.2 A Variational Formulation in One-Step Using Distance Transform 138

8.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.1 Material and Clinical Motivations . . . . . . . . . . . . . . . . . 144
8.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.1 Introduction

Up to now, we have proposed various feature-based registration methods to align

a 2D TVUS image with a 2D MR image to localise a small endometrial implant

and provide information about depth of infiltration. In all previous methods that

we have discussed in Chapters 5-7, the reference 2D MR slice from the MR volume

that corresponds to the moving 2D TVUS image was manually chosen by an expert.

Thus, we have assumed that the TVUS slice is parallel to the corresponding MR

slice. Moreover, after analysing the US-MR registration literature (Chapter 4), we

realize that even in order to register US to MR images, methods in the state of the art

carry out the registration process with the same strategy. This is a limitation since

the standard TVUS and MR imaging techniques used for diagnosing endometriosis
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(a) Acquisition of TVUS (b) Orientation of TVUS with respect to MR

Figure 8-1: An example of showing it is highly impossible to generate a TVUS image
to be exactly parallel to one of the MR direction. This example is created to show the
concept behind it and indeed in our registration process we do not have any informa-
tion regarding the exact orientation of TVUS image. (a) is taken from Healthwiser

Incorporated, www.healthwise.org.

are 2D and 3D, respectively. In other words, a US image generally matches with

multiple MR slices so that it is not parallel to any of the MR directions. Hence,

this registration problem is intentionally a slice-to-volume registration. To make this

statement clear we provide a visual example. In Figure 8-1, it is clear that the TVUS

probe can move freely in any direction, thus it is highly impossible to generate a

TVUS image to be exactly parallel to one of the MR direction (see Figure 8-1 (b)).

Note that in our registration process we do not have the exact orientation of TVUS

image because in our setting the probe angle is unknown.

Let us point out again that slice-to-volume registration seeks to find correspon-

dences between a 2D image and a cross-section of volume by a plane or warped

surface. This can be considered as an extreme case of 3D/3D registration where one

of the images reduces to one slice. As mentioned in Chapter 4, this registration is fun-

damentally different in comparison to projective registration, since in the later one,

one-to-one correspondence between the 2D and 3D data does not exist. Analysing

Chapter 4 shows that slice-to-volume registration has not been used to register a 2D
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US slice to a 3D MR volume because of yet unsolved technical hurdles. Most methods

in the literature rely on an intensity-based similarity measure. However, US-MR reg-

istration with an intensity similarity measure usually fails. This is mainly due to the

fact that this approach assumes that the images sufficiently correlated which is not

the case in our problem (see Chapter 5). Thus, to tackle this registration problem we

have chosen to pursue and develop a method based on corresponding geometric fea-

tures between two images. Dalvi et al. [171] propose a feature-based slice-to-volume

approach to rigidly register 2D MR images to 3D MR volumes of the human brain.

Their algorithm extracts phase congruency image features that are then matched us-

ing classical ICP [135]. However, in order to estimate the deformation between two

modalities, establishing point correspondences just at each MR slice are not sufficient

due to the large MR inter-slice spacing. To solve this problem, the boundary of or-

gans in each MR slice can be segmented and then a 3D surface may be reconstructed.

This fills the MR inter-slice spacing by geometric information. Therefore, we chose

to use contour to surface correspondences. We propose a novel variational one-step

deformable ICP method that directly registers a set of 2D curves (from TVUS) to a

set of corresponding 3D surfaces (from MR). Our method computes a dense deforma-

tion field embedding the TVUS domain in the MR coordinate frame while establishing

point correspondences automatically. From this registration, any information marked

in the TVUS frame such as the boundary of soft tissue organs and endometrial im-

plants may be embedded in the MR frame. This includes the TVUS image itself,

and we can thus directly visualize in the MR the deformation induced by the probe

at the time TVUS was acquired. Figure 8-2 shows a general framework of our de-

formable slice-to-volume registration. In this figure, the warped TVUS surface and

the location of the endometrial implant are shown in the MR frame. Our contribution

in this work are twofold. First, we bring a methodological contribution via the idea

of combining TVUS and MR images to both characterize endometrial implants and

localize them accurately with respect to one patient’s anatomy. This may improve

diagnosis and surgery planning [31]. Second, we bring a technical contribution as a

novel one-step ICP derived in a variational framework, and handling multiple curves
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Figure 8-2: The general framework of our deformable slice-to-volume registration
method. MR and TVUS imaging techniques are the most common diagnostic tool
in the assessment of endometriosis. The MR volumetric data exhibits the patient’s
pelvic anatomy, whereas the 2D TVUS image shows the small endometrial implants
and its host tissues along with depth of infiltration. After obtaining the images, we
must provide the required data to our algorithm which are: 1) segmented endome-
trial implant and its neighboring organs in 2D TVUS data and 2) 3D models of the
corresponding patient’s pelvic organs which are constructed from a set of parallel
2D MR segmented organs. Our method computes a non-linear transformation em-
bedding the 2D TVUS image in the MR coordinate frame while establishing point
correspondences automatically.

to surface correspondences, while estimating a deformable transformation. Moreover,

one of the main novelties with respect to our previous work is thus the handling of

2D/3D registration. This markedly extends the current literature on ICP. Lastly, an

important advantage of our method over point-based methods is that it is extremely

mild in terms of operator time.
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8.2 Registration Procedure

One of the main challenges in TVUS-MR image registration is to correlate TVUS

images to MR images. TVUS has relatively poor spatial and tissue contrast resolu-

tion compared with MR. Its images have low resolution. It has a small field of view

and has a short range of penetration due to the use of a high-frequency transducer.

These artifacts as well as multi-modality, multi-dimensionality and soft tissue defor-

mations make TVUS-MR registration challenging, especially in the design of a robust

intensity similarity measure. Our solution to this problem uses features. However,

the main limitation of this approach is that establishing point correspondences be-

tween these two modalities is not possible due to MR inter-slice spaces. Therefore

we use the boundary of organs segmented by the radiologist whilst they inspect the

images. This is a middle ground choice employed by many 2D/2D and 3D/3D US-MR

registration methods to decrease the potential expert error in selecting dense point

correspondences and to reduce the interaction time.

We choose TVUS to be our moving image (M) and MR to be our reference image

(F ). The soft tissue organs and implants in the TVUS and in the 3D MR reference

volume are segmented by an expert. An example is shown in Figure 8-3. Segmenta-

tion results in a set of curves γ and a set of surfaces S, representing the boundary of

corresponding organs in both modalities. Let Ω be a bounded open set of R2 repre-

senting the TVUS plane, q an arbitrary point in γ ⊂ Ω, and φ ∈ W (Ω,R3) a 3D dense

deformation vector field representing the slice-to-volume registration by embedding

the TVUS plane in 3D while deforming it. W is a Sobolev space of sufficiently smooth

vector fields over Ω with appropriate boundary conditions. For ease of understanding

and simplicity of derivation, we first assume that γ includes only one curve and S

contains only one surface as in the example of Figure 8-3.
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(a) MR Data (b) TVUS Data

Figure 8-3: An example of generating input data for our registration process. (a)
shows the MR volume and uterus surface reconstructed from 5 parallel 2D MR curves.
(b) is the TVUS image with segmented uterus (red curve) and endometrial implant
(yellow curve).

8.2.1 A Variational Formulation for Two-Step ICP

Feature-based slice-to-volume registration is a difficult problem, especially for non-

linear deformation. It is well-known that without prior knowledge the problem is ill-

posed. As prior, we use local mean curvature regularizer. By doing so, the resulting

displacement vector field does not diverge from our expectations. In other words,

we impose a bounded Laplacian vector field to insure that the registration outside γ

would be estimated by interpolation in a way that the overall transformation smoothly

maps the moving image into reference image. Therefore, here, the goal is to find a

smooth deformation φ that maps points, in any small neighbouring, uniformly.

To establish point correspondences and estimate deformation between a curve

and a surface, we employ a variational formulation of the two inner steps of ICP with

mean curvature regularization:

step 1: closest point computation

ζ(q) = argmin
Q∈S

d2 (Q, φ (q)) (8.1)
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This implicitly defines ζ ∈ C1 (γ, S), a function that computes the closest-point ζ(q)

on S.

step 2: deformation estimation

φ = argmin
φ∈W

λ

∫
γ

d2 (φ, ζ (q)) dq

︸ ︷︷ ︸
data term

+ (1− λ)

∫
Ω

‖4φ‖2
2 dX︸ ︷︷ ︸

regularization term

(8.2)

where 4 is the Laplacian operator and λ ∈ [0, 1] is a smoothing parameter.

As discussed in previous chapter, since both steps in ICP must minimize the error,

it is guaranteed to stuck in a local minimum [138,150,208]. Generally in step 1, ICP

tries to establish binary point correspondences using the nearest-neighbour heuristic.

However, using this method for establishing correspondences makes it more vulnerable

to local minima [150]. In order to improve the convergence rate, we propose to merge

the two steps into a single step. Note that merging two steps into one would result

in a single minimization that would improve the convergence rate [208]. To achieve

this, we employ a Euclidian DT.

8.2.2 A Variational Formulation in One-Step Using Distance
Transform

We now present our formulation of the registration problem by combining the two

steps of the classical formulation in a single step. Combining Equation (8.1) with (8.2)

yields to:

φ = argmin
φ∈W

λ

∫
γ

d2

(
φ, argmin

Q∈S
d2 (Q, φ)

)
dq + (1− λ)

∫
Ω

‖4φ‖2
2 dX (8.3)

we know that d2

(
φ, argmin

Q∈S
d2 (Q, φ)

)
= min

Q∈S
d2 (Q, φ). This means that the cost

function depends on the distance to the closest point but not on the closest point

itself. This permits us to reformulate Equation (8.3) as:

φ = argmin
φ∈W

λ

∫
γ

min
Q∈S

d2 (Q, φ) dq + (1− λ)

∫
Ω

‖4φ‖2
2 dX (8.4)
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(a) MR volume (b) 3D MR surface (c) Distance map

Figure 8-4: An example of generating a distance map. (a) is the MR volume with
segmented uterus (green curve). (b) is the 3D uterus surface reconstructed from 4
parallel 2D MR curves. (c) is the distance map which is generated from the 3D MR
surface. We use the distance map to solve ICP efficiently.

We see that the data term now includes a DT (D), as D ◦ φ = min
Q∈S

d2 (Q, φ) by

definition. The distance map algorithms essentially assign to every voxel (grid point)

the distance to the nearest point. This is extremely efficient, fast and simple. Figure 8-

4 is an example of the distance map which is generated from a 3D MR surface. We

can now substitute D in Equation (8.4).

φ = argmin
φ∈W

λ

∫
γ

(D ◦ φ)2 dq + (1− λ)

∫
Ω

‖4φ‖2
2 dX︸ ︷︷ ︸

E[φ]

(8.5)

Equation (8.5) shows a variational problem with E as cost functional. The next

fundamental task is to estimate the functional form of φ using calculus of variation.

8.2.2.1 Euler-Lagrange Equation and Numerical Approximation

A function φ that minimizes E must fulfill the EL differential equation. Many dif-

ferent numerical optimization algorithms [104, 105] may then be applied to estimate

solution for the resulting nonlinear equation. In Equation (8.5), the data term places

constraints on the deformation field φ at the curve location. To make it more gen-

eral and to permit its formulation as an EL equation we use an index function δγ,

with δγ : Ω → {0, 1}, δγ (X) = 1 if X ∈ γ and 0 otherwise. We rewrite the energy
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functional of Equation (8.5) as:

E[φ] =

∫
Ω

(
λδγ (D ◦ φ)2 + (1− λ) ‖4φ‖2

2

)
dX (8.6)

Let φ0 be an initial estimate. We define an additive update rule:

φk+1 = φk + U (8.7)

where U ∈ W is a 3D dense displacement vector field. We restate our problem as:

min
U
E
[
φk + U

]
(8.8)

By substituting Equation (8.6) into Equation (8.8), we obtain:

E[φk + U ] =

∫
Ω

(
λδγ

(
D ◦

(
φk + U

))2
+ (1− λ)

(
‖4U‖2

2 +
∥∥4φk∥∥2

2

))
dX (8.9)

The distance transform D is nonlinear and can be approximated by its first order

Taylor expansion around φk:

E[φk + U ] =

∫
Ω

(
λδγ

(
D ◦ φk +

(
∇D ◦ φk

)
U
)2

+ (1− λ)
(
‖4U‖2

2 +
∥∥4φk∥∥2

2

))
dX

(8.10)

where ∇ = [ ∂
∂x
, ∂
∂y
, ∂
∂z

]. A function U that minimizes Equation (8.8) must fulfill its EL

equation. This is written as a system of three fourth order elliptic PDEs represented

by a 2× 2 symmetric matrix equation:

µ

∫
γ

(
D ◦ φk +

(
∇D ◦ φk

)
U
) (
∇D ◦ φk

)
dq +

(
∂4U

∂X4

)
= 0 (8.11)

where µ = λ
1−λ . To solve the Equation (8.11) numerically, we discretize the curve

γ in N points q1, . . . , qN and Ω on the rectangular pixel grid. Note that δq(X) = 1

if ∃j ∈ 1, · · · , N such that X = qj and 0 otherwise. We consider the unknown

function U = [u1, u2, u3]> on a rectangular pixel grid. Therefore, the discretization of
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Equation (8.11) leads to a system of three PDEs:

µδq (X)

((
D
(
φk (X)

)
+Dx

(
φk (X)

)
u1 (X) +Dy

(
φk (X)

)
u2 (X)

+Dz

(
φk (X)

)
u3 (X)

)
D`

(
φk (X)

))
+

(
∂4U

∂x4
+
∂4U

∂y4

)
= 0 for ` ∈ {x, y, z}

(8.12)

where D` is the derivative of D with respect to ` ∈ {x, y, z}. To solve the PDEs,

we use a finite difference scheme with second-order boundary condition (4U = 0).

This leads to a large but sparse linear system that can be solved by Successive Over-

Relaxation (SOR) [89]. The advantages of the iterative solvers like the SOR method

are twofold. First, iterative solvers generally perform very well in discarding the higher

frequency parts of the error within the first iterations. This behaviour is reflected in

a good initial convergence rate [209]. Second, they are suitable for solving large linear

equations [210]. The discretization of Equation (8.12) leads to:

ut+1
1,h,w =βut1,h,w − A1

[
µδq (X)

(
D
(
φk (X)

) ∂D
∂x

(
φk (X)

))
+ C1u

t
2,h,w + C2u

t
3,h,w

+
(
ut+1

1,h,w−2 − 4ut+1
1,h,w−1 − 4ut+1

1,h+1,w + ut+1
1,h+2,w

)
+
(
ut1,h,w+2 − 4ut1,h,w+1 − 4ut1,h−1,w + ut1,h−2,w

) ]

ut+1
2,h,w =βut2,h,w − A2

[
µδq (X)

(
D
(
φk (X)

) ∂D
∂y

(
φk (X)

))
+ C1u

t
1,h,w + C3u

t
3,h,w

+
(
ut+1

2,h,w−2 − 4ut+1
2,h,w−1 − 4ut+1

2,h+1,w + ut+1
2,h+2,w

)
+
(
ut2,h,w+2 − 4ut2,h,w+1 − 4ut2,h−1,w + ut2,h−2,w

) ]

ut+1
3,h,w =βut3,h,w − A3

[
µδq (X)

(
D
(
φk (X)

) ∂D
∂z

(
φk (X)

))
+ C2u

t
1,h,w + C3u

t
2,h,w

+
(
ut+1

3,h,w−2 − 4ut+1
3,h,w−1 − 4ut+1

3,h+1,w + ut+1
3,h+2,w

)
+
(
ut3,h,w+2 − 4ut3,h,w+1 − 4ut3,h−1,w + ut3,h−2,w

) ]
(8.13)
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Algorithm 8.1 Proposed Algorithm Pseudo-Code

1: Input: A point cloud from MR (Q) & a set of 2D points from TVUS (q)
2: Result: Warped surface (φ) % Grid of points hmax × wmax to represent φ
3: Initialization:
4: k ← 0 % Iteration counter
5: ι← 10 % Number of planarity constrained iterations
6: qk ← q + φ0 % q embedded in the 3D space;φ0 is an initialization of φ
7: Compute D and ∇D from Q % D and ∇D are used in Equation (8.13)
8: while ‖∇φ‖ > ε do
9: Compute U by iterating Equation (8.13)

10: qk+1 ← qk + δqkU % Update the TVUS space curve
11: φk+1 ← φk + U % Update the TVUS surface
12: while k < ι do
13: Π← least-squares plane projection from qk+1

14: qk+1 ← Π
(
qk+1

)
% Flatten the TVUS space curve

15: φk+1 ← Π
(
φk+1

)
% Flatten the TVUS surface

16: end while
17: k ← k + 1
18: end while

where A1 = α

12+µδq(X)( ∂D
∂x (φk(X)))

2 , A2 = α

12+µδq(X)
(

∂D
∂y (φk(X))

)2 , A3 = α

12+µδq(X)( ∂D
∂z (φk(X)))

2 ,

C1 = µδq (X)
(
∂D
∂y

(
φk (X)

)
∂D
∂x

(
φk (X)

))
, C2 = µδq (X)

(
∂D
∂z

(
φk (X)

)
∂D
∂x

(
φk (X)

))
, C3 =

µδq (X)
(
∂D
∂y

(
φk (X)

)
∂D
∂z

(
φk (X)

))
, t ∈ N is the SOR iteration number, h = 1, . . . , hmax,

w = 1, . . . , wmax, hmax and wmax are the height and width of M respectively, β = 1−α

and α is the relaxation factor. The displacement vector field obtained from Equa-

tion (8.13) is used to find the intersection of the MR volume by a warped TVUS

surface and to localize an endometrial implant. Note that to make our algorithm

more stable, we use an a priori constraint. This is to avoid convergence to a spiky

surface which would harm registration. In order to solve this problem, we automati-

cally extract a plane from the TVUS point sets for the first few iterations. To achieve

this, we find the closest plane to the TVUS point set in the least squares sense [211].

This choice puts constraints on the warped surface by flattening the TVUS free-form

surface. Applying this strong constraint on the original TVUS surface improves the

convergence rate of our algorithm. Note that after a few iterations, we relax this

constraint. This is due to the fact that after a few iterations we approach the global

solution, so the surface has only low frequency features and no longer interfers with
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convergence to the correct solution. The pseudo code of our method is given in

Algorithm 8.1. In Algorithm 8.1, ε is prespecified threshold and set to be 10−5.

8.2.2.2 Handling Multiple Surfaces

We now extend our framework to handle multiple pairs of curves and surfaces. In

this case, we have m curves γ1, · · · , γm and a set of m corresponding 3D surfaces

S1, · · · , Sm. We use each surface Si to compute a Euclidean distance transform Di.

By summing over all curve/surface pairs, Equation (8.6) becomes:

E[φ] =
m∑
i=1

∫
Ω

(
λδγi

(
Di ◦ φ

)2
+ (1− λ) ‖4φ‖2

2

)
dX (8.14)

where δγi(X) = 1 if X ∈ γi and 0 otherwise. Using EL we obtain a system of three

fourth order elliptic PDEs:

µ
m∑
i=1

∫
γi

(
Di ◦ φk +

(
∇Di ◦ φk

)
U
) (
∇Di ◦ φk

)
dq +

(
∂4U

∂X4

)
= 0 (8.15)

Equation (7.15) is discretized by means of a finite difference scheme and leads to a

sparse linear system that is solved using SOR, and eventually leading to a very similar

pattern as Algorithm 8.1.
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8.3 Experimental Results

8.3.1 Material and Clinical Motivations

The study is carried out on ten patients who have small endometrial implants in the

pelvic area. For each patient, TVUS and MR imaging are used to examine their pelvic

organs. In our experiments, small implants are detectable with TVUS but difficult to

identify with MR. The procedure of collecting data is as follows: first, a TVUS image

which includes both endometrial implant and its neighbouring organs is selected for

each patient by an expert. Then, 4-5 2D MR slices from the MR volume that closely

correspond to the moving 2D TVUS image are chosen by an expert. MR images used

for the experiments have an average size of 400 × 400 × 5 with a voxel resolution of

0.5 × 0.5 × 5 mm3. In our experiments, we assume that the TVUS image resembles

the middle MR slice of the MR volume. It is, therefore, reasonable to assume that

the TVUS slice is parallel to the corresponding MR slice in the first iteration of our

algorithm. The soft tissue organs (i.e. bladder, uterus, ovary, rectum) and the implant

in the TVUS slice and in the MR slices are segmented by an expert. Then, we use

the method proposed by Kels et al. [212] to reconstruct a 3D surface from a set of

2D MR contours. An example of the reconstruction process is shown in Figure 8-5.

In order to be clear why we chose just 4-5 MR slices and not more images, we

do indeed need a detailed explanation of the procedure for the diagnosis and treat-

ment of Endometriosis. To evaluate women suspected of having endometriosis, first,

ultrasonographic examination is performed. Then, MR imaging is performed in or-

der to provide superior anatomic detail and better defines abnormalities found using

ultrasonography. After preoperative imaging examination, a pelvic radiologist must

interpret the images and write a report for the gynecologic surgeon. This report

must indicate the size, shape, and location of the endometriosis implant and it must

highlight the nearby organ(s). Note that the information about the location of en-

dometriosis is not very accurate as ultrasound images do not provide anatomic detail.

Therefore, for this purpose, the pelvic radiologist must visually correlate TVUS with

each MR images which is not an easy task and more precisely not an accurate way to
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(a) Initial Contours (b) Interpolated Contours (c) 3D Surface

Figure 8-5: Reconstruction of the uterus from parallel 2D MR contours.

align them. In addition to this report, a TVUS image in which the implant is marked

as well as 4 to 5 MR slices which clearly show implant’s neighbouring organ(s) must

be given to the surgeon. Note that, the reason that just one TVUS is provided to

the surgeon is that at the time ultrasonographic examination is performed there is

no clues about the location of endometriosis and the radiologist move the probe in

any direction in order to find it. This factor along with small field of view of the

ultrasound scanners become the main reason that most of the patients’ TVUS images

do not include both the implant and its neighbouring organs. Commonly, just one

image has this property. Then appropriate pre-surgical planning in accordance with

provided data must be made by the surgeon. However, interpreting the preoperative

medical images is not an easy task for many surgeons. The results of this difficulty

may cause of wrong pre-surgical planning which leads to recurrence or starting the

surgery far from the place that the implant is located. Therefore, to ease and improve

the pre-surgical planning, we propose to register the available data.

8.3.2 Results and Discussion

We evaluate the proposed method’s performance in comparison with two-step de-

formable ICP. We demonstrate the accuracy of the proposed method by quantitative

and qualitative tests on semi-synthetic and real world data sets. The true point corre-

spondences are not available for real patient data sets. However, we assess the results

with quantitative and qualitative evaluations on semi-synthetic data sets, generated to

faithfully reproduce patient data features. We conduct more than a thousand exper-

145



iments using semi-synthetic data with artificial deformations to test various aspects

of the methods. The results are very informative. The experiments on semi-synthetic

data emulate realistic acquisition situations and reveal the expected registration er-

ror. We calculate three different quantitative error measures to validate the results.

To demonstrate the applicability in real applications, we also conduct ten tests on

patient data. To show the generality of our method, we apply it to four different soft

tissue organs including the bladder, uterus, rectum, and ovary.

8.3.2.1 Tests on Semi-Synthetic Data

Quantitative error measures. The first measure is mean square distance between

the N transformed moving points and the corresponding ground truth points. This

measure is called the MSE. Since the MSE does not evaluate the shape of the 2D

curves embedded in the 3D space, we used another error measure which does not take

the position into account, but only assesses the organ’s shape. Being able to compare

the curve after registration with the corresponding ground truth curve is essential to

verify registration accuracy. To compare curves, we must first find an appropriate

representation. To achieve this, the 2D space curves are simply parameterized by

their arc-length and 15 points are sampled uniformly. Then, in order to evaluate the

similarity between curve pairs, we compare the angle formed by adjacent points. This

measure is known as the Shape Error (SE). A low value of SE means that the curve

shapes after registration are very similar even if misplaced. Finally, to quantify the

local registration error, we use the TRE. The target points used in our experiments

are centroids and 10 boundary points which are not used to estimate deformation. A

low TRE value shows good local registration accuracy.

Generate semi-synthetic data. We create a test collection of 11 different 3D

surfaces with 10 degrees of deformation and 11 different intersection curves containing

approximately 1200 data in total. To generate semi-synthetic data, the boundary of

soft tissue organs such as the bladder, uterus, ovary, and rectum are segmented from

five MR slices. Then, we use Kels et al. [212] to reconstruct 3D surfaces from the

2D segmented contours. The reconstructed 3D surfaces are deformed using advec-
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tion [207]. In this method, every single point on the surface has a certain value of

potential vorticity. The points are transported by their local displacement field on

the surface. As a consequence, the surface can be deformed in complicated manners.

The advection method is based on Lagrangian calculation. The advection equation is

a hyperbolic PDE that governs the motion of the 3D surface (S) as it is transported

by a known displacement vector field U :

∂S

∂t
+ U · (∇S) = 0 (8.16)

where ∂
∂t

is derivative with respect to time. In our experiments, U is randomly gen-

erated. The surface is deformed through increasingly larger degrees of deformation.

The rate of deformation varies between 4% and 40%. Moreover, since the TVUS

probe can move freely in any direction, it is also important to cut different views of

the deformed surface. Therefore, various intersection curves are obtained at eleven

different cutting angles in the range between 0◦ and 20◦. An intersection curve is here

defined as the intersection of a plane with a 3D surface. The plan’s angle is known

as the cutting angle. We generate a wide range of curves by tilting the plane. These

comprehensive simulations are used to validate our method and test its robustness to

organ deformation and probe orientation.

Results and discussion. We evaluate the proposed method against deformable

two-step ICP. In two-step ICP, the point correspondence problem is solved by the

nearest neighbour heuristic which results in significantly poorer performance than

the proposed method. To demonstrate the idea, we test both two-step ICP and

our method on the same examples. Since we map the warped free-form surface to

the planar domain in one-step ICP for 10 iterations, we use the same constraint for

two-step ICP.

The qualitative results are shown in Figure 8-6, 8-7, and 8-8. In these three

figures, we use a single 3D uterus surface with 4%, 20%, and 40% average deformation,

respectively. We use two surfaces, one is the deformed version (Figure 8-6, 8-7, and 8-

8 (b)) of the other (Figure 8-6, 8-7, and 8-8 (a)). We also generate three different

curves by tilting the cutting plane at each deformation level. The cutting angles are
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0◦ (first row of Figure 8-6, 8-7, and 8-8 (b)), 10◦ (second row of Figure 8-6, 8-7, and 8-

8 (b)), and 20◦ (third row of Figure 8-6, 8-7, and 8-8 (b)). Then, we assume that

these intersection curves are parallel to the middle intersection curve of the original

3D surface (see the red curves in Figure 8-6, 8-7, and 8-8 (a)). This assumption is

made to keep the system similar to real world data. In these figures, the green curves

are the ground truth solutions.

In order to assess the behaviour of the methods in a quantitative way, we use

all the semi-synthetic data sets and measure various distances. The results of MSE,

SE, and TRE are depicted in Figure 8-9 and 8-10 (a), (b), and (c), respectively.

Figure 8-9 demonstrates one- and two-step ICP performances for 4% (first row of

Figure 8-9), 20% (second row of Figure 8-9), and 40% (third row of Figure 8-9)

average deformation. In this figure, the slant level varies from 0◦ to 20◦ by step of

2◦. Figure 8-10 shows one- and two-step ICP registration accuracy for 0◦ (first row

of Figure 8-10), 10◦ (second row of Figure 8-10), and 20◦ (third row of Figure 8-10)

cutting angle. In this figure, the rate of deformation varies from 0% to 40% by steps

of 4%. In Figure 8-9 and 8-10, average error and standard deviations are shown.

In Figure 8-6, we deform a 3D uterus surface with 4% degree of deformation.

Figure 8-6 (b) shows the deformed 3D surface with 3 different intersection curves

whose each row belongs to each intersection curve. We then use both one-step and

two-step ICP to find the best transformation to align the template set onto the ground

truth set. The registration results are depicted in Figure 8-6 (c). In Figure 8-6 (a)

and (c), the green curves are ground truth. At this deformation level, we can visually

observe that both one-step and two-step ICP provide good results. This is visually

demonstrated by Figure 8-6 (d) in which we show a 2D view (X-Y view) of the curves

before and after registration. Moreover, to assess the behaviour of the method in a

quantitative way, we use all the semi-synthetic data sets with 4% average deformation

and calculate errors. The results are shown in the first row of Figure 8-9. The MSE,

SE, and TRE show that our method converges to a better solution at a low level of

deformation. The MSE and TRE indicated that the two-step ICP gets trapped in a

local minimum which leads to a low registration accuracy. The two step ICP becomes
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less accurate as the initial solution is further from the ground truth. However, by

comparing the SE, it is easy to see that both methods have very similar shapes to

their corresponding ground truth. Consequently, from these figures we can conclude

that both methods provide good results at this deformation level.

In Figure 8-7 we make the registration problem more challenging. We deform a

3D uterus surface with 20% average deformation. The two-step ICP shows poorer

performance and is stuck in a local minimum. In this figure, we can see that our

method also gets affected by high cutting angles. The MSE, SE, and TRE in the

second row of the Figure 8-9 show that our method converges to a better solution at

20% average deformation. The MSE and TRE indicate that the two-step ICP finds

wrong correspondences which result in a poorer registration accuracy. This problem

gets much more serious as the initial solution is further from the ground truth. By

comparing the SE, it is easy to see that the curves after registration by two-step ICP

do not have similar shapes to their corresponding ground truth. Consequently, from

these figures we can conclude that two-step ICP has much poorer performance as

compared to the proposed one-step ICP.

To make the problem much more challenging, we use a 3D uterus surface with 40%

rate of deformation. The results are depicted in Figure 8-8. The two-step ICP shows

very poor performance. The third row of the Figure 8-9 shows that our method still

converges to a acceptable solution at 40% average deformation. The MSE, SE, and

TRE indicate that the two-step ICP fails at this level of deformation. Consequently,

from these figures we can conclude that two-step ICP fails whereas the proposed

method still provides acceptable registration accuracy.

In many cases, we observe that the warped intersection curves in one-step ICP are

very close to the ground truth and that the method quickly converges to the optimum.

In comparison, the warped intersection curves in two-step ICP gets trapped in local

minima and mainly fail. The main reason of failure in this method is because of large

initial errors. In addition, failure may happen after the planar constraint is relaxed.

Therefore, the warped contour may contain high frequency bumps which results in

misplacing correspondences, and the registration process fails. Figure 8-8 shows an
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One-step−→

Two-step−→

One-step−→

Two-step−→

One-step−→

Two-step−→

(a) Original 3D Surface (b) Deformed 3D Surface (c) Result (d) X-Y View of Curves

Figure 8-6: Registration results for the proposed method and two-step ICP. The
average deformation is 4%. (a): shows the reference 3D uterus surface with the ground
truth (green curves) and initial moving (red curves) curves. (b): shows deformed 3D
surface with 3 different intersection curves which are obtained at 0◦, 10◦ and 20◦

cutting angles (red curves). (c): shows registration results. (d): shows the 2D view
of the curves before and after registration.
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One-step−→

Two-step−→

One-step−→

Two-step−→

One-step−→

Two-step−→

(a) Original 3D Surface (b) Deformed 3D Surface (c) Result (d) X-Y View of Curves

Figure 8-7: Registration results for the proposed method and two-step ICP. The aver-
age deformation is 20%. (a): shows the reference 3D uterus surface with the ground
truth (green curves) and initial moving (red curves) curves. (b): shows deformed
3D surface with 3 different intersection curves which are obtained at 0◦, 10◦ and 20◦

cutting angles (red curves). (c): shows registration results. (d): shows the 2D view
of the curves before and after registration.
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One-step−→

Two-step−→

One-step−→

Two-step−→

One-step−→

Two-step−→

(a) Original 3D Surface (b) Deformed 3D Surface (c) Result (d) X-Y View of Curves

Figure 8-8: Registration results for the proposed method and two-step ICP. The aver-
age deformation is 40%. (a): shows the reference 3D uterus surface with the ground
truth (green curves) and initial moving (red curves) curves. (b): shows deformed
3D surface with 3 different intersection curves which are obtained at 0◦, 10◦ and 20◦

cutting angles (red curves). (c): shows registration results. (d): shows the 2D view
of the curves before and after registration.
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(a) MSE (b) Shape Error (c) TRE

Figure 8-9: Comparison of the proposed method with two-step ICP on semi-synthetic
data sets with respect to cutting angle (slant). The results for 4%, 20%, and 40%
deformations are shown at each row.
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(a) MSE (b) Shape Error (c) TRE

Figure 8-10: Comparison of the proposed method with two-step ICP on semi-synthetic
data sets with respect to deformation. The results of 3 different intersection curves
which are obtained at 0◦, 10◦ and 20◦ cutting angles are depicted at each row.
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extreme example of such cases. Two-step ICP finds wrong correspondences and fails

to retrieve the correct solution. We observe that the high frequency bumps have a

strong influence on the matching process, causing the solution to get trapped in a

local minimum. From Figure 8-9 and 8-10, we can deduce that one-step ICP is stable

and less sensitive to the initial solution. Moreover, one-step ICP error gracefully

degrades as the level of deformation and the cutting angle increase.

8.3.2.2 Tests on Real Patient Data

Data from real patients with small implants are used to validate methodology of

combining TVUS with MR and to compare our method against two-step ICP. In our

experiments, small implants are seen in TVUS but, hard to identify with MR data.

Therefore, 2D TVUS images are used to detect small endometrial implants and to

segment the visible soft tissue organs whereas MR volumes are used to create a 3D

geometric model of the corresponding organs. A TVUS image is manually selected for

each patient by a clinician and corresponds to the middle MR slice. This assumption

considers as an initial solution for both algorithms. The soft tissue organs such as

bladder, uterus, ovary, and rectum as well as the implant in the TVUS slice and in

the MR slices are segmented by an expert. We then reconstruct a 3D surface from

these parallel 2D MR contours. To show how our method improves diagnosis, we use

10 different patients to localize small implants. The registration results for 2 patient

data are shown in Figure 8-11 and 8-12. We use one surface in Figure 8-11 and two

surfaces in Figure 8-12. The registration results for the proposed method and two-

step ICP are illustrated in columns. Note that endometrial tissues (yellow curves in

Figure 8-11 and 8-12 (a)) are seen in the TVUS images and there is no evidence of

their presence in the MR data.

Figure 8-11 shows registration results for a single surface. Figure 8-11 (a) shows

the 2D TVUS slice. In this figure, the uterus and endometrial tissue can be distin-

guished by red and yellow, respectively. Figure 8-11 (b) shows MR slices with slice

thickness of 5 mm. In this figure, the boundary of the uterus is segmented from five

MR slices. Then, we reconstruct the 3D surfaces from the 2D segmented contours.
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The reconstructed 3D uterus surface is shown in Figure 8-11 (b). We then use both

one-step and two-step ICP to map the 2D TVUS slice onto the 3D uterus surface.

The registration results for the proposed method and two-step ICP are depicted in

Figure 8-11 (c) and (d), respectively. Figure 8-11 (e) illustrates the overlap images

where the top belongs to the rendered MR image and the bottom belongs to the

TVUS image. To generate render MR image, first for each pixel in the TVUS image,

the corresponding voxel in the MR volume is found by using the estimated displace-

ment fields. This allows us to fill each pixel in the TVUS image with the intensity of

the corresponding MR voxel. Note that, the intensity of a floating voxel is obtained

via bi-cubic interpolation of its integer neighbours. The resulting displacement field

(Figure 8-11 (g) and (h)) is used to map implant shape onto the MR surface, see

Figure 8-11 (i) and (j). Furthermore, this figure show how the implants are infiltrat-

ing into the uterus. Since the ground truth is not available for patient data sets, we

cannot assess the method with with quantitative evaluations. However, the quanti-

tative evaluations on the semi-synthetic data sets may help us to assess the results.

Since we do not have high level of deformation between two modalities, we expect

high registration accuracy for both methods. Note that the two-step ICP normally

has less registration accuracy as compared with the proposed method.

Figure 8-12 shows registration results for a multiple surface. Figure 8-12 (a)

shows the 2D TVUS slice. In this figure, the ovary, bladder, and endometrial tissue

are segmented using expert knowledge. The soft tissue organs (ovary and bladder)

and endometrial tissue can be identified by red and yellow, respectively. Figure 8-12

(b) shows MR slices with slice thickness of 5 mm. In this figure, the boundaries of the

ovary and bladder are segmented from four MR slices. Then, we reconstruct the 3D

surfaces from the 2D segmented contours. The reconstructed 3D ovary and bladder

surfaces are shown in Figure 8-12 (b). We then use both one-step and two-step ICP

to find the best transformation to align the 2D TVUS slice onto the 3D MR surface.

The registration results for the proposed method and two-step ICP are depicted in

Fig. ??fig10 (c) and (d), respectively. Figure 8-12 (e) illustrates the overlap images

where the middle belongs to the rendered MR image and the top and bottom belong
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to the TVUS image. The resulting displacement field (Figure 8-12 (g) and (h)) is

used to map endometrial tissue shape onto the MR surface, see Figure 8-12 (i) and

(j). Based on our quantitative evaluations on the semi-synthetic data sets, we expect

high registration accuracy for both methods. This is due to that the bladder and

ovary do not have complex deformations.

Our registration accuracy has also been evaluated by an expert, namely a pelvic

radiologist. A precise registration algorithm must accurately align all corresponding

organs and pelvic anatomical structures across modalities. The expert uses these

features to visually assess our registration method. We provide the following data

to the expert: MR slices, 3D patient-specific organ model(s), TVUS planar image,

embedded TVUS surface, rendered MR image, and embedded TVUS surface with

3D MR surface. Examples of these are shown in Figure 8-11 and 8-12. We setup a

registration quality score called 1-to-5 rating scale where 5 is excellent and 1 is bad.

The expert evaluation is given in Figure 8-13 (a). Note that the dash line means that

the expert could not evaluate the results. It shows that our method mainly provides

high registration accuracy, except for patient 9. From the expert’s point of view, the

registration results for patient 9 could not be evaluated since all organs (bladder and

uterus) and pelvic anatomical structures (cervix, endometrium, and vaginal wall) in

the TVUS surface were to be compared with 4 different MR slices (see Figure 8-11

(b)).

Finally, the evaluations and the experimental results show that the proposed

method gives accurate and smooth displacement fields. They demonstrate that the

combination of complimentary information from TVUS and MR images is more in-

formative than any of the input modalities. Indeed, the registration provides more

precision about implant location and depth of infiltration which consequently im-

proves accuracy of diagnosis and preoperative surgery planing. This is due to the fact

that the reconstructed MR surface may help the surgeons to avoid the MR images

itself, as they are interested to the shape of the pelvic organs which leads to a better

understanding of the MR images. Moreover, our registration provides more precise

information about depth of infiltration and location of the implant on the MR frame
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(a) TVUS (b) MR Surface

One-Step ICP Two-step ICP

(c) Registered TVUS (d) Registered TVUS

(e) Overlap W/O and W/ Curve (f) Overlap W/O and W/ Curve

(g) Flow Field (h) Flow Field

(i) Localization (j) Localization

Figure 8-11: Example for a single surface. The registration results for the proposed
method and two-step ICP are demonstrated in columns. (a): shows a TVUS slice
in which the uterus and implant are depicted in red and yellow, respectively. (b):
3D uterus surface. (c) and (d): show warped free-form surfaces. (e) and (f): show
the overlap images where the top belongs to the rendered MR image and the bottom
belongs to the TVUS image. (i) and (j): depict endometrial implant after registration
on the MR surface.
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(a) TVUS (b) MR Surface

One-Step ICP Two-step ICP

(c) Registered TVUS (d) Registered TVUS

(e) Overlap W/O and W/ Curve (f) Overlap W/O and W/ Curve

(g) Flow Field (h) Flow Field

(i) Localization (j) Localization

Figure 8-12: Example for two surfaces. The registration results for the proposed
method and two-step ICP are demonstrated in columns. (a): shows a TVUS slice
in which the bladder, ovary, and implant boundaries are depicted in red and yellow,
respectively. (b): 3D ovary and bladder surfaces. (c) and (d): show warped free-
form surfaces. (e) and (f) show the overlap images where the middle belongs to the
rendered MR image and the top and bottom belong to the TVUS image. (i) and (j)
depict endometrial implant after registration on the MR surface.
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(a) Evaluations (b) TVUS Surface on MR frame (patient 9)

Figure 8-13: Expert’s evaluation of the proposed method. We setup a registration
quality score where 5 is excellent, 4 is good, 3 is fair, 2 is poor, 1 is bad, and dash line
means not rateable. (a) shows expert’s evaluation result. (b) shows the TVUS surface
embedded on the MR frame for patient data 9. Patient 9 can not be evaluated because
the embedded 2D TVUS surface must be compared with 4 different MR slices.

which can improve the diagnosis and treatment of the endometriosis.
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8.4 Conclusion

We have proposed a new framework for deformable slice-to-volume registration to

localize and characterize endometrial tissues. Our method uses a variational one-step

deformable ICP method that registers a set of 2D contours to a set of correspond-

ing 3D surfaces. Our method computes a dense deformation field embedding the

TVUS domain in the MR coordinate frame while establishing point correspondences

automatically. In order to obtain point correspondences and nonlinear deformations,

the method uses Euclidean distance maps resulting from MR surfaces. Our method

handles multiple pairs of curves and surfaces. To make our algorithm more stable,

we use a least squares planar constraint on the warped surface. Applying this strong

constraint on the original TVUS surface improves convergence rate. We relax the

constraint after a few iterations. This is due to the fact that after a few iterations we

approach the global solution, so that the surface has only low frequency features and

no longer interfers with convergence to the correct solution.

We evaluate the proposed method’s performance in comparison with two-step de-

formable ICP. We show the accuracy of the proposed method by quantitative and

qualitative tests on semi-synthetic and real world data sets. Since the ground truth

is not available for patient data sets, we assess the results with quantitative and qual-

itative evaluations on semi-synthetic data sets, generated to reproduce real patient

data features. We conduct more than one thousand two hundreds experiments using

semi-synthetic data with artificial deformations to test various aspects of the meth-

ods. The quantitative error measurements on semi-synthetic data sets provide a crude

assessment of our algorithm in a clinical context. To demonstrate the applicability in

real applications, we also conduct ten tests on patient data.

Qualitative and quantitative tests on semi-synthetic data and clinical data sets

clearly depict the accuracy of our method. Experimental error analysis show that our

method remarkably reduce the error compare to two-step ICP. Experimentally we see

that even with high deformation and slant (40% and 20◦, respectively), our alignment

approach has less than 10 mm mean square error between true point correspondences
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and still works very well. In contrast, two-step ICP has more than 100 mm mean

square error for the same deformation and slant, from which we can conclude that

our procedure is much less sensitive to increment of deformation and slant and can

provide reliable results. The average execution time of the process is 153.82± 11.74

s with MATLAB code.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this manuscript, for the first time, we have investigated algorithms to spatially

align preoperative TVUS and MR female pelvic organs to localise endometrial im-

plants and exhibit depth of infiltration on the pelvic anatomy. This registration is

a significantly difficult task, since two different imaging modalities are involved and

non-linear geometric transformations are required to cope with the soft-tissue defor-

mations. Another difficulty lies in the limitations of the medical imaging techniques.

For instance, MR reveals the complex pelvic anatomy in high resolution images,

whereas TVUS image depicts small endometrial implants and their depth of infiltra-

tion on the host tissue in low resolution images. Therefore, the key advantage of

TVUS-MR registration is that mapping endometrial implants from the TVUS images

into the MR images can ease the task of gynecologic surgeons in interpreting preop-

erative data, because TVUS-MR fusion may prevent them to investigate each image

individually. This may help them to make a better preoperative surgical planning

as the size, shape, location, depth of infiltration, and resection lines are clearly ex-

hibited on the global pelvic anatomy, not just on the host tissue. Consequently, this

simply leads to more precise treatment of endometriosis without harming the healthy

tissue around it. Based on these advantages, we proposed various TVUS-MR image

registration algorithms for different setting i.e. 2D/2D and 2D/3D.

Chapter 4 provides an extensive review on the existing methods related to US-
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MR image registration, ICP-based algorithms and 2D/3D medical image registration

methods. There is currently no system to register TVUS images with MR images

of the female pelvis. The analysis of the US-MR image registration literature led to

the consensus that all these methods try to either register a pair of 2D images or

a pair of 3D volumetric data. The methods have been classified into three different

categories such as intensity-based, feature-based, and hybrid methods. We see that

there are very few works related to US-MR intensity-based registration, since the

methods based of intensity usually fail due to the large intensity variations. On

the other hand, feature-based registration is mainly used to register US with MR

images, since it can be applied to any image. To improve the convergence rate and

accuracy of intensity- and feature-based methods, some researchers combined both

approaches. It is also observed that spline-based deformable models have been mainly

used as a transformation model. We have also discussed the state-of-the-art of the ICP

algorithms. ICP algorithms establish a set of correspondences by searching for closest

point to moving data on the reference data, and estimate a transformation which maps

the moving data to reference data via established correspondences. There is a large

number of ICP algorithms trying to improve the computational time or robustness.

In order to improve both the robustness and the computational efficiency of classical

two-step rigid ICP, a distance transform is introduced. Moreover, the analysis of the

2D/3D medical image registration literature led to the consensus that slice-to-volume

registration received less attention than projective registration. Most methods in the

slice-to-volume literature rely on an intensity-based similarity measure. However,

US-MR registration with an intensity similarity measure is not probably the proper

approach.

Chapter 5 provides a comparison of the two different registration approaches in-

cluding an intensity-based method and a feature-based method. Since there is cur-

rently no system available to register TVUS to MR images, we investigate the appli-

cability of these methods in TVUS-MR registration problem. Therefore we choose a

feature-based registration using TPS deformations with manual point selection and

an intensity-based registration using NMI and B-splines deformations to register and
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fuse pre-operative TVUS into MR images. The NMI approach makes direct use of

the original image data and the other is based on matching discrete geometric fea-

ture points. We observed that feature-based registration approach is an appropriate

choice as it applies to any image and provides high registration accuracy. However, it

is highly a user-dependent method. On the other hand, the intensity-based approach

is a limited method, because the probabilistic relationship between TVUS and MR

images does not mainly exist. Therefore, all the methods which have been proposed

in this thesis are based on a set of geometric features of common objects.

Chapter 6 presents a variational semi-automatic feature-based deformable image

registration and fusion between pre-operative MR and TVUS images. Since, the

endometrial implants can be seen in the TVUS images, there is no corresponding

points at implants. Thus, we must use the implant’s neighbouring organs to find

the deformation between TVUS and MR images. To achieve this, we propose a

point-based registration method to obtain a high accuracy solution of PDEs. No-

tably the solution of the PDEs is the displacement vector field. For localizing the

implant we apply the displacement field to the implant in the TVUS image and we

find the location of endometriosis in MR frame. Note that the main limitation of the

point-based approach lies on the establishing dense point correspondences which is

often a challenging and time-consuming process. To decrease the effect of this lim-

itation, we use a parametrization-based approach between shape contours to define

dense correspondences. In this way, the expert first segments the organs and selects

a few point correspondences. Then, more point correspondences are then established

using parametrization between each adjacent points. After establishing point corre-

spondences, we model the deformable image registration as a deformation process of

certain material driven by internal forces. We use three different types of regularizer

including diffusion, divergence and curl, and curvature. Furthermore, our model is

not dened on the basis of a finite set of parameters and it is more suited in the case

of no prior knowledge. Therefore, it has greater flexibility than spline-based meth-

ods such as TPS and B-splines. We compare our method with the TPS registration

method. Experimental results illustrate that diffusion-based registration cannot pro-
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vide precise deformation field. We also discover that in div-curl registration method,

finding the trade-off between the curl and divergence is not an easy task, so that, it

can easily lead to the mesh folding. In addition, implementing of 3D/2D registration

using this scheme is very complex. A common disadvantage of the diffusion and div-

curl registration methods is that both are sensitive to global affine transformation,

so that a pre-registration step is an necessary task. To skip the pre-registration step,

we propose to use curvature regularizer. Based on the advantages and drawbacks of

each method and our experimental results, we observe that the curvature registration

method is an appropriate choice as it can provide high registration accuracy. Mean-

while, the reason that the curvature registration can provide better accuracy than

TPS registration is because the curvature registration only assumes that the defor-

mation model belongs to some infinite dimension space of functions and this space is

motivated by regularizer properties. Therefore, the formulation of the problem does

not require us to specify a parametric form as in the spline-based registration method

and thus has more flexibility.

Chapter 7 presents a registration method that uses contour correspondences through

a variational one-step deformable ICP method. Contour-based registration is the ba-

sis for many computer vision techniques and medical image analysis. Among all the

existing methods, ICP-based algorithms are one of the most used algorithms in this

context. In ICP-based algorithms, both point correspondences and transformation

parameters can be established and estimated automatically. The major advantage of

the contour-based registration methods is that they do not need an expert user es-

tablishes point correspondences manually which is a challenging and time-consuming

process. In other words, these methods decrease user interaction by establishing point

correspondences registration steps automatically while may still relying on the user

to segment the corresponding contours. Therefore, we take the advantage of contour-

based method in TVUS-MR registration problem to decrease the user interaction

which moves the algorithm toward clinical application. Our method is based on the

ICP used distance transform method. The distance transform merges the two inner

steps of classical ICP. However, the existing one-step ICP computes rigid 2D/2D and
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3D/3D registration of a single pair of curves and surfaces, respectively. Since, there is

a large deformation between soft-tissue organs in TVUS and MR images, we need to

extend this method to obtain non-linear geometric transformations. In this purpose,

we extend one-step rigid ICP by using a variational procedure to obtain nonlinear

deformations. Our registration method has two main steps: first, the MR and TVUS

data are manually segmented by an expert. Second, our deformable ICP method is

used to compute a dense deformation field while establishing point correspondences

automatically. Since, we deal with the variational problem, we must obtain a high

accuracy solution for elliptic PDEs. Once again the solution of these PDEs is the

displacement vector field which must be applied to the implant in the TVUS im-

age to localise the endometrial implants in MR frame. The novelty of this work is

methodological and technical, from respectively the registration based approach to

the diagnosis of endometriosis and a variational framework leading to a well-defined

one-step formulation of ICP handling multiple curve correspondences. The experi-

mental results on both semi-synthetic and clinical data reveal that the one-step ICP

improves computational time and reduces the dependence of the classical two-step

ICP on the initial estimate. We also find that two-step ICP is guaranteed to converge

to a local minimum, since both steps in ICP must minimize the error. The reason

that the one-step ICP decreases the dependency on initial registration solution is that

this method removes closed-form inner loop of two-step ICP by using the Euclidean

DT which leads to one energy functional to simultaneously establish correspondences

and estimate deformation field. The experimental results also show that the pro-

posed method is better than TPS-RPM in terms of both computational time and

local registration accuracy.

In Chapters 5 − 7, we have examined various registration methods to find which

strategy and technique work best in our problem. In all these methods, the reference

2D MR slice from the MR volume that corresponds to the moving 2D TVUS image

was manually chosen by an expert. Therefore, we have assumed that the TVUS slice

is parallel to the corresponding MR slice. This is a limitation since the standard

TVUS and MR imaging techniques used for diagnosing endometriosis are 2D and
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3D, respectively. In other words, a US image generally matches with multiple MR

slices so that it is not parallel to any of the MR directions. Hence, this registration

problem is deliberately a slice-to-volume registration. Therefore, in Chapter 8, we

describe a variational one-step deformable ICP method that directly registers a set

of 2D curves in the 2D TVUS image to a set of corresponding 3D surfaces in the

3D MR volume. This method computes a dense deformation field embedding the

TVUS domain in the MR coordinate frame while establishing point correspondences

automatically. In order to establish point correspondences and obtain non-linear

transformation parameters, the method uses Euclidean distance maps resulting from

MR surfaces. Our method handles multiple pairs of curves and surfaces. To make

our algorithm more stable, we use a least squares planar constraint on the warped

surface just for a few iterations. Applying this strong constraint on the original TVUS

surface improves convergence rate, since high frequencies on the warped surface can

interfers with convergence. The qualitative and quantitative tests on semi-synthetic

data and clinical data sets show that our method remarkably reduce the error compare

to two-step ICP.

In summary, the main advantages of TVUS-MR slice-to-volume registration ap-

proach over 2D/2D image registration are twofold. Firstly, This approach removes

the assumption that the TVUS slice is parallel to the corresponding MR slice. This

assumption is not perfectly true as a TVUS image generally is not parallel to any

of the MR directions. Therefore, this is significantly important to discard this as-

sumption, since the goal of endometriosis treatment is to resect the endometriosis

without harming the healthy tissue around it. However, to achieve this, we needs

very accurate procedures in order to precisely localize endometriosis. By considering

this assumption, the accuracy of localization can decrease, so that slice-to-volume

registration is needed to enhance preoperative surgical planning. As mentioned be-

fore, each MR slice of the MR volume can just depict the location of large tissues,

and combination of all these slices can help the surgeons to visually reconstruct 3D

structures of the patient’s pelvic organs. However, such a reconstruction prone to

large error, since the pelvic has complex 3D structures. So a computer-aided recon-
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struction system must be used to accurately reconstruct 3D models of the patient’s

organs. This simply enhances the anatomy of this complex part of the body. Thus,

the second advantage of slice-to-volume registration approach is that the surgeons do

not need to deeply investigate each imaging modality, since all the necessary informa-

tion needed to make an accurate preoperative surgical planning are provided as a new

volumetric image which removes redundant information. Note that this new image

contains the patient-specific organ model from 3D MR volume as well as shape, size,

location, depth of infiltration of endometrial implants from 2D TVUS images, and

resections lines. This new image eases the task of surgeons to make better decisions

to avoid under- or over-cutting during surgery.

9.2 Future Work

A main challenge in this manuscript is finding the MR slices corresponding to the

TVUS slice without using of the EM tracker or 3D TVUS. Therefore, we need to

validate our proposed methods by using an EM tracker. All the methods can be

speeded up by C++ coding or GPU programming and thus may be useful for real-

time multimodal fusion of female pelvic images.

From a clinician’s point of view, two fundamental questions have not been an-

swered. The first one is how much registering a 2D TVUS with a 3D MR can improve

the surgery planning. The second one is what the influence is of mapping an endome-

trial implant into a 3D patient-specific organ model on the surgery. Therefore, we

have yet to perform medical examinations to find out answers to these questions. To

achieve this, some patients with symptomatic disease who underwent surgery must

be selected in the study. Then, we need to ask surgeons to investigate both MR and

TVUS data, separately, and then make pre-operative surgical planning, in which the

location of implants and resection lines must be clearly defined on the MR images.

Then, the classical procedure of making surgical planning and our method must be

compared to surgery results. In this manner, we can observe the accuracy of the

surgical planning based on the classical procedure and ours.

In order to improve surgical procedures to accurately resect the endometrial im-
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plants during laparoscopic surgery, we must enrich the surgeon’s video data using

Augmented Reality (for more details, see [213–215]). This can be done with over-

laying the reconstructed 3D patient-specific organ model included implant’s location,

depth of infiltration, and resection lines with camera’s video frame. This an impor-

tant task, since the pelvic organs can exhibit strong deformation when manipulated

with laparoscopic tools. Therefore, the surgeons can easily harm the healthy tissue

around the implant or they can under-cut it. The latter one, cause the pain returns

and the patient needs recurrence in the short term.
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Appendix A

Image Resolution Enhancement
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A.1 Introduction

In recent years, the demand for resolution enhancement of pictorial data in medical

images has been increased in order to assist clinicians to make accurate diagnosis.

The tasks of resolution enhancement in medical images is generally to enlarge a

region of interest. However, the main issue of concern is preserving more details

in the enlarged image. In general, interpolated images have some problems such as

losing the contrast and blurring the details. Thus, a robust medical image resolution

enhancement technique must be able to cope with these two issues.

Nearest neighbor, bilinear and bicubic are the most well known interpolation tech-

niques. However, the wavelet transform is playing a significant role in image resolution

enhancement and many algorithms have been using it recently. Among other works,

Chang et al. [216] and Carey et al. [217] have attempted to estimate the significant

coefficients by examining the evolution of a wavelet transform’s extrema among the

same type of sub-band. The significant coefficients were used to improve the sharpness

of the enhanced resolution image and edge detection algorithm were used to create
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a model for detecting edges in higher frequency sub-bands. Only coefficients with

significant magnitudes were estimated as the evaluation of the wavelet coefficients.

Temizel et al. [218] applied wavelet domain zero padding in order to generate an ini-

tial high resolution approximation. Such approximation usually involves smoothing

and ringing that could be resolved by applying a cycle spinning methodology.

Our aim in this paper is to propose a method for 3D image resolution enhance-

ment based on discrete stationary wavelet transforms to generate sharp high resolu-

tion images. More specifically, we first increase the quality of edges using a shape

function [219] and then use both the discrete and the stationary wavelet transforms to

decompose the resulting image into low and high frequency sub-bands. The proposed

method shows that the results obtained in [220], in the 2D case, could be further

improved by considering the mean of the high frequency sub-band coefficients. To

assess the efficiency of our method, we have considered comparisons with some conven-

tional and state-of-art image resolution techniques such as bi-linear, bicubic, Wavelet

Zero Padding (WZP), Discrete Wavelet Transform-Based Image Resolution Enhance-

ment [221], and Image Enhancement by using Discrete and Stationary Wavelet De-

composition [220]. Note that the 2D version of the proposed method outperforms the

state of the art and its extension to 3D enhancement based on wavelet transforms is

completely new to the best of our knowledge.

The rest of the paper is organized as follows. Section 2 is a brief review of pre-

vious image enhancement work. Section 3 presents the proposed method to enhance

image resolution. Results and discussions are provided in section 4 and the paper is

concluded in section 5.

A.2 Image resolution enhancement

There are various wavelet based methods which have been used for medical image

resolution enhancement. However, just two state-of-art techniques have been im-

plemented for comparison purposes. The first technique is DWT-based resolution

technique [221], and the second one is image resolution enhancement by using DWT

and Stationary Wavelet Transform (SWT) [220].
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DWT-based image resolution enhancement The method consists of combining

high frequency sub-bands using DWT and the input low resolution image to achieve

a sharper result. The method can be summarized as follows:

• use DWT to decompose the input image into sub-band images

• apply bicubic interpolation to sub-band images

• subtract the low frequency sub-band image from input low resolution image

• add the difference image to high frequency sub-bands

• apply bicubic interpolation to above estimated detail coefficients and low resolu-

tion input image to reach the required size for inverse DWT.

Image resolution enhancement by using DWT and SWT In this method one

level DWT is employed to decompose the input image into four different sub-band

images. The three high frequency sub-bands images which contain the high frequency

components of the input image are interpolated by bicubic interpolation. Further-

more, SWT has been employed to minimize information loss due to the downsampling

in DWT. This is followed by combining all the high frequency sub-band images to

generate new corrected high frequency sub-band images. Note that, the input image

and the new corrected high frequency sub-band images can be interpolated for higher

enlargement. Finally, inverse DWT is applied to create the high resolution image.

A.3 Proposed algorithm for 3D images

As already stated, smoothing caused by interpolation techniques create a serious

problem on edges. Hence, preserving edges must result in better output images.

The complete block diagram of the 2D proposed algorithm is illustrated in Figure

1. In order to apply the proposed algorithm to 3D images, the 3D DWT has been

chosen to preserve the edges. In the proposed algorithm, one level DWT is applied to

decompose a 3D low resolution image into eight different sub-band images. The high

frequency sub-bands such as HHH, HHL, HLH, LHH, LHL, LLH, and HLL (where H
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and L are High and Low coefficients) contain the edges of the low resolution image.

Furthermore, the size of high frequency components of DWT is increased by 3D

bicubic interpolation with factor 2. Note that downsampling of sub-band images

in DWT cause the information loss in the sub-bands. Thus, 3D SWT is employed

to reduce this information loss. While the high frequency sub-bands in both DWT

and SWT have the same size their mean must be computed to correct all the high

frequency sub-band coefficients. For higher enlargement, the bicubic interpolation

Figure A-1: The Block Diagram of the 2D Proposed Algorithm. Taken from [220]
and modified.

technique can be applied to the new corrected high frequency sub-bands. It is worth

to note that the low resolution image is created by low-pass filtering of the high

resolution image [222]. As mentioned before, the shape function which has been

explained by Tai et al. [219] applied to the input low resolution image to enhance

the edge intensities. Thus, it results in preserving more edge information while the
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proposed method estimates the coefficients. Accordingly, in order to increase the

quality of the enhanced image, the improved input image is used instead of using

the low frequency sub-band which contains less information than the original high

resolution image. Also by interpolating the input image and the estimated high

frequency components with factor ( b
2
), the 3D inverse DWT produces a sharper high

resolution image than the interpolated image obtained by interpolation of the input

image directly. This is due to the fact that the proposed method preserves more high

frequency components after the corrections obtained by computing the mean of high

frequency sub-bands than interpolating the input image directly.

A.4 Experimental result

In this section, the proposed method is discussed and compared with other resolution

enhancement techniques. We will use 2D natural images, 2D slices of 3D volumetric

MRI images, and 3D MRI images (S01, S02, S03), as shown in Table 2 and Figure

3. As a ground truth for accuracy evaluation purposes we consider a high resolution

version of these gray level images with a size of 512 × 512 for 2D images and 512 ×

512 × 24 for 3D images. The high resolution images were downsampled by a factor

of 4 to create low resolution images.

The error between ground truth and reconstructed images is expressed in terms

of the peak signal-to-noise ratio (PSNR) values. PSNR, which has been generally

applied for quality measurement in the field of image processing, can be defined by

the following expression:

PSNR = 10log10

255× 255
1

HW
(
∑H

i=1

∑W
j=1 (I1(i, j)− I2(i, j))2)

(A.1)

where H and W are respectively the height and the width of the original high reso-

lution image I1 and enhanced image I2.

The PSNR values for 2D images are given in Table 1 for four times enlargement.

This table evaluates the accuracy of the proposed method with conventional and state-

of-art resolution enhancement techniques. It is clear from Table 1 that the proposed
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method outperforms the other methods. Figures 2 confirms that the reconstructed

images using the proposed technique in (d), comparing to the other methods in (b)

and (c), improved the portrayal of salient image feature such as edges and contours.

Table 2 (Left) is a comparison between the 2D version of our method and the

state of the art, both applied on a set of 2D MRI slices. The values in each row are

obtained as a mean over the PSNR value on each slice. In order to have a comparison

with the 3D version of our method, Table 2 (Right) shows the mean PSNR values

computed over the 24 slices for each 3D image.

For display purposes, the proposed algorithm was applied to the full 3D MRI

image volume (S01) shown in Figure 3 (a) to illustrate the original low resolution

image with a size of 128× 128× 6. Low resolution Slices are shown in Figure 3 (b).

In Figure 3 (c) the proposed algorithm was applied to the 3D low resolution image in

order to enhance the resolution to a full isotropic 512× 512× 24 image; the resulting

2D slices are shown in Figure 3 (d). The PSNR results in Table 1 and 2 and the

simulation results in Figures 2 and 3 show that the proposed method has sharper

edge features, more details, and visually it is closer to the original image compared

to the conventional and state-of-art image resolution enhancement results.

Method Lena Baboon Head Brain

Bi-linear 22.27 20.09 25.93 23.64
Bicubic 24.03 21.63 27.09 24.96
WZP (Db. 9/7) 25.76 21.99 29.81 26.07
discrete and stationary wavelet decomposition [220] 26.94 22.61 30.12 28.02
DWT based image resolution enhancement [221] 29.09 22.84 31.31 28.86
Proposed method 30.81 25.16 32.26 30.33

Table A.1: PSNR (dB) Results for 4× Resolution Enhancement (from 128 × 128 to
512× 512).
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Method S01 S02 S03

Bi-linear 20.31 19.01 20.65
Bicubic 20.36 19.06 20.74
DSWD [220] 22.81 21.08 23.28
DWT [221] 26.83 25.25 27.23
Our method 27.46 26.51 28.60

Method S01 S02 S03

Bi-linear 26.82 25.45 27.12
Bicubic 26.89 25.55 27.24
DSWD [220] 28.20 27.38 29.07
DWT [221] 33.49 32.13 34.72
Our method 34.57 33.40 35.71

Table A.2: Average PSNR (dB) for Left: 2D Slices; Right: Overall Slices of 3D
Images.

(a) (b) (c) (d)

Figure A-2: (a) Original Low Resolution Image, (b) Discrete and Stationary Wavelet
Decomposition; (c) Discrete Wavelet Transform-Based Image Resolution Enhance-
ment; (d) Proposed Technique and the Residual Images of the Close-up Scene for
Specific Block Size in the Second Row.

(a) (b) (c) (d)

Figure A-3: (a) 3D Original Low Resolution Image (S01), (b) 2D Slices of 3D Low
Resolution Image, (c) 3D Enhanced Resolution Image, (d) Odd 2D Slices of 3D
Enhanced Resolution Image.
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