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Abstract

Time-Of-Flight (TOF) sensors provide real time depth information at

high frame-rates. One issue with TOF sensors is the usually high level

of noise (i.e. the depth measure’s repeatability within a static setting).

However, until now, TOF sensors’ noise has not been well studied. We

show that the commonly agreed hypothesis that noise depends only on

the amplitude information is not valid in practice. We empirically es-

tablish that the noise follows a signal dependent Gaussian distribution

and varies according to pixel position, depth and Integration Time (IT ).

We thus consider all these factors to model noise in two new noise mod-

els. Both models are evaluated, compared and used in the two following

applications: depth noise removal by depth filtering and uncertainty (re-

peatability) estimation in 3D measurement.
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1 Introduction

Time-Of-Flight (TOF) cameras open new possibilities in fields such as 3D re-

construction, augmented reality and video-surveillance since they provide depth

information in real-time and at high frame-rates. They are based on the emis-

sion of a modulated infrared light which is reflected by the objects in the scene.

The signal’s phase shift ϕ is determined and the depth value d is computed as

d = cϕ
4πfmod

, where c is the speed of light and fmod the modulation frequency [18].

This technology has several limitations. One of them is the depth measurement

uncertainty (i.e. the repeatability of depth measure) and this is due to the sen-

sor noise. This means that different depth measures of the same point acquired

with a fixed camera are not identical. We note that there are other factors that

affect the accuracy and robustness of TOF measures. However, in this paper,

we focus on the depth measure’s repeatability (uncertainty) within a static set-

ting. Generally, it is handled by spatial and/or temporal filtering [5, 9, 10, 20].

Nevertheless, it is important to know the uncertainty due to the sensor noise

associated to each depth measurement with a static setting in order to quantify

the quality of the measure and perform the most appropriate filtering. The

majority of the proposed models considers that the noise is proportional to 1
a

the inverse of the amplitude of the received signal [6, 15]. However, there has

been no studies that compare the 1
a model to other models integrating different

parameters. To verify whether the amplitude is sufficient to model the noise,

we have performed a simple experiment. It is an evaluation of the linear model

in 1
a . To do that, depth images of a white wall were acquired at different depths

from 1 m to 7 m. At each depth, 100 depth images were recorded. Then, the

empirical standard deviation σ for 100 measures per pixel was calculated. Note

that we do not use data around the minimum (0 m) and maximum (7.15 m)

range values of the camera, since issues related to sensor saturation and depth

wrapping [7] occur there. From these data, the parameters of the linear model

in 1
a were estimated. We observed the response of this model as a function of

the empirical σ for different points. For a perfect model, the response must
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corresponds to a straight line. However, figure 1 shows that for high values of

σ, the scatter does not follow a straight line. This means that the inverse of the
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Figure 1: Response of the linear model in 1
a . The σ predicted by this model is

plotted against the empirically derived σ. The data are images of a white wall
acquired with the PMD Camcube2 TOF camera with a resolution of 204×204
pixels [16]. For high values of σ, the scatter does not follow a straight line.

amplitude is not sufficient to get an accurate noise estimation. It would be of

utmost interest to determine the various factors influencing noise and to devise

a model which explicitly depends on these factors.

In this paper, we first show empirically that the noise follows a signal depen-

dent Gaussian distribution (section 2). Then, we consider various factors (not

only the amplitude) to model the noise (pixel position, depth, IT 1 and object

reflectivity). We propose two continuous noise models. The former is a function

of pixel position and amplitude (section 3.1). This model depends implicitly

on the other factors influencing the noise (depth, IT and reflectivity), since the

amplitude depends on these factors. It uses a 3D smoothing spline, known as

a 3D Thin-Plate Spline (3D TPS). This function is used, since we need a 3D

function R3 → R which gives for each 3D point the associated noise. The latter

proposed model depends explicitly on the factors influencing the noise : pixel

1IT (Integration Time) is a known parameter expressed in seconds that can be selected by
the user or auto set for some TOF cameras.
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position, depth and IT (section 3.2). Reflectivity may be easily added as well.

Therefore, this second model gives the noise for each depth-pixel and for each

IT . In order to avoid noise modeling for different ITs, we propose to model

the inter-IT transformations. The second noise model is thereby composed of

two transformations. The first one gives the noise value for each pixel and each

depth at a given IT (we denote it IT1). Like the first model, it uses the 3D

TPS function. The second transformation is linear and accounts for the other

ITs. Finally, the two proposed models are compared in section 4 and two appli-

cations are presented in section 5. The first one is a depth filter. A comparison

with the bilateral filter is presented. The first model is used in this application

since the images contain objects with different reflectivity index. The second

application consists in providing uncertainty (repeatability) of 3D measurement

based on TOF measures. An example of 3D measurement is to compute object’s

dimensions from some depth image. In this application, our second model is

used because the measured object’s reflectivity is constant. The 3D uncertainty

in TOF measurement is the combination of pixel detection error and sensor

noise. We describe how errors in 2D measurements propagate to errors in the

3D measurements, and hence how to compute a confidence interval on any 3D

measurement, i.e. a quantitative assessment of accuracy. We propose a closed-

form approximation from 2D pixel detection error and our continuous depth

noise model.

Notation. A 2D point p (in pixels) is the 2-vector defined as pT = (u v)

with (u v) the pixel coordinates. A 2.5D point q (depth-pixel) is the 3-vector

defined as qT = (u v d) with d the associated depth (in mm) and the cor-

responding 3D point in the camera coordinate frame is QT = (X Y Z) (in

mm).
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2 Characterizing Depth Noise

Our objective is to characterize the noise in order to model it. The same data

used to perform the experiment described in section 1 are used in this section.

We start by characterizing the noise for a fixed IT and then focus on the noise

dependency on IT .

2.1 Noise Characterization for a Fixed IT

Normality of the noise distribution. To characterize the noise, we first

verify the normality of the distribution. There are, mainly, two approaches

to test normality: graphical and statistical. For more robustness, we use two

graphical methods, the normal probability plot and the distribution histogram,

and one statistical method, the Lilliefors test. Note that the data used to

perform these tests are pixels from depth images acquired with an IT of 14 ms.

For the first test which is the normal probability plot, the normal order

statistic medians [4] of the sample data are plotted. These data correspond to

the 100 observations of the same pixel in the image at a fixed distance. If the

data are normal their plot should form an approximate straight line. Departure

from this straight line indicates departure from normality. A representative

example corresponding to a depth-pixel (figure 2) shows that the scatter follows

approximately straight lines. This is observed for all input depth-pixels. This

means that the noise follows a normal distribution.

To perform the second graphical normality test, all of the 2.5D points from

the input data set are considered. Some of their associated histograms show-

ing the distribution of the depth measurement are plotted in figure 3. These

histograms, as can be graphically seen, follow a Gaussian distribution.
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Figure 2: Normal probability plot corresponding to a depth-pixel. In blue, the
normal order statistic medians of the sample data. In red, a straight line (a
robust linear fit of the data) plotted to help evaluate the linearity of the data.
The scatter follows approximately a straight line. This indicates that the data
follows a normal distribution.
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Figure 3: Noise distribution graphs. Each graph represents the distribution of
the 100 depth measurement of some depth-pixels (of a white wall). Graphically,
these histograms correspond to a Gaussian distribution.
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After the graphical verification, a statistical Gaussian test (more robust com-

pared to a graphical test) was used. The Lilliefors test (adaptation of the

Kolmogorov-Smirnov2 test) evaluates the null hypothesis that the data comes

from a distribution in the normal family. The test returns the probability of re-

jecting the hypothesis of normality h [11]. This test is performed for each pixel

of the input depth images, then the median and mean values of h for all pixels

are computed. The median value is equal to 0 and the mean value is 0.1472.

These values confirm that the TOF noise follows a Gaussian distribution to a

good extent.

Noise variation. We are now interested in noise variation according to two

factors: the pixel position and the depth. Since we showed that the noise

affecting a 2.5D follows a normal distribution and is centered (as shown in figure

3), we propose to use the standard deviation σ to quantify it. σ is calculated for

each 2.5D point of the depth images. We present, in figure 5(a), the σ values

at each pixel for an approximate depth d = 3 m. As can be clearly seen, σ

increases away from the optical center (6 to 7 mm) to the image boundaries (11

to 12 mm). The highest accuracy is achieved at the optical center where the

illumination of the observed object is at its highest value. The same phenomenon

is observed for all other input depth images. We observe now the standard

deviation dependency on the depth, in figure 6(a). The σ at each pixel of the

depth images is calculated and plotted against the depth values. σ increases

with depth from 6 to 22 mm.

We illustrate briefly the noise dependency on the reflectivity. An image of a

classical black and white chessboard is used, see figure 4. The standard deviation

computed out of 100 depth measurements at each pixel shows that objects at

the same distance of the camera do not have the same standard deviation. We

observe that the noise is higher on the black squares of the chessboard.

2The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with
a specific distribution.
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Figure 4: Example showing the noise dependency on the reflectivity. (a) Inten-
sity image of a classical black and white chessboard. (b) The standard deviation
σ computed out of 100 depth measurement at each pixel. This shows that dif-
ferent color located at the same distance of the camera do not have the same σ
(the noise is higher in the black squares of the chessboard).

2.2 Noise Dependency on the Integration Time

We are interested now on the variation of the depth measurements’ standard

deviation σ as a function of the IT . We know that the IT affects the preci-

sion of the measured depth image. The longer the IT , the higher the depth

measurement precision.

We use now the acquisitions performed on the following different ITs: 1 ms,

2 ms, 3.5 ms, 7 ms and 14 ms. Figure 5 presents a comparison of the computed σ

at each depth-pixel. The plotted data correspond to an approximate depth d=3

m. As can be clearly seen, all plots have the same shape : for all ITs, σ increases

from the optical center to the image boundaries. However, the amplitude of σ

is varying with IT . For example, σIT=14 (σ for IT = 14 ms) is varying from 6

mm to 12 mm (figure 5(a)), compared to σIT=1 which is varying from 30 mm

to 100 mm (figure 5(e)).

Now we compare the variation of σ according to depth, for the different ITs.

This is shown in figure 6, which gives an overview of σ over depth values. The

noise distribution as a function of depth between 2 m and 6.5 m is plotted. As

shown, σ increases with depth. This is verified for different ITs. Note that
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Figure 5: Colored plot of standard deviation σ (mm) (of a depth image at
approx. 3 m) for different ITs: (a) 14 ms, (b) 7 ms, (c) 3.5 ms, (d) 2 ms and
(e) 1 ms. σ increases away from the optical center, where the illumination of
the observed object is at its highest value, to the image boundaries.

we avoid using data at the limits of the operating depth because a significant

number of invalid depth pixels is observed there. In figure 6(f), the noise distri-

bution of the different ITs are plotted together. This shows that σ is inversely

proportional to IT .

The amplitude of noise gives an information about the accuracy of mea-

surement. This information is essential in any application, since it denotes the

degree to which a measurement result represents the true value. The calculated

standard deviation from the input depth images is however not sufficient. In

fact, these values do not cover all the 2.5D space. It is important to have the

noise of TOF camera for all the 2.5D space. Therefore, we propose an interpo-

lated continuous noise model.
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Figure 6: Standard deviation σ (mm) of a white wall plotted against depth, for
different ITs: (a) 14 ms, (b) 7 ms, (c) 3.5 ms, (d) 2 ms and (e) 1 ms. The σ
mean value is plotted as red dots and the approximate function in blue line.
The σ mean value varies approximately from (a) 6 mm to 22 mm, (b) 6 mm to
35 mm, (c) 7 mm to 64 mm, (d) 11 mm to 110 mm and (e) 20 mm to 200 mm
respectively. The approximate function of the different ITs are plotted together
in (f).

3 A Continuous Depth Noise Model

As shown in section 2, the TOF noise (defined as the depth measure’s repeata-

bility within a static setting) has a centred Gaussian distribution. The proposed
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noise model is thus based on modeling the standard deviation of multiple mea-

surements of the same depth. The objective is to provide a continuous noise

model i.e. the noise value for each 2.5D point in a continuous subset of R3. The

models from the literature consider the noise only depending on the amplitude

information and that are all linearly related. However, a simple experiment

(figure 1) showed that this model is not accurate, especially, for higher values

of σ.

In this section, our objective is to improve the noise modeling accuracy by

testing more complex models (than the linear models) which integrate other

parameters (e.g. the pixel position in the image). First, we propose a model

which integrates both the pixel position in the image and the amplitude. We

call it the position-amplitude model. Then, we propose a second model where

different parameters are integrated together: the pixel position in the image, the

depth, the IT and the reflectivity (which represents an underlying parameters

to the amplitude information). We call it the position-depth-IT model. Our

two noise models are estimated from a set of discrete standard deviation values.

These values correspond to standard deviation calculated from depth images of

a white wall covering different distances (d from 1 m to 7 m).

3.1 The Position-Amplitude Model

Our first model takes into account, in addition to the amplitude a, the variation

according to the pixel position in the image (u v). The amplitude depends on

the depth, the IT , the reflectivity and the angle between the pixel ray and the

surface normal. In order to model the noise variation according to these two

factors, we choose a non-linear model: the 3D Thin-Plate-Spline (3D TPS). This

function is chosen since it is memory efficient, provides a continuous model for all

points r = (u v a)
T

and may be estimated from a sparse set of observations.

The 3D TPS model. The 3D TPS [3] R3 → R is controlled by l 3D centers

ck (ck ∈ R3, k = 1, . . . , l) driven by assigning target values αk to the l 3D

centers ck and is parametrized by an l+ 4 coefficient vector hT = ( wT aT ).
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Let r = (u v a)
T

be a point and `Tr the vector defined by:

`Tr = ((d(r, c1)) · · · (d(r, cl)) rT 1) (1)

where d is the Euclidean distance. The 3D TPS function at point r is given by:

ω(r,h) = `Tr h

=

(
l∑

k=1

wkd(r, ck)

)
+ aTř, (2)

where ř is the homogeneous coordinates of r.

We use the 3D TPS to model the Gaussian noise. This provides continuity

and smoothness of the noise : it models the fact that the noise is similar for

nearby points. The 3D TPS function verifies this condition, since it minimizes

the ‘bending energy’. It limits the memory requirement : only the l+ 4 param-

eters and the l centers need to be stored. The proposed model is based on the

depth measurements’ standard deviation and defined by the function g:

g : Θ → R
u

v

a

→ σ , (3)

where Θ ⊂ R3, Θ = [umin;umax] × [vmin; vmax] × [amin; amax] is the working

area and σ is a scalar that represents the standard deviation. g(r)
def
= `Tr h and

g lies in L2(Θ)3. The l centers of the TPS function correspond to some points

from the input data set regularly positioned such that all the space Θ is covered.

We use a 6× 6× 6 grid of control centers, giving l = 63.

Estimation of the 3D TPS coefficients. The l + 4 TPS coefficients in

h are computed from the target values σk the depth measurements’ standard

3The Hilbert space of square-integrable functions.
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deviation. There are l coefficients in w and 4 coefficients in a. The coefficients

in w must satisfy P̌Tw = 0, where the kth row of P̌T is given by
(
cTk 1

)
. These 4

‘side-conditions’ ensure that the TPS has square integrable second derivatives.

Applying the TPS equation (2) to the center cr with target values σr gives:

(
l∑

k=1

wkd(cr, ck)

)
+ aTčr = σr, (4)

where čr is the homogeneous coordinates of cr. Combining the equations ob-

tained for all the l centers with the side-conditions in a single matrix equation

gives:  Kλ P

PT 0


︸ ︷︷ ︸

D

 w

a


︸ ︷︷ ︸

h

=

 σ

0

with Kλ =

 λ r = k

d(cr, ck) r 6= k.
(5)

where λ is a scalar that we set to some small value such as λ = 10−4, to ensure

that Kλ and thus D are well conditioned. The TPS coefficients in h are easily

solved from this linear system.

3.2 The Position-Depth-IT Model

Our objective is to provide a model that depends on the pixel position (u v),

the depth d, the IT and the object’s constant reflectivity. First, a model for a

fixed IT is proposed. It models the noise variation according to both the pixel

position and the depth for an IT 14 ms. Then, we extend it to consider all ITs.

A 3D TPS function is also chosen to model these variations.
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The 3D TPS model. The proposed model gives noise value for each 2.5D

point denoted q = (u v d)
T

and it is defined by the function f :

f : Ω → R
u

v

d

→ σ , (6)

where Ω ⊂ R3, Ω = [umin;umax]× [vmin; vmax]× [dmin; dmax] and σ is a scalar

that represents the depth measurements’ standard deviation. f(q)
def
= `Tqh and

f lies in L2(Ω). This function is modeled by the 3D TPS. The h coefficients

of the TPS function are estimated as explained before; by using the distance d

instead of the amplitude a in the definition of the l centers (l = 63).

Modeling variations according to IT . When comparing the noise distri-

bution for different ITs, we observe that they are linearly related. Therefore,

it is not necessary to integrate the IT in the TPS function : we rather model

the linear transformation. For that, we analyze the variation of σIT=i (i ∈ {

7 ms, 3.5 ms, 2 ms, 1 ms }) relative to σIT=14. Figure 7 shows the σIT=i for

different 2.5D points plotted against σIT=14. As shown, σIT=i increases linearly

with slope s = 14
i and a y-intercept b = −5s. For example, the relation between

σIT=2 and σIT=14 is expressed as:

σIT=2 = sσIT=14 + b

=
14

2
σIT=14 − 5

14

2
(7)

= 7σIT=14 − 35. (8)
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Figure 7: Linear fit to σIT=7, σIT=3.5, σIT=2 and σIT=1, respectively, as a
function of σIT=14 between 2 m and 6.5 m.

4 Experimental Evaluation of the Two Noise Mod-

els

We give an evaluation of our two models. The evaluation criteria is the noise

estimation accuracy for each point of the 2.5D space from TOF images. The

two models are:

• The position-amplitude model using a TPS defined by the function g

(equation (3)) that we denote TPS(u,v,a);

• The position-depth-IT model using a TPS defined by the function f (equa-

tion (6)) that we denote TPS(u,v,d).

In order to evaluate the accuracy of the two models, it is necessary to have

a data set from a TOF camera with the associated ground truth (the empirical

σ). This ground truth is obtained from an acquisition of 100 depth images of a

static scene (a white wall) covering different distances (d from 1 m to 7 m). A

15



white wall is chosen to keep the reflectivity constant. The standard deviation

of the 100 observations is computed for each 2.5D point. We note that the

data set employed to evaluate the noise models is not used for their estimation.

Two graphs are plotted in figure 8. Each one presents the σ predicted by our

noise model plotted against the empirical σ. For a perfect model, the response

would corresponds to a straight line with unit slope. For the two models, the

scatter follows approximately a straight line. When comparing them, we observe

that the second model TPS(u,v,d) gives a better accuracy than the first one

TPS(u,v,a): the points are closer to the straight line and the number of aberrant

values is lower. Note that these observations are valid for a constant reflectivity.

However, for a scene where the reflectivity is varying, it is recommended to use

the model TPS(u,v,a).
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Figure 8: Comparison between our noise models. For a perfect model, the points
would lie on the line y = x.

5 Applications

To illustrate the interest of our noise models for TOF cameras, two applications

are proposed. The former is depth noise removal. The image used in this appli-

cation contains objects with different reflectivity index. Our position-amplitude

model is thus used. The latter is uncertainty (repeatability) estimation of 3D
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measurement based on our position-depth-IT model. This model is used, since

it is more accurate for constant reflectivity as showed in section 4.

5.1 Depth Noise Removal by Depth Filtering

5.1.1 Principle

Our approach to TOF noise removal is based only on the standard deviation

σ estimated by our position-amplitude model and modeled by the 3D-TPS

(TPS(u,v,a)). This allows us to apply a more efficient filtering method com-

pared to the bilateral filtering which is very sensitive to the σbf (the σ used for

the bilateral filter). The depth image is filtered using a kernel size of 3 × 3 to

generate a smoothed depth image. This is explained in Algorithm 1. Each 2.5D

point q = (u v d)
T

in the depth image is replaced by a weighted average of

depth values from nearby points q̂ = (u v d̂)
T

. This weight depends on the

standard deviation σ computed from function g as σ = g(r) with r = (u v a)
T

(see section 3.1) and also on the Euclidean distance denoted ∆d. ∆d corresponds

to the distance between the considered 2.5D point and its nearby points. This

effectively gives a higher weight to the most accurate points (points with lower

σ).

Algorithm 1 Depth noise removal

1: for each 2.5D point q in the depth image do
2: σ ← g(r)
3: for each qi in the 3 × 3 pixel area around q do
4: ∆d = ‖d− di‖2
5: wi ← exp(

−∆2
d

2σ2 )
6: end for
7: d̂←

∑
i diwi∑
i wi

8: end for

5.1.2 Results

To demonstrate the effectiveness of our filtering, experimental results are given

for an IT different from 14 ms (14 ms is the IT used to calibrate the 3D TPS).

The IT value chosen for this experiment is 0.9 ms which gives more noisy
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depth images. The TOF camera used is a PMD Camcube2 with a resolution

of 204×204 pixels [16]. The results are shown in figure 9. A depth image with

different objects at different distances is used. We compare, in this figure, our

method with the bilateral filtering (σbf = 3 mm). We observe that our method

is preserving depth discontinuity better compared to bilateral filtering. With

σbf = 3 mm, most edges are lost with bilateral filtering. This is shown well
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(f) bilateral filter σbf = 3
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(g) bilateral filter σbf = 0.5
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(i) bilateral filter σbf = 1.5

Figure 9: Comparison of our filter with the bilateral filter on real data. The
results are illustrated by edge extraction performed after filtering. The bilateral
filter is performed with different σbf : (f) 3 mm, (g) 0.5 mm, (h) 1 mm, (i) 1.5
mm.
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with edge extraction performed after filtering with the Sobel operator. The

main limit of the bilateral filter is the sensitivity to the σbf variation. This is

shown in the comparison of edge extraction after filtering with different σbf . A

high value of σbf reduces noise better, but does not preserve edges. In contrast,

a low value of σbf preserves the edges, but does not reduce noise. In conclusion,

we can say that our method gives good result : we do not need to adjust the

value of σ and it does not depend on the IT value.

5.2 Uncertainty Estimation in 3D Measurement

5.2.1 Principle

The computation of 3D measurements based on depth measurements from TOF

camera has 4 steps. For example, the distance between two 3D points is com-

puted as :

• Detection and extraction of two 2D points from the image;

• Extraction of the depth measure associated to each 2D point from the

depth image. The combination of a 2D point and its depth gives the 2.5D

point;

• Transformation to 3D coordinates;

• Computation of the distance between the two 3D points.

The first step, whether manual or automatic, can only be performed to a finite

accuracy. In addition to detection error of the 2D point, the depth-pixel (2.5D

point) extracted from TOF images are subject to sensor noise. One objective

here is to estimate the uncertainty (repeatability) on the final 3D measurement

(distance measure). As examples of 3D measurements, we choose geometric

measurements like object width and height, although, the method is not limited

to those. In order to obtain the uncertainty of these measures, we consider

how uncertainty is propagated through the transformation formulas from the

2D points to the associated 3D distance. This is achieved by using a first
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order error analysis and based on our position-depth-IT model. This model is

used since the points’ reflectivity used in this application is constant and we

have shown that, in this case, this model is more accurate. Our objective is

to estimate the uncertainty of a geometric measurement by error propagation

from the 2D point p = (u v) to the geometric measurement. We proceed in

three steps: the first one is the uncertainty propagation from the 2D point to

the 2.5D point q = (u v d), the second one is the uncertainty propagation

from the 2.5D point q to the 3D point Q = (X Y Z) and the third one is the

uncertainty propagation from the 3D points to the final geometric measurement

(i.e. objects width and height in our case).

Pixel uncertainty to 2.5D. The uncertainty of a pixel (the 2D point p)

corresponds to the user click or the detection error. This error is defined by the

2 × 2 variance matrix Σp. We suppose here that Σp is given. We define the

transformation T1 between a pixel p and a 2.5D point q:

T1 : Γ → Ω

 u

v

→


u

v

d

 , (9)

where d = d(u, v) and Γ = [umin;umax] × [vmin; vmax] defined by the image

resolution and Ω = [umin;umax]×[vmin; vmax]×[dmin; dmax], where [dmin; dmax]

is defined by the depth resolution of the camera. A first order approximation

for the covariance matrix Σq
inter of q is given by:

Σq
inter = JT1ΣpJTT1

, (10)
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where J is the 3× 2 Jacobian matrix of the function T1 defined as:

JT1
=


1 0

0 1

d(u+ 1, v)− d(u, v) d(u, v + 1)− d(u, v)

 . (11)

A forward finite difference approximation of derivatives is used. However, a

backward or a centered approximation can also be used. In addition to the

uncertainty of a 2D point detection, the associated depth measurement is sub-

ject to the uncertainty due to the sensor noise. This uncertainty is defined by

the standard deviation σ modeled by the 3D TPS function f (equation (6)).

Incorporating the depth variance σ2 in the covariance matrix Σq
inter gives:

Σq = Σq
inter +


0 0 0

0 0 0

0 0 σ2

 . (12)

Propagating 2.5D uncertainty to 3D. We assume that the camera’s in-

trinsic parameters are known. Thus, the transformation (denoted T2) from 2.5D

point q to 3D point Q in the metric space can be estimated (as shown in figure

10). We call (cu cv) the optical center on the sensor array, fc the camera focal

length, (du dv) the pixel pitch in the u (resp. v) direction. Neglecting lens

distortion, the transformation between q and Q is given by:

T2 : Ω → ψ
u

v

d

→


X

Y

Z

 with


X = Z (u−cu)du

fc

Y = Z (v−cv)dv
fc

Z = d fc√
f2
c +((u−cu)du)2+((v−cv)dv)2

(13)

where ψ is a subset of R3: ψ = [Xmin;Xmax]× [Ymin;Ymax]× [Zmin;Zmax]. In

order to get the uncertainty in the 3D space, we propagate the error through

function T2. For that, we use a first order approximation of the covariance
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matrix ΣQ of T2:

ΣQ = JT2
ΣqJTT2

, (14)

where JT2 is the 3× 3 Jacobian matrix of the function T2 defined by:

JT2
=


∂T21

∂u

∂T21

∂v

∂T21

∂d

∂T22

∂u

∂T22

∂v

∂T22

∂d

∂T23

∂u

∂T23

∂v

∂T23

∂d

 . (15)

Figure 10: 2.5D point q versus 3D point Q.

Propagating 3D uncertainty to distance measurement. When making

measurement between 3D points Qi, uncertainty arises from the uncertain lo-

calization of the 3D points modeled by their associated covariance matrix ΣQi .

Here, we are concerned with measurement of the distance between two 3D points

(the width and the height of an object). Given two points Q1,Q2 and their as-

sociated covariance matrices ΣQ1 and ΣQ2 , the distance between Q1 and Q2 is

defined by the function D:

D : ψ2 → R Q1

Q2

→ ‖
−−−→
Q1Q2‖2 . (16)
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Assuming statistical independence between Q1 and Q2, a first order approxi-

mation of the variance σ2
D is given by:

σ2
D = JD

 ΣQ1 0

0 ΣQ2

 JTD, (17)

where JD is the 1× 6 Jacobian matrix of the function D.

5.2.2 Results

We give a simple example of use of our uncertainty model on real data. The

TOF camera used is also a PMD CamCube2. It is assumed to be calibrated (its

internal parameters are known). The IT is set to 14 ms.

The example consists in measuring the width and the height of a black-

white chessboard (the corresponding intensity image is shown in figure 11(a)).

These measurement are obtained from the 4 points clicked on the image p1,p2

and p3,p4 (see figure 11(b)). For each 2D point (pi)
4
i=1, the Σpi is computed:

multiple-clicks are performed and the standard deviation in each direction (u, v)

is computed. Then, the corresponding 3D point (Qi)
4
i=1 and their covariance

matrix (Σqi)
4
i=1 and

(
ΣQi

)4
i=1

are computed as explained before. The first

point p1 is considered as an example to present the uncertainty propagation.

The covariance matrices Σp1 , Σq1 and ΣQ1 are:

Σp1 =

 0.602 0

0 0.602

 Σq1 =


0.36 0 1.09

0 0.36 0.36

1.09 0.36 61.13



ΣQ1 =


39.39 4.11 7.47

4.11 40.95 0.78

7.47 0.78 60.95

 .

From these matrices, the uncertainty ellipse of p1 (figure 11(c)) and the un-

certainty ellipsoids of q1 (figure 11(d)) and Q1 (figure 11(e)) are calculated.
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(a) intensity image
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Figure 11: Measuring the chessboard width and height from depth-pixels: (a)
the intensity image and (b) the depth image corrected for radial distortion.
Computed width and height are respectively equal to 1211 ± 11.8 mm and
903 ± 8.97 mm. The computed (c) uncertainty ellipse of p1 and uncertainty
ellipsoid of (d) q1 and (e) Q1 are presented. The associated uncertainly ellipses
are drawn in blue around the ellipsoids.

The uncertainty ellipse and ellipsoid are a graphical representation of the co-

variance matrices. Then, the chessboard width w = D(Q1,Q2) and height

h = D(Q3,Q4) values are computed from equation (16). Their values are

respectively equal to w=1211 mm and h=903 mm, the ground truth are re-

spectively 1200 mm and 900 mm. The error between measured and ground

truth distances is not only due to sensor noise. The TOF camera are also

subject to depth distortion. It is mainly due to the fact that the modula-

tion signal is not perfect sinusoidal (called the systematic error). Some works

[1, 2, 8, 12, 13, 14, 17, 19] have been devoted to correcting this distortion. In

this paper, the depth distortion caused by the systematic error is corrected [1].

After width and height computation, their variance values are computed from
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equation (17) and the uncertainty (which is equal to standard deviation) are

deduced. They are respectively equal to σw=11.8 mm and σh=8.97 mm. Note

that ground truth values fall within the confidence intervals [w − σw;w + σw]

and [h− σh;h+ σh] with levels of confidence4 equal to 68%.

6 Conclusion

We have empirically shown that the noise distribution of TOF sensors follows a

Gaussian distribution. We have proposed to model the TOF noise based on its

variation factors such as the pixel position (u v), the depth d, the Integration

Time IT , contrarily to the literature where only the amplitude a is used. Two

continuous noise models have been proposed. Our first model is a function of

(u, v, a). The function used to model these variations is a 3D Thin-Plate Spline

(3D TPS). Our second model is more complex : it is a function of (u, v, d, IT ).

It is composed of a 3D TPS function and a linear transformation. Tests on

real data have demonstrated that the proposed models are more accurate than

models based only on the amplitude. When comparing the two proposed models,

we have observed that the second one is more accurate. To illustrate the interest

of our noise models, two applications have been proposed. The first one is

a depth filter based on our first model. The second one is the uncertainty

estimation of 3D measurements from TOF measures and is based on our second

model. Future work will be to extend our second noise model to integrate the

reflectivity variation. It would also be interesting to test the proposed approach

for the Kinect sensor and to improve the robustness of TOF algorithms using

the proposed noise models.

4The level of confidence would indicate the probability that the confidence interval contains
the ground truth value. Note that greater levels of confidence give larger confidence intervals,
and hence less precise estimates of the parameter.
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