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Abstract The fundamental matrix can be estimated from point matches. The current gold
standard is to bootstrap the eight-point algorithm and two-view projective bundle adjust-
ment. The eight-point algorithm first computes a simple linear least squares solution by
minimizing an algebraic cost and then projects the result to the closest rank-deficient matrix.
We propose a single-step method that solves both steps of the eight-point algorithm. Using
recent results from polynomial global optimization, our method finds the rank-deficient ma-
trix that exactly minimizes the algebraic cost. In this special case, the optimization method
is reduced to the resolution of very short sequences of convex linear problems which are
computationally efficient and numerically stable. The current gold standard is known to be
extremely effective but is nonetheless outperformed by our rank-constrained method for
bootstrapping bundle adjustment. This is here demonstrated on simulated and standard real
datasets. With our initialization, bundle adjustment consistently finds a better local mini-
mum (achieves a lower reprojection error) and takes less iterations to converge.
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1 Introduction

The fundamental matrix has received a great interest in the computer vision community (see
for instance [1, 2, 3, 4, 5, 6, 7]). This (3× 3) rank-two matrix encapsulates the epipolar
geometry, the projective motion between two uncalibrated perspective cameras, and serves
as a basis for 3D reconstruction, motion segmentation and camera self-calibration, to name a
few. Given n point matches (qi,q′i), i= 1, . . . ,n between two images, the fundamental matrix
may be estimated in two phases. The initialization phase finds some suboptimal estimate
while the refinement phase iteratively minimizes an optimal but nonlinear and nonconvex
criterion. The gold standard uses the eight-point algorithm and projective bundle adjustment
for these two phases, respectively. A ‘good enough’ initialization is necessary to avoid local
minima at the refinement phase as much as possible. The main goal of this article is to
improve the current state of the art regarding the initialization phase. We here focus on input
point matches that do not contain mismatches (a pair of points incorrectly associated). The
problem of mismatches has been specifically addressed by the use of robust methods in the
literature.

The eight-point algorithm follows two steps [1]. In its first step, it relaxes the rank-
deficiency constraint and solves the following convex problem:

F̃ = argmin
F∈R3×3

C(F) s.t. ‖F‖2 = 1, (1)

where C is a convex, linear least squares cost, hereinafter called the algebraic cost:

C(F) =
n

∑
i=1

(
q′>i Fqi

)2
. (2)

This minimization is subject to the normalization constraint ‖F‖2 = 1. This is to avoid the
trivial solution F = 0. Normalization will be further discussed in section 3. The estimated
matrix F̃ is thus not a fundamental matrix yet. In its second step, the eight-point algorithm
computes the closest rank-deficient matrix to F̃ as:

F8pt = argmin
F∈R3×3

‖F− F̃‖2 s.t. det(F) = 0. (3)

Both steps can be easily solved. The first step is a simple linear least squares problem and
the second step is solved by nullifying the least singular value of F̃. It has been shown [4]
that this simple algorithm performs extremely well in practice, provided that the image point
coordinates are standardized by simply rescaling them so that they lie in [−

√
2;
√

2]2.
Our main contribution in this paper is an approach that solves for the fundamental matrix

minimizing the algebraic cost. In other words, we find the global minimum of:

FGp = argmin
F∈R3×3

C(F) s.t. det(F) = 0 and ‖F‖2 = 1. (4)

Perhaps more importantly, we also quantify the impact that each of F8pt and FGp has when
used as an initial estimate in Bundle Adjustment. Each initial estimate will lead Bundle
Adjustment to its own refined estimate. The two final estimates may thus be different since,
as the difference between the two initial estimates grows larger, the probability that they lie
in different basins of attraction increases. Our measure quantifies:

1. how far are these two basins of attraction,
2. how many iterations will Bundle Adjustment take to converge.
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The proposed algorithm uses polynomial global optimization [8, 9]. Previous attempts [10,
11, 12] in the literature differ in terms of optimization strategy and parameterization of
the fundamental matrix. None solves problem (4) optimally for a general parameterization:
they either do not guarantee global optimality [11, 12] or prescribe some camera config-
urations [10, 11, 12] (requiring typically that the epipole in the first camera does not lie
at infinity). Furthermore, the main criticism made to the optimization method we use is the
resolution of a hierarchy of convex linear problems of increasing size, which is computation-
ally ineffective and numerically unstable. The proposed solution overcomes this drawback:
experiments show that, in most of cases, the proposed algorithm only requires solving the
second relaxation of the sequences.

Our experimental evaluation on simulated and real datasets compares the difference
between the eight-point algorithm and ours used as initialization to bundle adjustment. We
observe that (i) bundle adjustment consistently converges within less iterations with our
initialization and (ii) bundle adjustment always achieves an equal or lower reprojection error
with our initialization. We provide numerous examples of real image pairs from standard
datasets. They all illustrate practical cases for which our initialization method allows bundle
adjustment to reach a better local minimum than the eight-point algorithm.

2 State of the Art

Accurately and automatically estimating the fundamental matrix from a pair of images has
received a lot of attention. We first review a four-class categorization of existing methods,
and specifically investigate the details of existing global methods. We finally state the im-
provements brought by our global method.

2.1 Categorizing Methods

A classification of the different methods in three categories –linear, iterative and robust–
was proposed in [2]. Linear methods directly optimize a linear least squares cost. They in-
clude the eight-point algorithm [1], SVD resolution [2] and variants [3, 4, 5, 6]. Iterative
methods iteratively optimize a nonlinear and nonconvex cost. They require, and are sensi-
tive to the quality of, an initial estimate. The first group of iterative methods minimizes the
distances between points and epipolar lines [13, 14]. The second group minimizes some ap-
proximation of the reprojection error [15, 16, 17, 18]. The third group of methods minimizes
the reprojection error, and are equivalent to two-view projective bundle adjustment. Itera-
tive methods typically use a nonlinear parameterization of the fundamental matrix which
guarantees that the rank-deficiency constraint is met. For instance, a minimal 7-parameter
update can be used over a consistent orthogonal representation [7]. Finally, robust meth-
ods estimate the fundamental matrix while classifying each point match as inlier or outlier.
Robust methods use M-Estimators [19], LMedS (median least squares) [16] or RANSAC
(random sampling consensus) [20]. Both LMedS and RANSAC are stochastic.

To these three categories, we propose to add a fourth one: global methods. Global meth-
ods attempt at finding the global minimum of a nonconvex problem. Convex relaxations
have been used to combine a convex cost with the rank-deficiency constraint [11]. However,
these relaxations do not converge to a global minimum and the solution’s optimality is not
certified.
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2.2 Global Methods

In theory, for a constrained optimization problem, global optimization methods do not re-
quire an initial guess and may be guaranteed to reach the global minimum, thereby certifying
optimality. Such global methods can be separated in two classes. The methods of the first
class describe the search space as exhaustively as possible in order to test as many candidate
solutions as possible. Following this way, there are methods such as Monte-Carlo sampling,
which test random elements satisfisying constraints, and reactive tabu search [21, 22], which
continues searching even after a local minimum has been found. The major drawback of
these methods is mainly in the prohibitive computation time required to have a sufficiently
high probability of success. Moreover, even in case of convergence, there is no certificate
of global optimality. Contrary to the methods of the first class, methods lying in the second
class provide a certificate of global optimality using the mathematical theory from which
they are built. Branch and Bound algorithms [23] or global optimization by interval analy-
sis [24, 25] are some examples. However, although these methods can be faster than those
of the first category, their major drawback is their lack of generality. Indeed, these methods
are usually dedicated to one particular type of cost function because they use highly specific
computing mechanisms to be as efficient as possible. A review of global methods may be
found in [26].

A good deal of research has been conducted over the last few decades on applying
global optimization methods in order to solve polynomial minimization problems under
polynomial constraints. The major drawback of these applications has been the difficulty to
take constraints into account. But, by solving simplified problems, these approaches have
mainly been used to find a starting point for local iterative methods. However, recent re-
sults in the areas of convex and polynomial optimization have facilitated the emergence of
new approaches. These have attracted great interest in the computer vision community. In
particular, global polynomial optimization [8, 9] has been used in combination with a finite-
epipole nonlinear parameterization of the fundamental matrix [10]. This method does not
consequently cover camera setups where the epipole lies at infinity. A global convex relax-
ation scheme [8, 9] was used to minimize the Sampson distance [12]. Because this implies
minimizing a sum of many rational functions, the generic optimization method had to be
specifically adapted and lost the property of certified global optimality.

2.3 The Proposed Method

The proposed method lies in the fourth category: it is a global method. Similarly to the
eight-point algorithm, it minimizes the algebraic cost, but explicitly enforces the nonlinear
rank-deficiency constraint. Contrarily to previous global methods [10, 11, 12], the proposed
method handles all possible camera configurations (it does not make an assumption on the
epipoles being finite or infinite) and certifies global optimality. Moreover, the presented
algorithm is based on the resolution of a very short sequence of convex linear problems and
is therefore computationally efficient.

A large number of attempts to introduce global optimization have been made in the
literature. In [11], a dedicated hierarchy of convex relaxations is defined in order to globally
solve the problem of fundamental matrix estimation.

In [10], Lasserre’s hierarchy is used jointly with the introduction of the singularity con-
straint in the problem description. In [12] the authors minimize the Sampson distance (which
theoretically gives better results) by solving a specific hierarchy of convex relaxations built
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upon an epigraph formulation. Finally, in a very recent work [28], the algebraic error is
globally minimized thanks to the resolution of seven subproblems. Each subproblem is re-
duced to a polynomial equation system solved via a Gröbner basis solver. The singularity
constraint is satisfied thanks to the right epipole parametrization. Although this parametriza-
tion ensures that F is singular while using the minimum number of parameters, this method
is not practical since it would be necessary to solve 126 subproblems in order to cover all
the 18 possible parameter sets [16]. Therefore it is preferable to introduce the singularity
constraint directly in the problem description rather than via some parametrization of F.

3 Polynomial Global Optimization

3.1 Introduction

Given a real-valued polynomial f (x) : Rn→ R, we are interested in solving the problem:

f ? = inf
x∈K

f (x) (5)

where K ⊆Rn is a (not necessarily convex) compact set defined by polynomial inequalities:
g j(x)≥ 0, j = 1, . . . ,m. Our optimization method is based on an idea first described in [29].
It consists in reformulating the nonconvex global optimization problem (5) as the equivalent
convex linear programming problem:

f̂ = inf
µ∈P(K)

∫

K
f (x)dµ, (6)

where P(K) is the set of probability measures supported on K. Note that this reformula-
tion is true for any continuous function (not necessarily polynomial) and any compact set
K ⊆ Rn. Indeed, as f ? ≤ f (x), then f ? ≤ ∫K f dµ and thus f ? ≤ f̂ . Conversely, if x? is
a global minimizer of (5), then the probability measure µ? M

= δx? (the Dirac at x?) is ad-
missible for (6). Moreover, because f̂ is a solution of (6), the following inequality holds:∫

K f (x)dµ ≥ f̂ , ∀µ ∈ P(K) and thus f ? =
∫

K f (x)δx? ≥ f̂ . Instead of optimizing over the
finite-dimensional euclidean space K, we optimize over the infinite-dimensional set of prob-
ability measures P(K). Thus, Problem (6) is, in general, not easier to solve than Problem (5).
However, in the special case of f being a polynomial and K being defined by polynomial
inequalities, we will show how Problem (6) can be reduced to solving a (generically finite)
sequence of convex linear matrix inequality (LMI) problems.

3.2 Notations and Definitions

First, given vectors α = (α1, . . . ,αn)
> ∈Nn and x = (x1, . . . ,xn)

> ∈Rn, we define the mono-
mial xα by:

xα M
= xα1

1 xα2
2 . . .xαn

n (7)

and its degree by deg(xα)
M
= ‖α‖1 =

n

∑
i=1

αi. For t ∈ N, we define Nn
t the space of the n-

dimensional integer vector with a norm lower than t as:

Nn
t

M
= {α ∈ Nn | ‖α‖1 ≤ t} . (8)
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Then, consider the family:

{xα}α∈Nn
t
=
{

1,x1,x2, . . . ,xn,x2
1,x1x2, . . . ,x1xn,x2x3, . . . ,x2

n, . . . ,x
t
1, . . . ,x

t
n
}

(9)

of all the monomials xα of degree at most t, which has dimension s(t) M
=

(n+ t)!
t!n!

. Those

monomials form the canonical basis of the vector space Rt [x] of real-valued multivariate
polynomials of degree at most t. Then, a polynomial p ∈ Rt [x] is understood as a linear
combination of monomials of degree at most t:

p(x) = ∑
α∈Nn

t

pα xα , (10)

and p M
= (pα)‖α‖1≤t ∈ RNn

t ' Rs(t) is the vector of its coefficients in the monomial basis

{xα}α∈Nn
t
. Its degree is equal to deg(p) M

= max{‖α‖1 | pα 6= 0} and dp denotes the smallest

integer not lower than
deg(p)

2
.

Example: The polynomial

x ∈ R2 7→ p(x) = 1+2x2 +3x2
1 +4x1x2 (11)

has a vector of coefficients p ∈ R6 with entries p00 = 1, p10 = 0, p01 = 2, p20 = 3, p11 = 4
and p02 = 0.

Next, given y = (yα)α∈Nn ∈ RNn
, we define the Riesz functional Ly by the linear form:

Ly : R [x] → R
p = ∑

α∈Nn
pα xα → y>p = ∑

α∈Nn
pα yα .

(12)

Thus, the Riesz functional can be seen as an operator that linearizes polynomials.

Example: For the polynomial (11), the Riesz functional reads

p(x) = 1+2x2 +3x2
1 +4x1x2 7→ Ly(p) = y00 +2y01 +3y20 +4y11. (13)

For t ∈ N and y ∈ RNn
2t , the matrix Mt(y) of size s(t) defined by:

(Mt(y))α,β = Ly(xα xβ ) = yα+β ∀α,β ∈ Nn
t (14)

is called the moment matrix of order t of y. By construction, this matrix is symmetric and
linear in y. Then, given q ∈Rt [x] and q ∈RNn

t the vector of its coefficients in the monomial
basis, the vector:

qy M
= Mt(y)q ∈ RNn

t (15)

is called the shifted vector with respect to q. Mt(qy), the moment matrix of order t of qy, is
called the localizing matrix of degree t of q. This matrix is also symmetric and linear in y.
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Example: If n = 2 then:

M0(y) = y00, M1(y) =




y00 y10 y01
y10 y20 y11
y01 y11 y02


 , M2(y) =




y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04




(16)

and if q(x) = a+2x2
1 +3x2

2 then:

M1(qy) =




ay00 +2y20 +3y02 ay10 +2y30 +3y12 ay01 +2y21 +3y03
ay10 +2y30 +3y12 ay20 +2y40 +3y22 ay11 +2y31 +3y13
ay01 +2y21 +3y03 ay11 +2y31 +3y13 ay02 +2y22 +3y04


 . (17)

Finally, recall that a symmetric matrix F ∈ Sn is positive semidefinite, denoted by F � 0,
if and only if x>Fx≥ 0, ∀x ∈ Rn or equivalently, if and only if the minimum eigenvalue of
F is non-negative. A linear matrix inequality (LMI) is a convex constraint:

F0 +
n

∑
k=1

xkFk � 0, (18)

on a vector x ∈ Rn, where matrices Fk ∈ Sm, k = 0, . . . ,n are given.

3.3 Optimization Method

Let f be a real-valued multivariate polynomial, Problem (6) can be reduced to a convex
linear programming problem. Indeed, if f (x) = ∑α∈Nn fα xα then:

∫

K
f dµ =

∫

K
∑

α∈Nn
fα xα dµ = ∑

α∈Nn
fα

∫

K
xα dµ = Ly( f ) (19)

where each coordinate yα of the infinite sequence y ∈ RNn
is equal to

∫

K
xα µ(dx), also

called the moment of order α . Consequently, if f is polynomial, then Problem (6) is equiv-
alent to:

f̂ = inf Ly( f )
s.t. y0 = 1

y ∈MK.

(20)

with:

MK
M
=

{
y ∈ RNn | ∃µ ∈M+(K) such that yα =

∫

K
xα dµ ∀α ∈ Nn

}
, (21)

and M+(K) is the space of finite Borel measures supported on K. Remark that the constraint
y0 = 1 is added in order to impose that if y ∈MK then y represents a measure in P(K) (and
no longer in M+(K)). Although Problem (20) is a convex linear programming problem, it
is difficult to describe the convex cone MK with simple constraints on y. But, the problem
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“y ∈MK”, also called K-moment problem, is solved when K is a basic semi-algebraic set,
namely:

K M
= {x ∈ Rn | g1(x)> 0, . . . ,gm(x)> 0} (22)

where g j ∈R[x], ∀ j = 1, . . .m. Note that K is assumed to be compact. Then, without loss of
generality, we assume that one of the polynomial inequalities g j(x)> 0 is of the form R2−
‖x‖2

2 > 0 where R is a sufficiently large positive constant. This allows to apply a theorem on
positivity by Putinar [30, 31] and to model MK with LMI conditions:

MK = M�(g1, . . . ,gm), (23)

where:

M�(g1, . . . ,gm)
M
=
{

y ∈ RNn |Mt(y)� 0, Mt(g jy)� 0 ∀ j = 1, . . ,m ∀t ∈ N
}
. (24)

Then, Problem (6) is equivalent to:

f̂ = inf
y∈RNn

Ly( f )

s.t. y0 = 1
Mt(y)� 0
Mt(g jy)� 0 j = 1, . . ,m ∀t ∈ N.

(25)

To summarize, if f is polynomial and K a semi-algebraic set, then Problem (5) is equivalent
to a convex linear programming problem with an infinite number of linear constraints on an
infinite number of decision variables. Now, for t ≥ dK

M
= max(d f ,dg1 , . . . ,dgm) consider the

finite-dimensional truncations of Problem (25):

Qt
M
=





f̂t
M
= min

y∈RNn
2t

Ly( f )

s.t. y0 = 1
Mt(y)� 0,
Mt−dg j

(g jy)� 0 ∀ j ∈ {1, . . . ,m} .

(26)

By construction, Qt , t ∈ N generates a hierarchy of LMI relaxations of Problem (25) [8],
where each Qt , t ∈ N, is concerned with moment and localizing matrices of fixed size t.
Each relaxation (26) can be solved by using public-domain implementations of primal-dual
interior point algorithms for semidefinite programming (SDP) [32, 33, 34, 35, 36]. When
the relaxation order t ∈ N tends to infinity, we obtain the following results [8, 37]:

f̂t ≤ f̂t+1 ≤ f̂ and lim
t→+∞

f̂t = f̂ . (27)

Practice reveals that this convergence is fast and very often finite, i.e. there exists a finite t0
such that f̂t = f̂ , ∀t ≥ t0. In fact, finite convergence is guaranteed in a number of cases (e.g.
discrete optimization) and very recent results by Nie [37] show that the finite convergence
of the sequence ( f̂t)t∈N as well as the existence of an optimal solution y?t of (26) are generi-
cally guaranteed.
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Example: Consider the polynomial optimization problem

f̂ = min
x∈R2

−x2

s.t. 3−2x2− x2
1− x2

2 ≥ 0
−x1− x2− x1x2 ≥ 0
1+ x1x2 ≥ 0.

(28)

The first LMI relaxation Q1 is

f̂1 = min
y∈R6

−y01

s.t. y00 = 1


y00 y10 y01
y10 y20 y11
y01 y11 y02


� 0

3y00−2y01− y20− y02 ≥ 0
−y10− y01− y11 ≥ 0
y00 + y11 ≥ 0,

(29)

and the second LMI relaxation Q2 is

f̂2 = min
y∈R15

−y01

s.t. y00 = 1


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04



� 0,




3y00−2y01− y20− y02 3y10−2y11− y30− y12 3y01−2y02− y21− y03
3y10−2y11− y30− y12 3y20−2y21− y40− y22 3y11−2y12− y31− y13
3y01−2y02− y21− y03 3y11−2y12− y31− y13 3y02−2y03− y22− y04


� 0



−y10− y01− y11 −y20− y11− y21 −y11− y02− y12
−y20− y11− y21 −y30− y21− y31 −y21− y31− y21
−y11− y02− y12 −y21− y12− y22 −y12− y03− y13


� 0




y00 + y11 y10 + y21 y01 + y12
y10 + y21 y20 + y31 y11 + y22
y01 + y12 y11 + y22 y02 + y13


� 0.

(30)
It can be checked that f̂1 =−2≤ f̂2 = f̂ =− 1+

√
5

2 . Note that the constraint 3−2x2− x2
1−

x2
2 ≥ 0 certifies boundedness of the feasibility set.

However, we do not know a priori at which relaxation order t0 the convergence occurs.
Practically, to detect whether the optimal value is attained, we can use conditions on the rank
of the moment and localization matrices. Indeed, let y?t ∈RNn

2t be a solution of Problem (26)
at a given relaxation order t ≥ dK , if:

rank(Mt(y?t )) = rank(Mt−dK (y
?
t )) (31)

then f̂t = f̂ . In particular, if rank(Mt(y?t )) = 1 then condition (31) is satisfied. Moreover,
if these rank conditions are satisfied, then we can use numerical linear algebra to extract
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rank(Mt(y?t )) global optima for Problem (5). We do not describe the algorithm in this article,
but the reader can refer to [30, Sections 4.3] for more advanced information. Figure 3.3
summarizes the optimization process.

min
x∈K

f (x) min
µ∈P(K)

∫

K
f (x)dµ

inf Ly( f ) M
= ∑α fα yα

s.t. y ∈
{

y ∈ RNn | ∃µ ∈P(K) : yα =
∫

K
xα dµ ∀α ∈ Nn

}

inf Ly( f )
s.t. y0 = 1, Mt(y)� 0, Mt(g jy)� 0 j = 1, . . ,m ∀t ∈ N.

Qt





f̂t
M
= min

y∈RNn
2t

Ly( f )

s.t. y0 = 1
Mt(y)� 0,
Mt−dg j

(g jy)� 0 j = 1, . . ,m.

f continuous and K compact

f polynomial

K = {x ∈ Rn | g1(x)> 0, . . . ,gm(x)> 0}

f = ∑
α∈Nn

t

fα

∫

K
xα dµ

︸ ︷︷ ︸
yα

Putinar
theorem

Truncation

Convergence
of the sequence(

f̂t
)

t∈N

Fig. 1 Polynomial optimization process; see the main text for details.

A Matlab interface called GloptiPoly [38] has been designed to construct Lasserre’s LMI
relaxations in a format understandable by any SDP solver interfaced via YALMIP [39]. It can
be used to construct an LMI relaxation (26) of a given order corresponding to a polynomial
optimization problem (5) with given polynomial data entered symbolically. A numerical
algorithm is implemented in GloptiPoly to detect global optimality of an LMI relaxation,
using the rank tests (31). The algorithm also extracts numerically the global optima from
the moment matrix. Then, a practical algorithm is given by Algorithm 1. This approach has
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Algorithm 1 Polynomial global opimization.
Require: f ,g1, . . . ,gm ∈ R [x] and k > max(d f ,dK)
1: t←max(d f ,dK)
2: Stopping Criterion← FALSE
3: while (t ≤ k) or (Stopping Criterion=FALSE) do
4: Solve Qt
5: if Qt has an optimal solution y?t then
6: if rank(Mt(y?t )) = rank(Mt−dK (y

?
t )) then

7: Stopping Criterion← TRUE
8: else
9: t← t +1

10: end if
11: else
12: t← t +1
13: end if
14: end while
15: if Stopping Criterion=FALSE then
16: return f̂t = Ly?t ( f ) which is a lower bound of f ?.
17: else
18: return f̂t = f ? and, if the extraction succeeded, a set of rank(Mt(y?t )) global minima.
19: end if

been successfully applied to globally solve various polynomial optimization problems (see
[30] for an overview of results and applications). In computer vision this approach was first
introduced in [27] and used in [12].

3.4 Application to Fundamental Matrix Estimation

This first paragraph aims at relating the theory and the practical application in the context of
fundamental matrix estimation. More generally, applying the presented algorithm requires
to pay one specific attention to three key points.

Firstly, a necessary condition for the convergence of the presented polynomial optimiza-
tion method is the compactness of the feasible set. In the context of fundamental matrix
estimation, the problem is homogeneous. Hence, an additional normalization constraint is
needed to avoid the trivial solution F = 0. A classical confusion would be to assume that any
normalization constraint satisfies the compactness condition. Indeed, a generally used nor-
malization constraint consists in setting one of the coefficients of the F matrix to 1. However,
the other F coefficients are not bounded and thus the compactness of the feasible set is not
guaranteed. Moreover, such normalisation a priori excludes some geometric configurations.
A way to proceed is to add the normalization constraint ‖F‖2 = 1.

Secondly, the applicability of the presented algorithm is directly linked to the number
of variables (i.e. the length of vector y) in the LMI relaxation (26). Indeed, for a polynomial
f of n variables, the size of the vector y in the first relaxation equals s(2t) = (n+2t)!

2t!n! with
t = d f . The amount of variables n being fixed, s(2t) grows in O(tn), that is polynomially
in the relaxation order t. Clearly, the smaller is the degree of f , the smaller is the number
of variables of the first relaxations in the hierarchy (Qt)t∈N. Thus, in the context of funda-
mental matrix estimation, the goal is to include the singularity constraint in the optimization
problem in a manner which minimizes the degree of the polynomial criterion. Alternatively
to a direct inclusion in the constaints, the singularity constraint can be inferred by parame-
terizing the F matrix using one or two epipoles. This latter method being not only arbitrary,
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also leads to increase the degree of the cost function. For instance, the parameterization with
one epipole:

F =




f11 f12 f13
f21 f22 f23

α f11 +β f21 α f12 +β f22 α f13 +β f23


 , (32)

leads to a cost function of degree 4, while the parameterization with two epipoles :

F =




f11 f12 e1 f11 + e2 f12
f21 f22 e1 f21 + e2 f22

e′1 f11 + e′2 f21 e′1 f12 + e′2 f22 (e1 f11 + e2 f12)e′1 +(e1 f21 + e2 f22)e′2


 (33)

leads to a cost function of degree 6.
Thirdly, in case of polynomial equalities, several explicit moment substitutions can be

performed and thus significantly reduce the number of variables and constraints in LMI
relaxations. However, the harder the equalities, the fewer the possible substitutions. More
precisely, from an equality constraint, it is sometimes possible to express a variable xk in
function of x1, . . . ,xk−1,xk+1 . . . ,xn:

xα
k = s(x1, . . . ,xk1,xk+1, . . . ,xn),

with xα
k a monomial and s a polynomial. The goal of the following example is to under-

line the result: if the degrees of the monomial and the polynomial are high, then only a
few explicit moment substitutions can be carried out. If an equality constraint of the form
xn

1 = x1 + x2 is added to Problem (28), it is then possible to represent the total number of
moments after substitutions against the relaxation order for a fixed n. Consequently, Fig-
ure 2 demonstrates that the total number of moments in Problem (28) increases with n. In
the context of fundamental matrix estimation, possible substitutions are given by the rank
constraint and the normalization constraint, say:

f11 f22 f33− f11 f32 f23− f21 f12 f33 + f21 f32 f13 + f31 f12 f23− f31 f22 f13 = 0

f 2
11 + f 2

12 + f 2
13 + f 2

21 + f 2
22 + f 2

23 + f 2
31 + f 2

32 + f 2
33 = 1.

Thus, due to complexity of this equation system, there are too few possible substitutions to
significantly increase the performance of the proposed algorithm.

This second paragraph aims at focusing on previous attempts to solve the fundamental
matrix estimation problem thanks to a hierarchy of convex relaxations. The method de-
scribed in [10] applies directly the presented hierarchy without bounding the F coefficients.
Indeed, the trivial solution is avoided by fixing, a priori, one of the F coefficients to 1.
Consequently, as explained in the first key point, there is no guarantee that the sequence of
solutions ( f̂t)t∈N converges to the global minimum. In [11], a dedicated hierarchy of convex
relaxations is defined. The rank constraint is not directly added to the problem description,
but is accounted for thanks to the introduction of additional optimization variables. The re-
sulting optimization algorithm is not generic and, contrary to the presented hierarchy, there
is no proof that the sequence of solutions of this specific hierarchy converges to the global
minimum (e.g. the obtained solution could be a lower bound). Finally, in [12] an extension
of the presented hierarchy is defined in order to minimize the Sampson distance (which
theoretically gives better results [19]). Indeed, the Sampson distance being a sum of many
rational functions, the presented hierarchy cannot be applied. However, thanks to an epi-
graph formulation, authors are able to include the denominators in the constraints and thus
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Fig. 2 For problem (28) with an additional constraint of the form xn
1 = x1 +x2, total number of moments after

substitutions against the relaxation order for a fixed n.

solve a polynomial problem. In addition to adding as many variables as matched points,
the price to pay for this introduction is to loose the linearity of the constraints. Indeed, the
linear matrix inequalities become polynomial matrix inequalities (PMI). To handle the case
of PMI constraints, an adapted moment-SOS approach with convergence guarantees is de-
scribed in [43]. However, this method is not directly implemented in [12]. Consequently,
no asymptotic convergence of this particular hierarchy to the global optimum can be guar-
anteed. Moreover, even if the rank correction is achieved using the singularity constraint,
the normalization is replaced by setting, a priori, the coefficient f33 to 1 and subsequently
discards the compactness condition.

To sum up, although methods presented in [11, 12] are based on a theory close to that
presented in the above, they have no guarantee of convergence to the global minimum, only
a lower bound can be ensured. The method presented in [10] is a direct application of the
presented hierarchy but without ensuring the compactness of the feasible set. For all these
reasons, it is chosen to not compare the presented algorithm to these methods. The presented
method is summarized in Algorithm 2 below. Its main features are:

– In contrast with [27, 12] the optimization problem is formulated with an explicit Frobe-
nius norm constraint on the decision variables. This enforces compactness of the fea-
sibility set which is included in the Euclidean ball of radius 1. We have observed that
enforcing this Frobenius norm constraint has a dramatic influence on the overall numer-
ical behavior of the SDP solver, especially with respect to convergence and extraction
of global minimizers.

– We have chosen the SDPT3 solver [40, 35] since our experiments revealed that for our
problem it was the most efficient and reliable solver.

– We force the interior-point algorithm to increase the accuracy as much as possible, over-
ruling the default parameter set in SDPT3. Then the solver runs as long as it can make
progress.
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– The presented numerical experiments show that the moment matrix has almost always
rank-one (which certifies global optimality) at the second SDP relaxation of the hierar-
chy. This suggests that the problem of the fundamental matrix estimation has a unique
global minimizer. Note that, in some (very few) cases, due to the numerical extraction,
the global minimum is not fully accurate but yet largely satisfactory.

Algorithm 2 Polynomial optimization for fundamental matrix estimation
Require: Matched points (qi,q′i), i = 1, . . . ,n

1: Create the cost function Crit = ∑n
i=1
(
q′>i Fqi

)2:
mpol(’F’,3,3);
for k = 1:size(q1)

n(k) = (q2’*F*q1)^2;
end;
Crit = sum(n);

2: Create the constraints det(F) = 0 and ‖F‖2 = 1:
K_det = det(F) == 0; K_fro = trace(F*F’) == 1;

3: Fix the accuracy of the solver to 0, then the solver runs as long as it can make progress:
pars.eps = 0; mset(pars);

4: Change the default SDP solver to SDPT3:
mset(’yalmip’,true); mset(sdpsettings(’solver’,’sdpt3’));

5: Form the second LMI relaxation of the problem:
P = msdp(min(crit),K_det,K_fro,2);

6: Solve the second LMI relaxation:
msol(P);

4 Experimental Results

This section presents results obtained by the test procedure presented below with the 8-point
method and our global method. First, criteria to evaluate the performance of a fundamental
matrix estimate are described. Next, the evaluation methodology is detailed. Experiments
were then carried out on synthetic data to test the sensitivity to noise and to the number of
point matches. Finally, experiments on real data were performed to confirm previous results
and to study the influence of the type of motion between the two images.

4.1 Evaluation Criteria

Various evaluation criteria were proposed in the literature [16] to evaluate the quality of a
fundamental matrix estimate. Driven by practice, a fundamental matrix estimate F is eval-
uated with respect to the behavior of its subsequent refinement by projective bundle ad-
justment. Bundle Adjustment from two uncalibrated views is described as a minimization
problem. The cost function is the RMS reprojection errors. The unknowns are the 3D points
Qi, i = 1, . . . ,n and the projection matrices P and P′. The criteria we use are:

1. The initial reprojection error written eInit(F).
2. The final reprojection error eBA(F).
3. The number of iterations taken by Bundle Adjustment to converge, Iter(F).
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These three criteria assess whether the estimates provided by the two methods, denoted by
F8pt and FGp, are in a ‘good’ basin of attraction. Indeed, the number of iterations gives
an indication of the distance between the estimate and the optimum while eBA(F) gives an
indication on the quality of the optimum.

4.2 Evaluation Method

The following figure summarizes our evaluation method:

Inputs:
fundamental matrix estimate F
n point matches (qi,q′i), i = 1, . . . ,n

Form initial projective cameras [41]:
Find the second epipole from F>e′ ∼ 0(3×1)
Find the canonical plane homography H∗ ∼ [e]×F
Set P∼

[
I(3×3) 0(3×1)

]
and P′ ∼ [H∗ e′]

Form initial 3D points [42]:
Triangulate each point independently
by minimizing the reprojection error

Evaluate(F)

Compute eInit(F)

Run two-view uncalibrated bundle adjustment [20]

Compute eBA(F) and Iter(F)

Outputs:
eInit(F), eBA(F) and Iter(F)

Fig. 3 Evaluation method.
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4.3 Experiments on Simulated Data

4.3.1 Simulation Procedure

For each simulation series and for each parameter of interest (noise, number of points and
number of motions), the same methodology is applied with the following four steps:

1. For two given motions between two successives images ([Rk tk]) and for a given matrix
K of internal parameters, a set of 3D points (Qi)i, i = 1, . . . ,n is generated and two
projection matrices P and P′ are defined. In practice, the rotations matrices, R1 and R2,
of two motions are defined by:

Rk
M
=




cos(θk) 0 sin(θk)
0 1 0

−sin(θk) 0 cos(θk)


 with





θ1 =
π
3

and

θ2 =
π
6

(34)

and their translation vectors by t1 = (20,0,5)> and t2 = (6,0,0)>. These matrices are
chosen such that [R1, t1] is a large movement and [R2, t2] is a small movement (see
Figure 4). We simulated points lying in a cube with 10 meter side length. The first
camera looks at the center of the cube and it is located 15 meters from the center of the
cube. The focal length of the camera is 700 pixels and the resolution is 640×480 pixels.

2. Thanks to projection matrices P = K [R1, t1] and P′ = K [R2, t2], the set of 3D points
(Qi)i is projected into the two images as (qi,q′i)i. At each of their pixel coordinates, a
centered Gaussian noise with a variance σ2 is added. In order to have statistical evi-
dence, the results are averaged over 100 trials.

3. The resulting noisy points (q̃i, q̃′i)i are used to estimate F by our method FGp and the
reference 8-point method F8pt .

4. Finally, via our evaluation procedure we evaluate the estimation error with respect to the
noise standard deviation σ and the number of points n.

4.3.2 Sensitivity to Noise

We tested in two simulation series the influence of σ ranging from 0 to 2 pixels. The number
of simulated points is 50. The first (resp. second) simulation series is based on the first
motion [R1 t1] (resp. the second motion [R2 t2]). Figure 5 gathers the influence of noise on
the evaluation criteria. The first line shows the reproduction errors before, eInit(F), and after
eBA(F) refinement through Bundle Adjustment with respect to the noise standard deviation.
The second line shows the number of iterations Iter(F) of the Bundle Adjustment versus
the noise standard deviation. The first (resp. second) row concerns the first (resp. second)
motion.

For the two motions, re-projection errors, eInit(F) or eBA(F), increase with the same
slope when the noise level increases. Notice that for both movements, the Bundle-Adjustment
step does not improve the results. Indeed, the noise gaussian noise is added to the projec-
tions (qi,q′i)i. So this is noise which in practice would be produced by the extraction points
process. Thus the solution produced by the resolution of the linear system is very close to the
optimum and does not need to be refined. The initial solution provided by the triangulation
step is then very close to a local minimum of the Bundle Adjustment problem. Moreover,
the variation of the errors of initial re-projection before (8pt− Init and Gp− Init) and after
(8pt−BA and Gp−BA) Bundle Adjustment versus the noise standard deviation is linear.
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However, the number of iterations needed for convergence is different in the two methods.
The initial estimate of the triangulation computed from FGp is closer to the local minimum
than that obtained from F8pt . For the first motion (large displacement between camera 1 and
2), the number of iterations of the global method (in green) remains smaller than for the 8-
point method (in blue) even though their difference seems to decrease when the noise level
is high (σ > 1). For a significant displacement the quality of the estimate F by the global
method remains better even though the difference in quality diminishes with the noise level.
Conversely, for the second motion (small displacement between the camera 1 and 2) both
methods are equivalent since the difference in quality is only significant for a high level of
noise (σ > 1). This is logical as the movement is less important. As a conclusion, the 8-point
method provides a solution equivalent to that obtained with the global method when the dis-
placement is not too important. For more significant movements the provided solution is not
so close even though still in the same basin of attraction of a local minimum.

4.3.3 Influence of the Number of Points

In this experiment, we kept the noise level constant with a standard deviation σ2 = 0.5 pix-
els. We tested the influence of the number of matches (qi,q′i)i on the quality of the resulting
estimate of F. The number of points N varied from 10 to 100. Two simulation series are also
carried out with the two motions.

Figure 6 brings with the same organization the evaluation criteria. It displays the influ-
ence of the number of matches for estimating F on the re-projection errors and on the num-
ber of iterations. For both motions and for a sufficiently high number of matches (N > 50),
re-projection errors, before and after refinement with Bundle Adjustment, or the number
of iterations versus the number of matches converge to the same asymptote. From a high
number of matches, the initial estimate from triangulation computed with F8pt and with FGp
are both in the same basin of attraction for the Bundle Adjustment problem. However, for
a number of matches smaller than 50, the number of iterations to converge is smaller for
given re-projection errors. The quality of the estimation by the global method seems bet-
ter. The initial estimate from triangulation computed with F8pt goes away from the basin of
convergence whereas the one computed with FGp remains in the basin.

Fig. 4 Projection of the cube in the camera on initial position (I) and in the camera after applying the rigid
transformation [R1 t1] (II) and the rigid transformation [R2 t2] (III).
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Fig. 5 For two movements, [R1 t1] (left column) and [R2 t2] (right column), reprojection errors and number
or iterations measured against image noise.

4.3.4 Influence of the Number of Points with Wide Baseline

In order to sustain the previous behavior, for a noise standard deviation of σ2 = 1 pixel and
for the significant displacement [R1 t1], the influence of the number of matching points on
the re-projection errors and on the number of iterations was tested. In this difficult context,
Figure 7 demonstrates that the initial estimate computed from FGp is always closer to the
local minimum than that computed from F8pt . No matter what is the number of matching
points, the number of iterations needed to converge is always smaller.

As a conclusion, the quality of solutions obtained by both methods is almost identical
when the movement is not too important, the number of matching points is sufficiently large,
and the noise level is not too high. However, when one of these three parameters varies then
the 8-point method lacks precision whereas the global method still allows Bundle Adjust-
ment to convergence to the global minimum. The 8-point method computes the projection of
an unconstrained local minimizer on the feasible set whereas the global method provides a
global minimizer of the constrained optimization problem. It is already surprising that even
for good values of the three parameters the resulting solutions are not too far apart. But for
worst values of the parameters it would be even more surprising.
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Fig. 6 For two movements, [R1 t1] (left column) and [R2 t2] (right column), reprojection errors and number
or iterations measured against number of points for a gaussian noise with a variance fixed to 0.5.
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Fig. 7 For the movement [R1 t1], reprojection errors and number or iterations measured against number of
points for a gaussian noise with a variance fixed to 1 (left and right).

4.4 Experiments on Real Data

The evaluation criteria remain the same, eInit(F), eBA(F) and Iter(F) and the computation
time is added. Two experiments were carried out with two sets of images that illustrate
different motions between two successive images.
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4.4.1 Experiment 1

The first set of four images (see Table 8) shows all possible epipolar configurations (right
or left epipole at infinity . . . ). With four images, six motions between a pair of images are
possible: A−B, A−C, A−D, B−C (infinite epipoles correspond, e.g., to pure translation
motions), B−D and C−D. For every pair of images, 60 matches are available to compute
an estimate of F. The values of the evaluation criteria are summarized in table 8. No matter
what pair of images is used, the re-projection errors and the number of iterations are almost
always better when FGp is used as initial guess. In addition, for three motions (A−C, A−D

and C−D), in contrast with the initial guess FGp, the initial guess from the 8-point method
is not in a better basin of attraction. This may explain why the initial re-projection errors
eInit(F) are sometimes larger for FGp as the initial guess may be in a good basin of attraction
but with a larger re-projection error. For the four motions A−B, B−C, B−D and B−D, both
initializations are in the same basin of attraction but the number of iterations demonstrates
that the initial guess from the global method is always closer to the local minimizer. Finally,
even though the computation time of the latter is significantly larger than for the 8-point
method, it still remains compatible with a practical use.

4.4.2 Experiment 2

The second experiment compares the two methods on large motions. It is based on many
series of images. First we test our algorithm with the classic series Library, Merton, dinosaur
and house that are available at www.robots.ox.ac.uk/~vgg/data/data-mview.html. For
the set of three images of Library and Merton serie, Table 9, 10, 11 and Table 12 demonstrate
that the quality of the solution achieved by the global method is always better than with the
8-point method (in some cases both solutions are very close).

We also conducted the same tests on other pairs of images. For the first pair, we used
images from a standard cylinder graciously provided by the company NOOMEO. This cylin-
der is use to evaluate the accuracy of 3D reconstructions. Matched points are calculated with
digital image correlation method. They are located in a window inside the cylinder. Thus,
we have 6609 pairs (qi,qi)i matched to sub-pixel precision. Results are presented in the
Table 13. We observe that the computation time of the 8-point method exceeds one second.
This is due to the large number of matched points which leads to the resolution of a large
linear system. However, as the points are precisely matched, this system is well conditioned.
But the quality of the fundamental matrix estimated with the 8-point method is not sufficient
to properly initialize the Bundle-Adjustment because the final re-projection error is 1.47 pix-
els. At the same time, even if the number of iterations is larger, our global method supplies a
good estimation because the final re-projection error is 0.25 pixels. Furthermore, the calcu-
lation time remains constant in approximately 2 seconds. For the second pair, we use images
taken by an endoscope. Table 14 shows the results obtained on this difficult case. As for the
previous example, we observe that the fundamental matrix estimated by our global method
is good quality because the final error is 0.93 pixels. At the same time, Bundle Adjustement
puts more iterations to converge on a less precise solution when we use F8pt to initialize it.

For the set of 36 images of the Dinosaur series and 9 images of the house series, we
tested the influence of motion amplitude between a pair of image on the quality of the re-
sulting estimates obtained by both methods. For this purpose, we had both estimates with all
possible motions ((0,1),(1,2),(2,3), . . .) with 1-image distance, then all possible motions
((0,2),(1,3),(2,4), . . .) with 2-image distance, and so on. With this process, we can mea-
sure the influence of the average angle on the quality of the fundamental matrix estimated

www.robots.ox.ac.uk/~vgg/data/data-mview.html
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by both methods. Figures from 15 to 20 shows the average of re-projection errors and the
average of number of iterations with respect to average angle for the two series. The re-
projection error after Bundle Adjustment is always smaller with the global method and with
always a smaller number of iterations. Next, the larger the movement the more the solution
by both methods deteriorates. But the deterioration is larger for the 8-point method than for
the global method. One may also observe that in some cases the re-projection error before
Bundle Adjustment is in favor of the 8-point method. In analogy with the real cases studied
before, this may be due to the fact that for these cases the initial guess FGp is in a basin of
attraction with a better local minimum than in the basin of attraction associated with F8Pt ,
but the ‘distance’ between the initial guess and the corresponding local minimizer is larger
for FGp than for F8Pt . Indeed in such cases the number of iterations is larger for FGp than
for F8Pt .

5 Conclusion

We have studied the problem of estimating globally the fundamental matrix over nine param-
eters and under rank and normalisation constraints. We have proposed a polynomial-based
approach which enables one to estimate the fundamental matrix with good precision. More
generally, we have shown how to modify the constraints on the numerical certificate of opti-
mality to obtain fast and robust convergence. The method converges in a reasonable amount
of time compared to other global optimization methods.

From computational experiments conducted on both simulated and real data we con-
clude that the global method always provides an accurate initial estimation for the subse-
quent bundle adjustment step. Moreover, we have shown that if the eight-point method has
a lower computational cost, its resulting estimate often lies further away from the global
optimum obtained by the global method.
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Fig. 9 Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)), Number of Iterations
(Iter(F)), and CPU time to compute F (Time), obtained when combining pairs of images of the Library series
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Views nb Points eInit(F) eBA(F) Iter(F) Time (s)
F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp
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(Iter(F)), and CPU time to compute F (Time), obtained when combining pairs of images of the Merton2
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F8Pt FGp F8Pt FGp F8Pt FGp F8Pt FGp
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Fig. 13 Reprojection Error before (eInit(F)) and after Bundle Adjustment (eBA(F)), Number of Iterations
(Iter(F)), and CPU time to compute F (Time), obtained when combining pairs of images of the Cylinder
series. The matched points are located in blue bounding boxes.
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Fig. 15 Initial re-projections errors measured against movement amplitude for the dinosaur series
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Fig. 16 Final re-projections errors measured against movement amplitude for the dinosaur series
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Fig. 17 Number of iterations performed by Bundle-Adjustment to converge measured against movement
amplitude for the dinosaur series

11.6° 16.9° 22° 27.7° 32.8° 37.2° 40.2° 41.4°
0

50

100

150

200

250

Average angle between the optical centers – degrees

e I
ni

t(
F)

–
Pi

xe
ls

FGp
F8pt

Fig. 18 Initial re-projections errors measured against movement amplitude for the House series
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Fig. 19 Final re-projections errors measured against movement amplitude for the House series
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Fig. 20 Number of iterations performed by Bundle-Adjustment to converge measured against movement
amplitude for the House series
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