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Abstract

Colonoscopy is the reference medical examination for early diagnosis and
treatment of colonic diseases. This minimally invasive technique allows endo-
scopists to explore the colon cavity and remove neoplasias - abnormal growths
of tissue - which may develop into malignant tumors. The size, shape and
appearance of a neoplasia are essential cues for diagnostic. However, the size
is difficult to estimate because the absolute scale of the observed tissue is not
directly conveyed in the 2D colonoscopic images. An erroneous size estimate
may lead to inappropriate treatment. There currently exist no solutions to
reproducible neoplasia size measurement adapted to colonoscopy.

We propose a colonoscopic size measurement system for neoplasias. By
using a simple planar geometry, the key technical problem is reduced to re-
solving scale. Our core contribution is introducing the Infocus-Breakpoint
(IB) that allows us to resolve scale from a regular colonoscopic video. We
define the IB as the lower limit of the colonoscope’s depth of field. The IB
corresponds to a precise colonoscope to tissue distance, called the reference
depth, which we calibrate preoperatively. We detect the IB intraoperatively
thanks to two novel modules: deformable Blur-Estimating Tracking (BET)
and Blur-Model Fitting (BMF). With our system, the endoscopist may in-
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teractively measure the length and area of a neoplasia in a 2D colonoscopic
image directly. Our system needs no hardware modification to standard
monocular colonoscopes, yet reaching a size measurement accuracy of the
order of a millimeter, as shown on several phantom and patient datasets.

Keywords: colonoscopy, neoplasia, size, Thin-Plate Spline, registration,
Depth-from-Focus.

1. Introduction

Clinical problem. Colorectal cancer is the fourth leading cause of death by
cancer according to the World Health Organization (World Health Organi-
zation, 2008). Regular screening is necessary for early diagnosis and surveil-
lance of abnormal growths of tissue, neoplasias, which may spread and trans-
form into malignant tumors (see figure 1). Despite the development of non-
invasive screening techniques such as CT colonography and the Pill Cam R©,
colonoscopy is currently the reference medical examination (Kim et al., 2007).
This procedure consists in inserting a flexible endoscope called a colonoscope
through the rectum to explore the colon cavity. The main advantage of this
minimally invasive technique is that it allows the endoscopist to excise and
biopsy neoplasias during the examination. The visual diagnosis relies on cri-
teria involving the size, shape and appearance of neoplasias. By appearance,
we mean the pit pattern of the colonic mucosa as described in the pit pat-
tern classification (Kudo et al., 1994). The influence of shape and size is
defined in a gold standard, the Paris classification of superficial neoplastic
lesions (Endoscopic Classification Review Group, 2005). Roughly speaking a
neoplasia whose size is larger than 1 cm has a high rate of malignancy, and a
neoplasia whose size lies between 5 mm and 1 cm should be reassessed (Tal-
bot, 1996). This size is also essential to determine the surveillance interval
time. However, a small neoplasia imaged close to the colonoscope looks like
a larger neoplasia imaged at a further depth: this is the scale ambiguity.

In practice, the endoscopist may place a surgical tool next to the neoplasia
in order to visually gauge its size. While they could use an endoscopic ruler
or a marked biopsy forceps as a measurement reference (Hyun et al., 2011),
this technique suffers from unreproducibility and requires a fine manipula-
tion of the surgical instrument (which could deform the colonic wall). It is
thus inconvenient and time consuming particularly for interventions such as
polypectomy which could require the endoscopist to use different instruments
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(for instance only a snare or an electric probe) while the biopsy channel is
already occupied by an endoscopic ruler.

It has been shown that an endoscopist’s visual estimation of a neopla-
sia’s size is generally biased (Margulies et al., 1994; Schoen et al., 1997;
Moug et al., 2010). A recent study (Chaptini et al., 2014) evaluated the vi-
sual estimation accuracy among endoscopists and the impact on the surveil-
lance intervals after polypectomy (removal of a neoplasia). This study re-
veals that erroneous visual estimation1 leads to 10% of surveillance intervals
to be inappropriate. Moreover, the lack of intra and inter-observer repro-
ducibility compromises the cancer risk prediction for neoplasias removed in
colonoscopy (Rubio et al., 2010). The lack of a convenient and accurate size
measurement facility, and the potential clinical impact it may have form the
core motivations for our proposed system. Finally, a neoplasia measurement
system may also be used for training purpose (Chang et al., 2010).

(a) Laterally spreading tumor (b) Sessile antral neoplasia (c) Sessile polyp (Oblong)

1

Figure 1: Images of various neoplasias. (a) is a suspicious neoplasia which may
become or already be malignant. (b) and (c) are begnin neoplasias. These three
examples show that colonoscopic images are difficult for computer vision. The
lack of textural features (or ‘natural landmarks’) both on the colon cavity and
the neoplasias defeats feature-based methods for image registration and 3D recon-
struction.

We argue that neoplasia, and more generally colonoscopic, size measure-
ment can be accurately solved from colonoscopic images only using computer
vision. This involves resolving scale, a difficult and open technical problem.

1The study was realized on 2812 cases. Erroneous visual estimation greater than 20%
occured in 52% of the visual estimates.
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Active techniques and electromagnetic (EM) tracking. Active 3D sensing
techniques such as structured lighting usually resolve scale but require heavy
modifications of the colonoscope’s hardware (Mirota et al., 2011). They may
enlarge the distal end or permanently occupy a biopsy channel. Scale may
also be resolved from the magnitude of the colonoscope’s distal end motion.
In this respect, EM tracking may resolve scale but would, similarly to active
3D sensing, involve substantial hardware changes (Reichl et al., 2013).

Passive techniques. Passive 3D sensing techniques such as Structure-from-
Motion (SfM, Hartley and Zisserman (2004)) and Shape-from-Shading
(SfS, Trucco and Verri (1998)) use regular images but do not resolve scale
and thus do not facilitate absolute size measurements. Resolving scale would
require the endoscopist to use a biopsy forceps printed with visual landmarks
(as it is difficult to accurately detect visual landmarks on the tip of the tool).
The forceps would have to be placed in contact with the neoplasia. This
would be inconvenient. Alternatively, the forceps would have to remain fix
in the colonoscopic scene in at least two views which is not possible in prac-
tice for the forceps moves with the colonoscope. Depth-from-Focus (DfF)
uses optical blur as a visual cue to provide absolute measurements (Pent-
land, 1987). However it has two major limitations which prevent its use in
colonoscopy: (i) it requires one to control the camera motion and (ii) it in-
fers an absolute depth for every pixel. (i) is a limitation because accurately
servoing the colonoscope’s distal end intraoperatively is not possible. (ii) is
a limitation because it means that noise is not reduced by redundancy and
colonoscopic images may be quite noisy due to moisture and blur.

Proposed technical solution. We propose to use optical blur to resolve scale by
releasing the two limitations of DfF. Monocular colonoscopes generally house
a prime lens (a fixed optical sytem) which forms a focused image for a typical
range of distances (generally between 2 and 10 cm), or a dual-focus system
which allows the endoscopist to choose between normal and near focus zoom
(a two-states mechanical system). The focus of such colonoscopes is thus
easily fixed. Our method is based on what we called the Infocus-Breakpoint
(IB). The IB is the sharp/blur breakpoint which arises while the colonoscope
moves toward the tissue. It occurs at the lower bound d0 of the focusing
distance range below which the image of a neoplasia becomes blurred. We
call d0 the reference depth.

Our system relies on two novel technical modules: Blur-Estimating Track-
ing (BET) and Blur-Model Fitting (BMF). Together, they robustly find the
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IB in a video for a specific Region Of Interest (ROI) which contains the neo-
plasia to be measured. Because the reference depth is constant, it can be
calibrated; finding the IB thus resolves scale and facilitates size measurement.
In practice, we use our BET module once preoperatively to calibrate the ref-
erence depth using a calibration object with known structure. We assume the
neoplasia’s boundaries to be planar and frontoparallel to the colonoscope’s
distal end. It is obvious that tracking the neoplasia overcomes DfF’s limita-
tion (i). Accuracy stems from the fact that all pixels in the ROI contribute
to find the IB, releasing DfF’s limitation (ii).

The usage of our interactive neoplasia measurement system is illustrated
in figure 2. It relies on simple preoperative and intraoperative protocols
which, from our preliminary trials, meet the operating room’s constraints.
The cleaning and sterilization procedures are not affected as the colonoscope’s
hardware is not modified. The biopsy channel is left free and thus can be
used for the biopsy tools whenever required. Our system’s usage time is
extremely mild. Preoperative calibration takes less than a minute. Once
the neoplasia is selected, computation time is a few dozens of seconds (on
a standard computer) before measurements can be made. The accuracy of
visual size estimation by endoscopists is of the order of 3 to 4 mm (Summers,
2010); the accuracy of our system is generally within 1 mm.

Contributions. We propose the first passive measurement system applicable
to colonoscopy with no hardware modifications. Technically, we propose to
extract the IB from a video stream obtained by moving the colonoscope
toward the neoplasia. To this end, we introduce a complete optical and
geometric model of colonoscopic images. This model is implemented in our
BET and BMF modules which, thanks to robust estimation, successfully
extract the IB even in the presence of unmodeled artifacts causing local
erroneous blur estimation.

This paper markedly extends our previous conference publica-
tions (Chadebecq et al., 2012, 2013). First, our previous work relied on
a simple non-robust affine BET while our novel BET handles motion blur,
colon deformations and image artifacts such as those caused by moisture. Our
previous method was more sensitive to noise, causing inaccuracies in optical
blur estimation and detection ambiguities in the IB which could sometimes
not be resolved. These do not happen with our novel BMF module. Our cur-
rent system reaches less than 1 mm measurement accuracy while our previous
system reached an accuracy of the order of 3 mm.
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Manual selection
of the neoplasia

Interactive measurements

3.2 mm

3.8 mm

38.2 mm2

1

Figure 2: Neoplasia measurement during colonoscopic examination with our sys-
tem. The endoscopist first selects a neoplasia. They may then make measurements
of lengths and areas interactively.

Paper organization. Section 2 reviews state-of-the-art. Section 3 gives an
overview of our system. Sections 4 gives our optical model and formally
introduces the notion of IB. Section 5 gives our geometric model. Section 6
presents BET and BMF, and their combination for robust IB estimation.
Finally, section 7 reports experimental results and section 8 discusses our
contributions and future research.

2. State-of-the-Art

2.1. Neoplasia Size Measurement

Resolving scale is a challenging task in 3D computer vision. This is
made even more difficult in colonoscopic conditions where the colonoscope
cannot be accurately controlled. Some of the active (Hensley et al., 2009;
Reichl et al., 2013) and most passive 3D sensing methods (Alcantarilla et al.,
2013; Chen et al., 2010; Koppel et al., 2007; Parot et al., 2013) proposed
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for colonoscopy focused on the topography of colonic lesions, which may be
obtained by reconstructing the shape, without resolving scale.

Active methods. Some of the active methods such as structured light projec-
tion resolve scale but require modifications to the colonoscope hardware. A
review of active methods can be found in (Mirota et al., 2011). Structured
light probes have mainly been designed for rigid endoscopes (Schmalz et al.,
2012). This is because of the difficulty to convey a structured light source
inside the flexible colonoscope.

Scale from EM tracking. EM tracking (Reichl et al., 2013; Lee et al., 2010)
was also proposed to track the colonoscope’s distal end inside the colon cavity.
While EM reaches an accuracy of around 2 mm, it occupies a biopsy chan-
nel to host the EM ‘needle’ and an external tracking equipment inside the
operating room. Olympus R© has recently introduced the ScopeGuide which
features EM tracking. It is mainly used for training purposes and due to cost
may not replace existing colonoscopes in the near future (Lee et al., 2010).

Passive methods. Passive 3D sensing techniques do not generally resolve scale
in monocular optical systems. For instance, a photometric stereo colono-
scopic system has been proposed in (Parot et al., 2013). This approach
reconstructs the topography of the colonic environment but does not resolve
scale. Note that scale is easily resolved in stereo systems. However, stereo
has mainly been developed for rigid endoscopes (Field et al., 2009). Depth-
from-Optical-Blur techniques apply to monocular systems and resolve scale
by servoing some camera parameters; they are reviewed directly below.

2.2. Depth-from-Optical-Blur

Optical blur has been used to measure absolute depth from multiple im-
ages. There exist two main lines of work, Depth-from-Defocus (DfD) and
Depth-from-Focus (DfF), which were both introduced in (Pentland, 1987).
These techniques require a calibration process to relate depth with the
amount of optical blur measured in an image. This relationship depends
on the camera’s internal and external parameters. DfD (Namboodiri and
Chaudhuri, 2007; Favaro et al., 2008; Zhuo and Sim, 2009; Zhou et al., 2010)
generally requires at least two images taken from the same camera pose with
varying but known internal camera parameters (figure 3-a). DfF (Takeshita
et al., 2009; Shim and Choi, 2010) requires a set of images created by ac-
curately servoing the camera’s displacement (figure 3-b) but keeping fixed
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its known internal parameters. For instance DfF has been recently used to
reconstruct surface topography in microscopy (Mannan and Choi, 2011).

(a) Requirements for DfD:

• still camera

• controlled optical changes

(b) Requirements for DfF:

• controlled camera motion

• fixed optical setting

(c) Colonoscopic conditions:

• loosely controlled camera

• fixed optical setting

1

Figure 3: Requirements for (a) Depth-from Defocus (DfD) and (b) Depth-from
Focus (DfF), and (c) practical colonoscopy conditions. DfD and DfF cannot be
used in colonoscopy because the internal (optical) and external (motion) colono-
scope’s parameters are respectively fixed and uncontrolled.

Current off-the-shelf DfD and DfF methods are not applicable to
colonoscopy (figure 3-c). Directly adapting DfF would require one to modify
the colonoscope’s hardware to track its distal end and incorporating some im-
age unwarping mechanism to align corresponding pixels. DfD cannot be used
because most of the colonoscopes’ optical properties are fixed. DfD has been
adapted to monofocal cameras (Wei et al., 2009; Wohler et al., 2009) or to a
single image (Zhuo and Sim, 2009). However the price to pay is that scale is
then unresolved, and the influence of noise increases dramatically (Kaufman
and Wang, 2008). The former adaptation would also require one to extract
and match image keypoints. This is not adapted to colonoscopic images
which generally contain very few reliable keypoints, as illustrated in figure 1
and discussed in (Alcantarilla et al., 2013).

2.3. Proposed Approach

Unlike state-of-the-art methods, our system is adapted to colonoscopic
conditions in that it does not require one to accurately control the inter-
nal or external camera parameters and does not either require modifications
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to the colonoscope’s hardware. Our system uses a short colonoscopic video
corresponding to an approximate constant speed motion of the colonoscope
toward a neoplasia (figure 4). The endoscopists involved in our experiments
easily performed this motion (see section 7.3). First, our area-based BET
module automatically tracks the neoplasia and estimates coherent and re-
dundant blur change along the video. Second, our BMF module reliably
extracts the sharp/blur breakpoint, giving the IB. Our method does not re-
quire to estimate absolute optical blur accurately, neither does it require a
complex preoperative calibration procedure. Finally, our experiments show
the feasibility of our method to handle regular colonoscopic artifacts such as
motion blur or noise which are not handled by most state-of-the-art passive
methods.

Infocus Out of focus

IB

1

Figure 4: Colonoscopic video corresponding to an approximate approach motion
of the colonoscope toward a neoplasia. The three leftmost images of the neoplasia
extracted from the video stream are infocus while the two rightmost images are
out of focus. The central image thus corresponds to the sharp/blur breakpoint,
namely the Infocus-Breakpoint.

3. System Overview

Our system has two main steps, illustrated in figure 5: preoperative
calibration, done just before colonoscopy, and intraoperative measurement,
where actual neoplasia size measurements are performed.

Preoperative calibration. Calibration is done once, preoperatively. Geometric
calibration is required to compute the internal camera parameters, including
the lens distortion function. We use the pinhole camera model (Hartley and
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Preoperative
calibration

Intraoperative
measurement

Moving handheld checkerboard

BET + BMF → IB

Fixed colonoscope’s tip

Geometric calibration

IB detection

Record d0, the reference depth

Moving colonoscope Manual neoplasia selection

Fixed colonoscopic environment

BET
+

BMF

↓

IB

Neoplasia size estimation

Interactive
measurements

3.2 mm

3.8 mm

1

Figure 5: Proposed system overview. Top row: preoperative calibration protocol.
Bottom row: intraoperative measurement protocol. BET is our Blur-Estimating
Tracking module and BMF is our Blur-Model Fitting. They allow us to robustly
detect the IB, the Infocus-Breakpoint, whose reference depth d0 is calibrated pre-
operatively and used to resolve scale intraoperatively.

Zisserman, 2004). Calibration provides the matrix K of internal camera pa-
rameters and the sensor’s pixel density α which relates pixels and mm. The
important optical distortion of colonoscopes may directly bias the measure-
ment of neoplasias (see section 6.3) if uncorrected with an increased bias away
from the image center (Brauer-Burchardt et al., 2006). Both the geometric
and IB calibration are done simultaneously using BET and BMF. A checker-
board is manually held approximately frontoparallel to the colonoscope and
moved toward its distal end until it touches it. The video is recorded and
geometric calibration is solved (Bouguet, 2008). For each frame of the video,
the pattern is tracked and blur is estimated with BET. The BMF module
is then applied to detect the IB and the corresponding reference depth d0
is recorded. The overall preoperative calibration process generally takes less
than a minute and a few minutes at most.
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Intraoperative measurements. In the intraoperative course, the endoscopist
first spots a neoplasia whose size should be measured. They put the neoplasia
in full visibility and infocus, and manually select a polygonal area containing
the neoplasia in the image by means of mouse clicking. They then move
the colonoscope toward the neoplasia until it touches it. Our system auto-
matically tracks the neoplasia with BET and estimates the relative defocus
information of the tracked area simultaneously. The frames are recorded and
form a video which is processed for scale recovery. The offline treatment
of the recorded video takes less than a minute. Our system detects the IB
by fitting our optical blur model with BMF. It then displays an image of
the neoplasia where the endoscopist may interactively measure its length by
clicking pairs of points and its area by positioning ellipses.

4. Image Formation Modeling and the Infocus-Breakpoint

The goal of modeling here is to define a cost function which will allow us
to match the color of corresponding pixels in two different images in spite
of motion and blur, and thus to later implement BET and BMF to robustly
detect the IB.

4.1. Image Formation Modeling

Image formation modeling aims at defining the photometric part of the
image formation process, including defocus.

Geometric optical modeling. Geometric optical modeling relies on the laws
of Snell-Descartes which describe the formation of an image through a thin
lens (Pentland, 1987). Let Ad be a 3D point located at a distance d from
the camera. We define the infocus plane as orthogonal to the lens’ axis at a
distance d̂. We shall show in section 4.2 that d̂ = d0, in other words, that
the infocus plane lies at the reference depth. The image of Ad is a point if it
lies on the infocus plane at distance d̂ = ef

e−f , where e is the distance between

the lens and the image sensor and f is the lens’ focal length (see figure 6).
For d = d̂, the focal plane2 coincides with the sensor. In any other case (for
d 6= d̂), Ad will be imaged as a circle of confusion whose radius R(d) is given
by:

2For a fixed object plane, the focal plane is defined as the infocus image plane; if the
image sensor coincides with the focal plane, the image of the fixed object plane is infocus.
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R(d) = r

∣∣∣∣ ef − e

d
− 1

∣∣∣∣ (1)

where r is the lens’ radius (see figure 7). Note that R(d̂) = R
(

ef
e−f

)
= 0.

Thin LensInfocus plane

r

Image Sensor
=

Focal Plane

Ad=d̂
bC × ×

e

f f

d = d̂

Image of Ad=d̂

Figure 6: Image formation by a thin lens. The image of a point Ad is a point if
d = d̂, meaning that Ad lies on the infocus plane.

Thin LensInfocus plane

R(d)

Image Sensor

Ad6=d̂
bc × ×

Focal Plane

ed 6= d̂

f f
2R(d)

Image of Ad6=d̂

Figure 7: Image formation by a thin lens. The image of a point Ad6=d̂ which lies

off the infocus plane is a spot of radius R(d).

Modeling defocus. The Point Spread Function (PSF) is the impulse response
of the optical system. In geometric optical modeling the predicted intensity
is constant within the blur circle. This defines a PSF by the pillbox func-
tion whose radius is then related to the depth of the imaged point. Physical
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optical modeling (modeling phenomena including light diffraction, lens prop-
erties, sensor integration) leads to more advanced PSF models. (Claxton and
Staunton, 2008) showed that the generalized Gaussian is a suitable model
because it encompasses the classical pillbox and 2D Gaussian models. It has
also been experimentally observed that (Pentland, 1987), considering a poly-
chromatic light, the PSF could be approximated by a 2D isotropic Gaussian
gσ(d). Our approach relies on this standard assumption, holding for most
cameras, and widely used in DfD and DfF (Pentland, 1987; Namboodiri and
Chaudhuri, 2007). For a prime lens, the standard deviation σ(d) of the Gaus-
sian (the PSF’s spread) is proportional to the distance between the 2D image
point and the infocus object plane:

σ(d) ∝ R(d) (2)

The coefficient of proportionality directly depends on the camera’s internal
parameters and can be calibrated. Defining Î = Id̂ as the infocus image of
some surface, in the absence of any geometric distortion, the image function
Id for a surface at depth d is then given by:

Id = Î ∗ gσ(d) (3)

For the typical prime lens optical colonoscopic systems, the optical blur model
given by equations (1), (2) and (3) only depends on the local depth. Local
optical blur measurement is however unstable because of its high sensitivity
to image noise.

4.2. The Infocus-Breakpoint

Figure 8 is an instance of the optical blur model (1) and (2). It is worth to
note that there exist a fixed point corresponding to the sharp/blur transition:
the IB. The IB occurs at the reference depth d0 which can be calibrated.
Theoretically, d0 is defined by:

d0 = argmin
d

R(d) =
ef

e− f (4)

In order to robustly detect the IB within a colonoscopic video, we propose
to use an approximate colonoscope motion toward a neoplasia. We here
assume a constant speed motion of the colonoscope. This allows us to fit the
continuous geometric optical blur model (1) to the discrete blur measurement
made for each frame of the colonoscopic video. Equivalently, a backward
motion could be applied.

13



2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

reference depth

d0

σ
(d

)
∝
R
(d

)

Depth (mm)

IB

1

Figure 8: The optical blur model of equations (1) and (2) reveals the existence
of a fixed point which corresponds to a sharp/blur transition we call the Infocus-
Breakpoint (IB). For a prime lens optical system, it corresponds to a unique dis-
tance d0 between the camera and the tissue. This is here called the reference depth
and is calibrated preoperatively.

5. 3D Length Estimation and Image Registration Modeling

Consistently estimating the image blur related to some image area, here
the neoplasia, requires one to track this area in a video stream. Practically,
our experiments showed that a neoplasia has either a sharp boundary or is
sufficient textured to be tracked in the video (see section 7.3). The aim of
geometric modeling here is to define (i) the inference model used to measure
a 3D length from a 2D image and (ii) the image deformation model used in
tracking.

5.1. Measurements: from Image to 3D Lengths

Once the IB is detected within a video, the sharpest frame can be ex-
tracted and undistorted. Because we assume the neoplasia’s boundaries to
be planar and frontoparallel to the colonoscope’s distal end, the reference
depth allows us to infer the length d3D of the neoplasia in mm from its
length d2D in pixels in the image using:
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d3D =
d0
αf

d2D (5)

with α the sensor’s pixel density in pixels per mm. This is illustrated in
figure 9. Preoperative geometric calibration gives the product αf (see sec-
tion 3).

Optical center

Image plane ≡ Focal plane Infocus object plane

Refere
nce

dept
h d0

Foca
l len

gth
f

d2D
α

d3D

1

Figure 9: Intraoperative size measurement. d2D and d3D are respectively the size
of the imaged neoplasia in pixels and the real size of the neoplasia in mm. α is the
sensor’s pixel density.

Any other image from the video could be used for making interactive mea-
surements. Indeed, since the neoplasia has been tracked along the colono-
scopic video, the manually selected points defining the distance to be mea-
sured can be transferred to the image corresponding to the IB.

We monitor the evolution of defocus in a local area corresponding to a
neoplasia assumed to be planar. There may however be blur variations along
the neoplasia’s boundary particularly for pedonculated ones, for which the
depth may vary along its boundary. For such cases, we comput a mean depth
bounded by the depth of the neoplasia’s boundaries. Our experiments showed
that the equifocal assumption did not affect significantly the measurement
quality (see section 7).

5.2. Image Registration Modeling

We have used two inter-frame deformation models. The first one is a
simple affine transformation:
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WAFF(q) = Aq + t (6)

where A ∈ R2×2 is a linear map (embedding anisotropic scaling, rotation and
shearing), t ∈ R2×1 is a translation vector and q = (x, y)T is the coordinate
vector of an image point.

The second deformation model we used is a Thin-Plate Spline (TPS)
warp (Bookstein, 1989). It is obtained by stacking two R2 → R TPS funtions
sharing their deformation centres and internal regularization weight. We use
a feature-driven parameterization (Bartoli et al., 2010) defined as:

WTPS(q) =M`q where M> = EλP
′ (7)

This warp is parametrized by l deformation centres c′j ∈ R2×1 (with j ∈ [1; l])
in the target image. They are stacked in matrix P′ ∈ Rl×2. The TPS kernel
function for the squared distance is given by ρ(d2) = d2 log d2, and defines
`>q = (ρ(d2(q, c1)) · · · ρ(d2(q, cl)) q> 1). Finally, Eλ is a fixed design matrix
built from the source deformation centres cj ∈ R2×1 (with j ∈ [1; l]) and the
internal regularization weight λ = 10−5.

The affine deformation model is global and stiff while the TPS deforma-
tion model is local and flexible. We expect the TPS model to be robust to
regular colonoscopic artifacts and to model colon deformations. We exper-
imentally compared the accuracy and robustness of these two deformation
models as well as their influence on blur estimation when integrated to the
BET module (see section 7.1).

6. Blur-Estimating Tracking, Blur-Model Fitting and IB Detection

6.1. Tracking in Colonoscopic Videos

There exists a large body of work on image tracking through registration.
However, very few papers have investigated the simultaneous estimation of
both registration and optical blur. The approach of (Deschênes et al., 2004)
which extends (Myles and da Vitoria Lobo, 1998) estimates simultaneously a
spatial shift (stereo disparities, 2D motion, and/or zooming disparities) and
an optical blur difference between two images. However, this window-based
approach is sensitive to illumination variations, noise and textureless areas.
Feature detection and description methods such as SIFT (Lowe, 2004) have
been shown to perform poorly in colonoscopy (Alcantarilla et al., 2013) (see
figure 1).
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6.2. Proposed Tracking Strategy

We propose to use a direct registration approach, using the color of all
pixels in the ROI. Image registration processes two images at a time. One
is the source, the other the target. In registering a whole video, a possible
strategy is to choose a fixed frame for the source. This strategy performs
poorly here, due to the important changes of the image contents occuring
during the colonoscope’s forward motion. We thus register consecutive frames
Ik and Ik+1, where k is the frame index. Relative optical blur difference
δk = sk − tk, where sk and tk corresponds respectively to the blur applied to
the source and target image for their registration, is computed simultaneously
for each pair of images as described in the next section. The proposed BET
module is illustrated in figure 10 and summarized in algorithm 1.

Blur-Estimating Tracking (BET)

Input:
• Video (I1, . . . , IN)
• Initial ROI (ROI1)

Algorithm:
For k = 1 to N − 1

(Wk, δk)← Register (Ik, Ik+1, ROIk)
ROIk+1 ←Wk(ROIk)

End For
Output:
• Relative blur (δ1, . . . , δN−1)
• (optional) Warps (W1, . . . ,WN−1)
• (optional) ROIs (ROI1, . . . , ROIN)

Algorithm 1: Our BET module simultaneously estimates the geometric defor-
mation and the relative defocus information between successive images in a video
stream.

This strategy implies that relative blur measurements be combined be-
tween consecutive frames of the colonoscopic video to obtain an absolute blur
measurement up to a global additive constant; this is discussed in section 6.4.

6.3. Image Pair Registration

We propose to incorporate the defocus model, defined in section 4.1, in
a direct registration method. From equation (3), the following relationships
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1

Figure 10: Illustration of the tracking strategy used in BET for a real colono-
scopic video. Our method relies on the simutaneous estimation of a geometric
deformation Wk and a relative optical blur δk for each pair of consecutive images(
Ik, Ik+1

)
for k ∈ [1;N − 1].

hold: {
Ik = Î ∗ gσ(dk)
Ik+1 = Î ∗ gσ(dk+1)

(8)

where dk and dk+1 are the depth of the ROI respectively in images k and
k+ 1. It is worth to note that equation (8) does not model geometric distor-
tions. Those will be discussed when formulating the final registration prob-
lem shortly below. The infocus image Î is unknown and has to be eliminated
from the equations. The idea is to use the sharpest image as a ‘predictor’
of the other one. However, which one of the two images Ik and Ik+1 is the
sharpest is a priori unknown (see figure 8). This is actually given by the sign
of ∆k = σ(dk)−σ(dk+1) (where ∆k is an absolute blur difference); if ∆k > 0,
Ik is the sharpest. We thus rewrite equation (8) as:{

Ik ∗ gσ(dk+1) = Î ∗ gσ(dk) ∗ gσ(dk+1)

Ik+1 ∗ gσ(dk) = Î ∗ gσ(dk+1) ∗ gσ(dk)
(9)

Because convolution with Gaussian functions is commutative, we obtain the
following relationship:

Ik ∗ gσ(dk+1) = Ik+1 ∗ gσ(dk) (10)

Note that this equation has a degree of freedom meaning that realative blur
can only be computed up to a constant gκ which cannot be neglected, espe-
cially in the presence of noise or motion blur artifacts. For κ > 0, it may be
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rewritten as:
Ik ∗ gσ(dk+1) ∗ gκ︸ ︷︷ ︸

g
tk

= Ik+1 ∗ gσ(dk) ∗ gκ︸ ︷︷ ︸
g
sk

(11)

Here, gsk and gtk correspond to relative blur measurements respectively in
the source and target frames Ik and Ik+1. Hence, image pair registration
as illustrated in figure 11 involves resolving the following non-linear least-
squares problem:

min
(ζk,sk,tk,Wk)

∑
q∈ROI

ρk(q)[Ik ∗ gtk(q)− ζk(Ik+1 ∗ gsk(Wk(q)))]2 + λmin(sk, tk)2

(12)
The penalty min(sk, tk)2 prevents overblurring: it ensures κ ≈ 0 and thus that
tk ≈ σ(dk+1) and sk ≈ σ(dk). The mask ρk allows us to discard saturated
areas and ζk is a gain that adjusts global intensity variation due to the
colonoscope’s light delivery channel being partially hidden behind folds of
the colonic wall and the light intensity altered by auto-adjustment of the
light source module. We solve problem (12) with the Levenberg-Marquardt
method (Björk, 1996) with as initialization: ζk = 1, sk = tk = ε and Wk the
identity warp.

Geometric distortion is not introduced in our BET module. This is be-
cause undistorting the images would break the constancy of the blur kernel.
However the images used to infer size measurements are undistorted (see sec-
tion 5.1). We noticed no significant impact on tracking and blur estimation
even with neoplasias evaluated in real colonoscopic conditions imaged off the
optcal axis.

6.4. Blur-Model Fitting and IB Detection

Fitting by integration. In order to extract the IB, it is necessary to retrieve
the absolute blur measurement along the video. A natural approach is to
integrate the value of δk and extract the IB thanks to sign changes. However,
this method is particularly sensitive to noise and erroneous blur estimation.
It does not allow one to accurately extract the IB, introducing ambiguities
as illustrated in figure 12. For instance, when the colonoscope is close to the
neoplasia or when the part of the colon explored by the endoscopist is difficult
to access, motion blur artifacts frequently arise in the video and cause the
integration method to fail.
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Figure 11: Illustration of our Blur-Estimating Tracking (BET) module for a pair
of colonoscopic images. In this exemple, the source image is sharper than the
target image. Our goal is to minimize the norm of the discrepancy map obtained
by subtracting the blurred source and the blurred and warped target for a ROI
containing the neoplasia to be measured.

Register

Input:
• Image pair (Ik, Ik+1)
• ROI in Ik (ROIk)

Algorithm:
Compute (ζk, sk, tk,Wk) by solving equation (12)
Set δk ← sk − tk

Output:
• Warp Wk

• Relative blur δk

Algorithm 2: Image pair registration algorithm. We simultaneously compute
warp parameters and relative between a source and a target image.

Proposed Blur-Model Fitting method. At the beginning of the colonoscopic
video, when d > d0, the target frame is sharpest than the source frame and
so ∆k < 0 and sk represents the absolute blur difference (while tk should the-
oretically be equal to 0). Similarly, when d ≤ d0, ∆k > 0; the source frame is
sharpest than the target image and so tk is the absolute blur difference (while
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Figure 12: Illustration of the integration method to solve Blur-Model Fitting
(BMF) and the detection of the Infocus-Breakpoint (IB). This figure illustrates the
IB detection ambiguity due to errors in relative blur estimation. These may be
caused by motion blur which occurs close to the neoplasia typically around the
IB. The integration constant υ, which is unknown, has been defined such that the
absolute defocus at the IB equals 0.

sk should theoretically be equal to 0). We obtain the following relationship:

∆k ≈
{
−sk for d > d0
tk for d ≤ d0

(13)

Hence, our problem is to define a reliable approximation of the IB to
integrate absolute depth measurements which will be refined by fitting the
optical blur model (1). We use the fitting by integration method defined
at the previous section and choose the index k0 ∈ [1;N − 1] correspond-

ing to the minimum of Λk =
k−1∑
i=1

δi + υ as a first approximation of the IB.

The integration constant υ corresponding to the absolute defocus of the first
frame of the video stream is unknown. As the value of the standard de-
viation of the Gaussian defocus theoretically vanishes at the IB, we define

υ =

∣∣∣∣ min
j=2,...N

j−1∑
l=1

δl
∣∣∣∣. Moreover, most of the artifacts arise when the colono-

scope is close to the neoplasia. Owing to the forward motion assumption,
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we always chose the largest frame index as IB in case of an ambiguity (in
the case of a backward motion, we would choose the smallest frame index
as IB approximation). The absolute blur measurement is then computed by
integrating the PSF standard deviation derivatives (see figure 13):

Ψk def
= σ(dk) ≈


−

k∑
i=0

(si) + υ for k < IB (d > d0)(
ΨIB−1)2 +

N∑
i=kIB

(ti) + υ for k ≥ IB (d ≤ d0)
(14)

tk sk

∆k ' −sk∆k ' tk
IB approximation

IB detection
(model fitting)

0

1

2

3

100 80 60 40 20 0
Frame number k

S
tD

o
f

th
e

P
S
F

(p
ix

e
ls

)

0

10

20

30

40

100 80 60 40 20 0
Frame number k

S
tD

o
f

th
e

P
S
F

(p
ix

e
ls

)

0

1

2

3

100 80 60 40 20 0
Frame number k
S
tD

o
f

th
e

P
S
F

(p
ix

e
ls

)

1

Figure 13: Blur-Model Fitting (BMF) and Infocus-Breakpoint (IB) detection. The
top left and right graphs show relative blur estimation respectively for the source
and target frames along a colonoscopic video. The central graph shows the absolute
blur estimation obtained by integrating relative blur measurements in the source
and target frame relatively to an initial IB approximation. The optical blur model,
here in red is then fitted to the absolute blur estimate to accurately extract the IB.
The botton images show the colonoscopic video and the tracking results obtained
by our TPS-based Blur-Estimating Tracking (TPS-BET) method.

The parametric model (1) can then be fitted to the absolute blur mea-
surements assuming a constant speed β (in pixels per frame):

min
r,e,f,β

k0∑
k=1

[
Ψk −

(
r

∣∣∣∣ ef − 1− e

βk

∣∣∣∣)]2 (15)
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The non-linear minimisation is solved using the Levenberg-Marquardt
method. In order to compute the derivatives of equation (15), we replaced the
absolute value of the parametric model (2) by the pseudo-Huber norm (Hu-

ber, 1964): L(
∣∣∣ ef − 1− e

βk

∣∣∣) =

√
1 +

(
e
f
− 1− e

βk

)2
− 1. The parameters are

initialized from geometric calibration values (see section 5). It is worth to
note that the theoretical model can only be partially fit to the data belonging
to the range [1 . . . k0]. Indeed, when the colonoscope’s tip is very close to the
neoplasia, the optical blur measurement saturates and the thin lens assump-
tion breaks down. Thus, only the depth greater or equal to the predicted IB
were considered for non-linear optimization.

Because the computation of the absolute blur is relative to an initial guess
k0 for the IB, we apply algorithm 3 to robustly refine it.

Blur-Model Fitting (BMF)

Input:
• Relative blur (δ1, . . . , δN−1)

Algorithm:
residual, IB ← 0

Compute predicted IB: k0 ← argmin
i

N−1∑
i=1

δi

For kIB = k0 − 10 to k0 + 10
Compute absolute blur relative to the IB index kIB using equation (14)
Obtain current IB and current residual by solving equation (15)
If current residual < residual

IB, residual ← current IB, current Residual
End If

End For
Output:
• IB
• (optional) BMF residual error

Algorithm 3: The integration of our BET relative blur estimates allows us to
compute absolute blur along the video stream and a first approximation of the
Infocus-Breakpoint (IB). The optical blur model (14) can then be fit to the abslute
blur estimates which allows us to accurately extract the IB.

23



The BMF method allows us to reliably refine the first IB approximation
and handles an arbitrary colonoscope motion. Because the IB corresponds
to a precalibrated depth, the size of the neoplasia can finally be inferred in
the undistorted IB frame IIB ≈ Î (see section 5).

7. Experimental Validation

The proposed algorithm was evaluated on three types of datasets:

• Simulation: a simulated dataset was used to evaluate the robustness
of the proposed algorithm to noise, blur and motion amplitude.

• Phantom: a phantom model was designed in order to evaluate our
method in conditions similar to real colonoscopy but with ground truth.
The phantom videos were made with a GIF type Q160 Olympus R©

colonoscope.

• In-vivo: a real colonoscopy dataset was used to compare the perfor-
mance of the proposed algorithm with measurement guesses made by
endoscopists. The videos were made with two high definition GIF Type
N180 and XP190N Olympus R© colonoscopes.

We implemented two versions of BET: AFF-BET and TPS-BET. The
former uses a rigid affine warp WAFF; the latter uses a TPS warp WTPS (see
section 5). Four TPS centers were used to carry out the experiments. They
were placed on a regular grid inside the ROI. The behaviour of TPS-BET
handles typical deformations arising in regular colonoscopic conditions.

7.1. Simulated Data

Setup. We created a simulated dataset which reproduces the slight defor-
mations of the colonic cavity observed in real colonoscopic images. To this
end, we computed a random warp which was applied to 10 reference images
extracted from real colonoscopy examination (see figure 15). The image gen-
eration process was based on the following steps (see figure 14). We first
defined a virtual sphere whose center lies on the optical axis of a simulated
colonoscope’s optical system at a depth of 4 cm. A subset of the sphere’s
points was projected on the simulated endoscopic image to define 2D tar-
get deformation centers. The 3D sphere was then randomly translated and
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Figure 14: Illustration of the synthetic image generation process. (a) and (b): A
sphere centered on the optical axis of a simulated colonoscope’s optical system is
translated and rotated in 3D. (c): A subset of the 3D points of the ‘reference’ and
‘target’ sphere is projected in the image plane and a warp is computed using the
projected points as deformation centers. (d): Finally a new image is generated by
applying the randomly computed warp to an image of a real colonoscopy.

rotated. The subset of 3D points was reprojected in the image plane to gen-
erate the corresponding 2D source deformation centers. A warp was then
computed and a new image was generated by warping the reference images.

Three parameters, noise, blur and camera speed, were varied on a prede-
fined range as illustrated in figure 16. The camera speed is here modeled by
the translation magnitude of the 3D sphere. The random sphere rotation was
chosen small to generate slight deformations of the reference image. For each
value of the range, the dataset was made up of 100 random deformations of
a source image.

The default setup for each of the experimental parameters was the fol-
lowing:

Motion amplitude: the influence of the camera speed was evaluated
according to the relative translational displacement of the sphere on the
range [0; 6] cm. Because the sphere center was placed at a close depth
of the simulated colonoscope, this corresponds practically to a relative
displacement of the deformation centers which lied in [0; 70] pixels.
The sphere’s rotation belonged to the range ([ π

20
; π
15

]. The Gaussian
blur standard deviation was of 1 pixel and the noise was of 1%.

Blur: the Gaussian blur standard deviation was evaluated on the range
[0; 10] pixels. The sphere motion’s amplitude was of 1 cm (which corre-
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1

Figure 15: Various colonic neoplasias used to generate the synthetic dataset. For
each of the experimental parameters, 100 random transformations were applied to
each of these images to generate a set of 1000 images.

sponds to a displacement of the deformation centers of approximately
10 pixels) and the noise was of 1%.

Noise: the noise was evaluated on the range [0; 10%]. The motion’s
amplitude was of 1 cm and the Gaussian blur standard deviation of 1
pixel.

Statistical analysis. The results are visible in figure 17. TPS-BET is signifi-
cantly more robust to geometric deformations. AFF-BET is robust to small
displacements when the sphere translation is less than 2 cm. TPS-BET
handles more important displacements (translation up to 3.5 cm) which is
a significant benefit considering the difficult manipulation of a real colono-
scope close to a neoplasia. Beyond these values, the tracking drifts and makes
blur estimates unstable (as illustrated by the standard deviation of the er-
rors). Such blur estimation errors could lead to ambiguities which prevent
our method from accurately determining the IB.

TPS-BET and AFF-BET have shown similar behaviour regarding the
impact of noise and blur. The registration error is less than 0.5 pixels even
in the presence of an important amount of blur as illustrated in figure 16.
The blur estimation error is less than 0.5 pixels when the real blur is less
than 6 pixels. Beyond this value, the blur estimation error linearly increases
for both AFF-BET and TPS-BET so as the standard deviation of the errors.
Practically, such an amount of blur was not observed during our experiments
on real colonoscopy.
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Figure 16: Simulated datasets. The source image (top left) has been transformed
to evaluate the influence of the motion’s amplitude (top right), the blur (bottom
left) and the noise (bottom right) on the robustness of our method.

The noise has a slight influence on the registration error when it is lower
than 6%. For more important values, the registration error increases rapidly
even if TPS-BET is more robust and stable in the presence of such artifacts.
Blur estimation is more affected by the presence of noise. The error is less
than 1 pixel when noise is less than 3%. Beyond this value the blur estimation
error linearly increases which may lead to IB detection ambiguities.

The synthetic evaluation has shown that TPS-BET is significantly more
robust to important motion speed of the colonoscope. Moreover, it has
showed that blur estimation is slightly more robust to noise artifacts. Fi-
nally, while blur estimation is biased when image blur is important, it will be
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Figure 17: The left column shows the affine (blue) and TPS (red) Blur-Estimating
Tracking registration errors according to camera speed, blur and noise. The right
column shows the blur estimation error. Each row corresponds to a specific exper-
imental parameter. Error bars represent the standard deviation of errors.

shown with phantom and real colonoscopy experiments that blur estimation
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errors can be handled well by our BMF module.

7.2. Phantom Data

Our phantom model (figure 18) is a tube within which a pig’s colon was
inserted. Small objects from 1.6 to 15 mm were placed inside the colon cavity
and wrapped up in colonic tissue. The pig’s colon is frequently used for
endoscopists training models due to its anatomical similarity to the human
colon. However, its internal appearance is significantly different, with less
texture and landmarks. Blood vessels cannot be observed as they are not
irrigated.

Figure 18: Left: external view of our phantom model. It is composed of a tube
within which a pig’s colon was inserted. Right: internal views of our phantom
model. Several marbles of known size were wrapped up in colonic tissue and
placed inside the phantom model.

Motivation. It is practically impossible to obtain the ground truth of a neo-
plasia’s size in-vivo. Excision may cause neoplasias to shrink. Our phantom
model allows us to reproduce colonoscopic conditions while having the true
size of measured objects. Thus, artifacts such as motion blur or light sat-
uration may arise in phantom videos. The colonoscope’s motion has been
controlled both manually (8 videos) and robotically (7 videos).

Figure 19 shows the root mean square measurement error for the AFF-
BET and TPS-BET modules. Figure 20 illustrates the benefits of TPS-BET
over AFF-BET in tracking, particularly for videos where the colonoscope’s
motion was manually controlled.

Results. The results show a significant improvement of measurement accu-
racy and a more reliable behaviour particularly for the videos made by man-
ually controlling the colonoscope’s motion. For this dataset, TPS-BET has
a mean error of 6.9% (≈ 0.8 mm) while AFF-BET has an error of 26%
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Figure 19: Measurement error analysis on phantom dataset. Left: robotically
controlled motion of the colonoscope. Right: handheld colonoscope. The last
row indicates for each method and each experimental setup, the number of videos
which were successfully processed.

T
P
S
-B

E
T

A
F
F
-B

E
T

1

Figure 20: Exemple of Affine Blur-Estimating Tracking (AFF-BET) drift. Top:
the manual displacement of the colonoscope generates motion blur which could not
be handled by this method. Bottom: the TPS Blur-Estimating Tracking (TPS-
BET) was successful.

(≈ 2.8 mm). This error is notably due to inaccurate tracking which implies
IB extraction ambiguities. Moreover, two videos of this dataset could not be
processed by AFF-BET because of motion blur while TPS-BET was able to
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process all the videos.
For the subset of videos made by robotically controlling the colonoscope,

experiments have shown that both AFF-BET and TPS-BET perform well.
However, the results obtained by AFF-BET, with a mean measurement error
of 24% (≈ 2.4 mm), were degraded by artifacts such as moisture on the
colonoscope’s lens. For this second subset of videos, TPS-BET has a mean
measurement error of 4.9% (≈ 0.5 mm). TPS-BET handles motion blur and
artifacts much more efficiently than AFF-BET.

7.3. In-vivo Data

Images in the operating room. A set of 5 colonoscopic videos was made by
two experienced endoscopists during colonoscopic interventions. The videos
were made following the protocol described in section 3 and illustrated in
figure 21. In order to avoid strong motion blur artifacts and to make sure
that the neoplasia is always visible within the colonoscopic videos, the en-
doscopists were asked to force as much as possible a linear motion of the
colonoscope. The two endoscopists achieved our clinical protocol without
difficulty. The results obtained with AFF-BET and TPS-BET were com-
pared with the visual estimation of the endoscopists (using a surgical tool as
reference) which was considered as the gold standard measurement. Figure 22
shows the root mean square measurement error for the two BET methods.
In-vivo videos and TPS-BET measurements are presented in figure 23.

Results. Experiments have shown similar results for both of the evaluated
algorithms; with a mean error of 4.5 % (≈ 0.2 mm) compared to the visual
estimation for TPS-BET and 6.5 % (≈ 0.3 mm) for AFF-BET. However,
similarly to the evaluation on our phantom model, one video could not be
processed by AFF-BET. Because of motion blur artifacts, the affine tracking
and blur measurement was inaccurate. These ambiguities did not allow us
to robustly estimate the IB. TPS-BET was more robust to such artifacts.

8. Discussion

Experimental results, and more particularly results obtained on phantom
videos, validate the applicability of our IB detection technique in colonoscopy.
The proposed method relies on a simple medical protocol which has proved
to be well adapted to real conditions of colonoscopy (both in terms of method
efficiency and convenience of the medical protocol).
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Figure 21: Top row: preoperative calibration for the GIF type N180 colonoscope.
Bottom row: intraoperative measurement of a neoplasia (see figure 5 for our de-
tailed protocol).
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Figure 22: Measurement error analysis. The measurements are compared with
the endoscopist’ visual estimates.

The TPS-BET method we proposed shows promising results which out-
perform the AFF-BET method in robustness and accuracy. Indeed, minor
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artifacts and more particularly noise (due to optic degradation) and motion
blur were well handled by TPS-BET while AFF-BET could not accurately
track neoplasias and thus measure a coherent blur along the colonoscopic
video. Our method was mainly designed to measure small neoplasias (less
than 1.5 cm) since the size of these lesions is an essential diagnostic crite-
rion. The measurement error accuracy is less than a millimeter which fits the
endoscopist’s needs. It represents a percentage of error lower than 7% (see
section 7.2). This significantly outperforms the visual estimation method
curently used by endoscopists for which (Chaptini et al., 2014) showed that
erroneous estimations greater than 20% arise in 52% of the 2812 studied
cases.

9. Conclusion

Colonoscopy is the reference medical examination for the diagnosis and
treatment of colonic diseases. It allows the endoscopists to remove neoplasias
which could turn into malignant tumors. Besides the shape and appearance
of these lesions, the size is an essential criterion for diagnostics and surveil-
lance intervals time. While no practical solutions allows the endoscopists to
reliably estimate the size of neoplasias, we here proposed a passive size mea-
surement system, based on the Infocus-Breakpoint (IB) detection method,
which can handle regular colonoscopic conditions.

The IB is the sharp/blur breakpoint which arises while the colonoscope
moves toward the colonic tissue. Because most of the current colonoscopes
host a prime lens optics, the IB corresponds to a fixed reference depth which
can be calibrated. We have proposed a TPS Blur-Estimating Technique
(BET) which simultaneously tracks a neoplasia along a video and estimates
the optical defocus. Combined with an optical blur model, this method al-
lows one to accurately extract the IB and infer measurements of a neoplasia,
assuming the lesion is planar and frontoparallel to the colonoscope’s distal
end.

Pilot trials are needed in order to validate our system with regards to its
influence on surveillance intervals and inter-operator variability. Technically,
our work could be extended in two ways. It could be combined with an au-
tomatic neoplasia detection method. A fine segmentation could improve the
simultaneous tracking and blur estimation step although this would restrict
the extend of applicability (our system allows an endoscopist to measure any
area of the colonic environment). Our work could also be combined with
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Figure 23: In-vivo dataset evaluation. Five colonoscopic videos were evaluated
(in columns). Our system was compared with the visual estimation made by
endoscopists (last row). Each step of the method is detailled up to the neoplasia
size estimation. The last colonoscopic video (last column) used indigo carmine as
contrast dye.
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SfM (Alcantarilla et al., 2013; Chen et al., 2010; Koppel et al., 2007) to
obtain a scaled 3D reconstruction of the colonic environment. Such a com-
bination could lead to an accurate 3D reconstruction of suspicious depressed
neoplasias which spread within the colonic wall.
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Parot, V., Lim, D., González, G., Traverso, G., Nishioka, N., Vakoc, B., Durr, N.,
2013. Photometric stereo endoscopy. Journal of Biomedical Optics 18, 1–8.

37



Pentland, A., 1987. A new sense for depth of field. IEEE Transactions on Pattern
Analysis and Machine Intelligence 9, 523–531.

Reichl, T., Gardiazabal, J., Navab, N., 2013. Electromagnetic servoing - a new
tracking paradigm. IEEE Transaction on Medical Imaging 32, 1526–1535.

Rubio, C., Jnasson, J., Nesi, G., Mazur, J., Olafsdttir, E., 2010. The size of colon
polyps revisited: intra- and inter-observer variations. International Institute of
Anticancer Research 6, 2419–2423.

Schmalz, C., Forster, F., Schick, A., Angelopoulou, E., 2012. An endoscopic 3D
scanner based on structured light. Medical Image Analysis 16, 1063–1072.

Schoen, R., Gerber, L., Margulies, C., 1997. The pathologic measurement of
polyp size is preferable to the endoscopic estimate. International Journal of
Gastrointestinal Endoscopy 46, 492–496.

Shim, S.O., Choi, T.S., 2010. A novel iterative shape from focus algorithm based
on combinatorial optimization. Pattern Recognition 43, 3338–3347.

Summers, R., 2010. Polyp size measurement at ct colonography: what do we know
and what do we need to know?

Takeshita, T., Nakajima, Y., Kim, M., Onogi, S., Mitsuishi, M., Matsumoto, Y.,
2009. 3D shape reconstruction endoscope using shape from focus, Conference
on Computer Vision Theory and Applications.

Talbot, I., 1996. Redetection and growth of colorectal polyps. International Journal
of Gastroenterology and Hepatology 39, 492–492.

Trucco, E., Verri, A., 1998. Introductory Techniques for 3D Computer Vision.
Prentice Hall PTR.

Wei, Y., Dong, Z., Wu, C., 2009. Global depth from defocus with fixed camera
parameters, IEE Conference on Mechatronics and Automation.

Wohler, C., d’Angelo, P., Kruger, L., Kuhl, A., Groß, H.M., 2009. Monocular 3D
scene reconstruction at absolute scale. Journal of Photogrammetry and Remote
Sensing 64, 529–540.

World Health Organization, 2008. World Cancer Report
2008. International Agency for Research on Cancer. URL:
http://www.who.int/cancer/publications/world cancer report2008.

38



Zhou, C., Cossairt, O., Nayar, S., 2010. Depth from diffusion, IEEE Conference
on Computer Vision and Pattern Recognition.

Zhuo, S., Sim, T., 2009. On the recovery of depth from a single defocused image.
Computer Analysis of Images and Patterns 5702, 889–897.

39


