
[POSTER] Realtime Shape-from-Template: System and Applications
Toby Collins ∗ Adrien Bartoli

ALCoV-ISIT, UMR 6284 CNRS Université d’Auvergne, Clermont-Ferrand, France

ABSTRACT

An important yet unsolved problem in computer vision and Aug-
mented Reality (AR) is to compute the 3D shape of nonrigid ob-
jects from live 2D videos. When the object’s shape is provided in
a rest pose, this is the Shape-from-Template (SfT) problem. Previ-
ous realtime SfT methods require simple, smooth templates, such
as flat sheets of paper that are densely textured, and which de-
form in simple, smooth ways. We present a realtime SfT frame-
work that handles generic template meshes, complex deformations
and most of the difficulties present in real imaging conditions.
Achieving this has required new, fast solutions to the two core
sub-problems: robust registration and 3D shape inference. Reg-
istration is achieved with what we call Deformable Render-based
Block Matching (DRBM): a highly-parallel solution which densely
matches a time-varying render of the object to each video frame.
We then combine matches from DRBM with physical deformation
priors and perform shape inference, which is done by quickly solv-
ing a sparse linear system with a Geometric Multi-Grid (GMG)-
based method. On a standard PC we achieve up to 21fps depending
on the object. Source code will be released.

1 INTRODUCTION, CONTEXT AND CONTRIBUTIONS

SfT is a crucial ingredient to enable 3D augmented reality with
deformable objects and 2D video cameras. The goal of SfT is to
compute the 3D shape of an object using a deformable 3D tem-
plate [2, 10, 4, 8, 11]. Solving SfT is important for AR because
it provides both the object’s 3D shape in camera coordinates and
dense registration. However, despite considerable research, a gen-
eral, robust and realtime SfT system is not yet available. This has
prevented many exciting applications emerging in AR and Human
Computer Interaction (HCI). The SfT problem is very challeng-
ing because it involves solving for each frame two difficult, inter-
dependent parts: these are (a) registration: computing high-density
and robust motion constraints from the video frame and (b) shape
inference: inferring the object’s nonrigid 3D shape. Previous solu-
tions to SfT use either feature-based [2, 10, 4, 8] or direct [7, 11]
motion constraints. Feature-based constraints are the most com-
mon and take much inspiration from work with 2D templates [9].
These match salient keypoints from the template’s texturemap and
the video frame using e.g. SURF [3]. The main advantages are that
they do not require an initial solution and are reasonably fast to
compute. However they only provide sparse constraints for part (b)
and do not work well for weakly textured objects, objects with re-
peating texture or blurred video frames. By contrast, direct motion
constraints work by directly measuring the photometric agreement
between the video frame and the deformed template. However be-
cause they are highly nonconvex constraints they are not that easy
to work with. In [7, 11] they were linearised and the problem was
solved with gradient-based optimisation. We refer to this strategy as
Direct Linearised Optimisation (DLO). For each frame DLO solves

∗This work has received funding from the EU FP7 ERC research grant
307483 FLEXABLE.

the problem by alternation between parts (a) and (b) until a conver-
gence criterion is reached. This requires an initial solution for each
frame, which was done in [7, 11] by tracking the template frame-to-
frame. Results were demonstrated on short videos with simple, flat
surfaces with well-defined borders, and slow, smooth deformation,
but were not close to realtime.

The future of SfT probably lies with direct constraints since they
provide far denser motion constraints than features. But is DLO the
best strategy for achieving robust realtime results? DLO has strong
similarities with solving optic flow using gradient-based optimisa-
tion, and shares its well-known problems. Firstly it has a limited
convergence basin and can become trapped in a local minimum.
A coarse-to-fine blurred image pyramid is usually used to try to
increase the basin, however this leads to other problems, because
it tends to lose motion information at small image structures and at
high frequency textures, and works poorly for low-contrast textures.
The second problem is knowing where to apply the constraints. Ide-
ally they should only apply at points which are visible, however this
is difficult to enforce, particularly with strong occlusions and a poor
initial solution. The third problem is speed. For each frame, DLO
requires alternation between parts (a) and (b), which would be ex-
pensive for complex objects with large deformation spaces.

We propose a different approach to direct constraints in SfT that
does not have the main disadvantages of DLO. We call this DRBM.
DRBM is inspired by block-matching based optic flow and patch-
matching [1], and does not involve image linearisation. DRBM
solves part (a) by rendering an initial estimate of the template’s
shape and then independently matching a dense set of small win-
dows in the render image with the video frame. A window’s match
is found by a quasi-exhaustive search over 2D displacements for the
one yielding the best photometric agreement. This process is highly
parallelisable and runs in realtime on modern GPUs. Once finished,
outlier matches are filtered using two important criteria: Left-Right
Consistency (LRC) and photometric agreement. These filters are
powerful and normally remove most incorrect matches. The re-
maining matches are then used as correspondence constraints for
solving part (b). There are four main reasons why DRBM is advan-
tageous over DLO. Firstly, DRBM registers points on the template
to the video frame, whereas DLO only achieves registration if it cor-
rectly converges, which is not guaranteed since it is a local optimi-
sation. Secondly, after running DRBM we can solve part (b) with-
out needing to iteratively recompute motion constraints, and this
makes our system fast. Thirdly, DRBM does not need a smoothing
pyramid so it handles small image structures and high frequency
texture without problems. Fourthly DRBM handles occlusions nat-
urally, because occluded windows in the render image do not tend
to have matches that pass both filters.

After running DRBM we solve part (b) using a sub-sampled con-
trol mesh of up to several thousand vertices. Once done the full
resolution mesh can be interpolated quickly using e.g. linear blend
skinning, which is highly parallelisable. Skinning has not been ap-
plied before in SfT, yet is important to facilitate realtime speeds for
detailed templates. Our system boils down to solving one sparse
linear least squares problem for each frame, with 3N unknowns
(three for each of the N control mesh vertices). However solving
this in realtime is still nontrivial. We have found factorisation-based
solvers are too expensive for more than a few hundred vertices, and

Deforming
object

Deformed object from
a new viewpoint

GeometryTexture

Application: Interactive image augmentation
with a virtual 3D deformable model

Update v0 and and
grab next frame

Coarse-scale DRBM

Control mesh and initial
3D vertex positions

from previous frame

Compute coarse
estimate with

rigid motion

Compute fine estimate

Form sparse linear
system by linearising
correspondence M-

estimator

Solve with
GMG iterations

1 2 4

Current frame

Grid of points in render image are independently
matched to current frame, then most outliers are
removed with LRC and photometric consistency

Render of

Render image points
are backprojected and
parameterized in 3D by
barycentric coordinates Fine-scale DRBM using render of

3

Thin shell
bending prior

Isometry prior

5

Rugby ball template

Reconstructed
depthmap

Live webcamWebcam image

Robust high-density
correspondence constraints

Top row: snapshots of a deforming juice bottle. Bottom row: recovered 3D shape at each frame (shown from a new viewpoint)

Top row: snapshots of a deforming rugby ball. Bottom row: recovered 3D shape (shown from camera’s viewpoint via a shading render)

Virtual
milk bottle

3D position and deformation of the juice bottle is mapped to the milk bottle, which is then rendered and blended with a 2D scene in realtime

Figure 1: Summary of proposed system for solving SfT in realtime (top part), and snapshots of results with two different deformable objects
(bottom part). In the last row we show an example AR application using our system.

without expensive preconditioning Conjugate Gradient (CG)-based
solvers require too many iterations. One possible direction is to re-
duce the problem’s dimensionality using linear bases from the stiff-
ness matrix [8]. However to handle complex deformation such as
surface creasing we have found many bases are needed (e.g. 200 or
more), and the resulting dense linear system becomes too expensive
to solve. Our answer is to solve with a GMG. GMG has not been
applied to SfT before, yet it is probably the most suitable method
to efficiently resolve complex deformations. GMG is iterative, but
has the distinct advantage over CG in that the number of iterations
required for convergence is constant in N [15].

The only existing realtime SfT systems are feature-based meth-
ods [6, 8], however these require simple, smooth templates, such as
flat sheets of paper that are densely textured, which deform in sim-
ple, smooth ways, and they suffer from the problems with feature-
based constraints as discussed above. By contrast, our system uses
high-density direct constraints and can handle many of the real-
world challenges of SfT. These include (i) non-smooth fully-3D
template meshes, (ii) partial views, caused by external occlusions,
self-occlusions or when the object moves beyond the field-of-view,
(iii) strong lighting changes, (iv) cluttered scenes, (v) rapid camera
and/or object motion, (vi) optical and/or motion blur, (vii) repeat-
ing texture, (viii) complex, high frequency deformations and (ix)
high-frequency textures. No previous SfT method can handle all the
above (realtime or otherwise). We also present examples of track-
ing completely round the back of deforming objects, which has not
been seen before in SfT. We refer the reader to the additional videos
which shows this, and the above challenges being handled.

2 METHODOLOGY

2.1 Overview

We solve SfT with a frame-to-frame tracking process outlined in
Fig. 1 (top section). We model the object’s surface with a triangu-

lated control mesh M with triangles F
def
= {f1, f2, . . . fF} and ver-

tices V
def
= {v1,v2, . . .vN}. We use Vrest to denote the known vertex

positions of the control mesh in a rest pose. We assume the object
does not tear as it deforms (i.e. its topology is preserved). There-
fore F is fixed and only V varies. We use M (V) to denote the
deformed control mesh with its vertices set to V . We use V0 to de-
note the initial estimate of V in 3D camera coordinates for a given
frame. We initialise V0 at the start of the video by rigidly trans-
forming Vrest to a canonical pose in front of the camera. We then
render M (V0) with OpenGL and overlay the render with the live
video. The user moves the object to roughly align it with the render,
and once done notifies the system and tracking begins.

We handle rapid motion using a two-stage coarse-to-fine strat-
egy. The coarse estimate V1 resolves fast changes of the object’s
rigid pose, which occurs frequently for objects held in the hand,
or when the camera is hand-operated. This is computed by run-
ning DRBM at a coarse scale with a render of M (V0) then rigidly
transforming V0 to agree with matches from DRBM. The fine es-
timate V2 is computed by running DRBM at a fine scale with a
render of M (V1). This produces denser matches which we use to
resolve precise deformation. One cannot compute V2 using only
the matches because computing 3D deformation from 2D motion

is very ill-posed. We handle this by introducing deformation priors
which favour smooth solutions that do not stretch or shrink the sur-
face much. We combine all the constraints into an energy function
that is solved with a GMG method. The next frame is then acquired,
we make the update V0← V2 and the process is repeated.

2.2 Deformable Render-based Block Matching
Rendering. In DRBM we render two types of images. The

first is a greyscale image of the object, which is a texturemapped
render from the camera’s viewpoint, illuminated with ambient light
and of size W ×H where W and H denote the width and height of
the video frame. The alpha channel of the render image stores the
render mask, which holds a value of 1 if the pixel is on the template
and 0 otherwise (we refer to these as foreground and background
pixels respectively). The second image is a barycentric coordinate
image, which is of size W ×H×3. This stores, for each foreground
pixel, scalars (j ∈ [1,F],b1,b2). The scalar j is the face in F that
intersects the perspective optical ray passing through the pixel. The
scalars b1,b2 give the barycentric coordinates of the intersection
point with 0 ≤ b{1,2} ≤ 1 and b1 + b2 ≤ 1. The pixel’s 3D posi-
tion q ∈ R3 is then given in terms of the three vertices of f j by
q = b1vf j(1)+b2vf j(2)+(1−b1−b2)vf j(3). We use this to build a
correspondence constraint for pixels that are matched by DRBM.

Matching. DRBM works by quantising the render image into
a grid of small square windows of width w that are placed g pixels
apart, then searching for the discrete 2D displacement ∆x∈ [−d,d],
∆y ∈ [−d,d] that transforms the window to the video frame with
the highest photometric similarity. We find the displacement with
exhaustive search, which is extremely parallelisable on the GPU,
with methods to prune the search space. Various similarity met-
rics can be used and we have found Normalised Sum of Absolute
Differences (NSAD) works well. To correctly handle the boundary
of the render, for each window we compute the NSAD error only
with foreground pixels, which makes it invariant to background im-
age structures. To increase speed we eliminate windows that have a
very low intensity standard deviation, because they do not generally
produce reliable correspondences. We use a conservative threshold
of 5. We use two weak image invariants to prune the search space.
Because all windows in the render have some image structure, the
true displacement should be one which also has some image struc-
ture. Therefore we prune all displacements whose windows in the
video frame have an intensity standard deviation lower than 5. The
second invariant uses the fact that a correctly matched windows
should have similar central moments.

Processing outliers. Matches from DRBM will contain out-
liers, and we detect the majority of these with two simple but pow-
erful filters. Any remaining outliers are handled effectively using a
robust correspondence cost function in part (b). First we perform
Left-Right Consistency (LRC), which is a well-known tool in block
matching that can eliminate many outliers (we use a LRC threshold
of w/8 pixels). From the remaining matches we use the x84 re-
jection rule to eliminate matches with high NSAD compared to the
population median. This is fast to compute and works well because
the threshold automatically adapts to the imaging conditions. For
example, if there is motion blur, the NSAD of correct matches in-
creases, and x84 reduces the outlier rejection threshold accordingly.

Coarse and fine levels. As discussed above, we compute
DRBM matches at coarse and fine levels. The purpose of the coarse
level is to determine rapid changes of the object’s rigid pose. This
means we require fewer matches than the fine stage because we are
resolving only 6 degrees of freedom. However we need to han-
dle larger differences between the render image and video frame.
We handle rapid within-plane translation using a larger d. Rapid
depth and out-of-plane rotations (i.e. tilts) are not too problematic
for block matching, and handled using a smaller w. We handle

rapid within-plane rotation by matching the render image to some
rotated versions of the video frame. Of these, the displacement
with lowest NSAD is taken as the match. We use three rotations:
+30◦, 0◦ and −30◦. In the fine stage, since large rotations have
been accounted for by the coarse stage, we match only to the (unro-
tated) video frame. The default parameters for the coarse and fine
stages are image resolution (W , H): ((160,120),(320,240)) pixels,
window size (w): (13,9) pixels, grid spacing (g): (6,3) pixels and
maximal search range (d): (50,25) pixels respectively.

2.3 DRBM Correspondence Constraints and Solving V1

Correspondence constraints. Suppose that we have a
DRBM match whose window is centred at u ∈ R2 in the render
image and has a displacement ∆u ∈ [−d,d]2. If the barycentric im-
age at u is (m,b1,b2), then we have a correspondence constraint
for the the mth face. This can be expressed with a linear equa-

tion: f (V)
def
= [qx(V),qy(V)]> − qz(V)ũ = 0, where ũ denotes

the 2D position of u+∆u in normalised pixel coordinates. Because
matches are noisy and may still contain outliers, we constrain V
using f with a robust energy term:

EDRBM (V)
def
=

1
C

C

∑
c=1

ρ (f (V)) , ρ(x) def
=
√
‖x‖2 + ε2 (1)

where C denotes the number of matches, ρ is the pseudo L1 M-
estimator and ε is a small constant (we use ε = 10−2).

Solving V1. Recall that the transform from V0 to V1 is the rigid
transform M which accounts for global motion of the object from
the previous to the current frame. We solve this using the coarse-
level matches with arg min

M∈SE3
EDRBM (M(V0)), where M(V0) rigidly

transforms V0 by M. This is solved quickly with a few Gauss-
Newton iterations (we use at most 5 iterations).

2.4 Solving V2 with Deformation Priors and GMG
We solve V2 by combining DRBM constraints with two deforma-
tion priors: isometry and thin-shell bending. This is done by min-
imising the following energy:

E(V2)
def
= EDRBM (V2)+λisoEiso (V2)+λshellEshell (V2) (2)

where Eiso ∈ R+ and Eshell ∈ R+ are energies from the isometric
and thin-shell bending energy priors, and EDRBM is built using the
fine-level correspondences. The scalars λiso and λshell are weight
terms that govern the relative influence of the priors.

Deformation priors. The isometric energy we use encourages
each of the mesh triangles to transform quasi-rigidly. This is based
on [12], however unlike [12] we apply the constraint on a per-face
basis, rather than for each vertex 1-ring neighbourhood. The benefit
is to decouple isometric energy from bending energy (for example
many surfaces can bend considerably more than they can stretch,
and we want to model this). It also makes updating local rotations
far faster (see below), since we do not need the Singular Value De-
composition. The isometric energy is defined as follows:

EISO(V)
def
= ∑

F
j=1 w jE ′ISO (f j(1), f j(2), f j(3))

E ′ISO (a,b,c)

def

= min
R∈SO3 ,t∈R3

∥∥∥∥[R t
][vrest

a vrest
b vrest

c
1>

]
− [va vb vc]

∥∥∥∥2

2

(3)

The term w j ∈R+ is a per-triangle weight, which is set to the trian-
gle’s area. The terms R and t give the least-squares rigid transform
that maps the triangle from the rest pose to 3D camera coordinates
according to its three vertices. This is a non-convex energy because
of the condition R∈ SO3. We turn it into a convex quadratic energy
using the first-order approximation of R: R ≈ (I3 + skew(r))R0,
where R0 is an approximation of R, r ∈ R3 is a rotation vector and
skew(r) computes a 3× 3 skew-symmetric matrix from r. We set
R0 using the best-fitting rotation that maps the triangle from the

rest pose to V1. Because a triangle’s vertices are coplanar, this
can be computed analytically. The approximation of R is good
for small changes in rotation up to ≈ 30 degrees, which is hardly
ever exceeded in practice. We substitute R← (I3 + skew(r))R0
in Eq.(3), which makes the minimisation problem in Eq. (3) linear
least squares in r and t. It is straightforward to show that r and t
can be eliminated to make EISO convex and quadratic in V .

The thin-shell bending energy penalises high changes in the tem-
plate’s curvature. We base this on the discrete form in [13]. This
works by taking the four vertices from every pair of neighbour-
ing triangles and measuring the degree that their motion deviates
from affine motion. This is attractive because it is a quadratic con-
vex constraint. However [13] requires adding a virtual vertex to
each triangle, which increases the number of unknowns by 3F . We
have modified this to eliminate requiring additional vertices, which
makes Eshell convex and quadratic in V .

Solution. We linearise ρ about V1 which makes all terms in
Eq. (2) convex and quadratic in the unknowns. We solve this glob-
ally using the associated normal equations, which is a sparse linear
system, with a two-level GMG [15]. To do this we requires a re-
striction matrix G that transfers a vector field on V to a vector field
on a lower-dimensional approximation of V . We also require an in-
terpolation matrix H that transfers vectors from the approximation
back to V . We make the restriction matrix using the main modes
of variation of V induced by the thin-shell bending matrix B. This
gives G as the k eigenvectors of B with the k smallest eigenvalues.
The interpolation matrix H is then given by G>. The best choice
of k depends on how smooth we expect the object’s deformations
to be. For objects that can strongly crease we have found k = 150
to be a good choice, whereas for objects that only deform smoothly
k can be reduced. We solve the system’s smooth level using a fast
factorisation-based solver (Eigen’s LDLT solver), and solve its fine
level with a small number of Gauss-Seidel iterations (we use 5). We
terminate GMG after 3 v-cycles.

3 RESULTS AND REALTIME AR
3.1 Implementation
Our system is implemented in multithreaded C++, OpenGL and
CUDA. 3D templates are stored as standard Wavefront .obj files.
Currently we only use the GPU for rendering, DRBM and linear
blend skinning. We use the Eigen libraries for sparse and dense lin-
ear algebra on the CPU and OpenCV for video acquisition, camera
calibration, user interaction, and 2D visualisation.

3.2 Video Snapshots, Timing and Applications to AR
In the supplementary video we show results on four different
deformable objects being successfully tracked over thousands of
frames. We used the same weights for all objects (λiso = 0.60 and
λshell = 0.30). We show results with complex deformations and the
ability of our method to handle the seven main challenges listed in
section 1. Here we show some representative snapshots for two of
the objects (Fig. 1). The first is a juice bottle made of plastic and
liquid packaging board (320 mm tall). The control mesh was built
from a CAD model (N = 868, F = 1732) that we texturemapped
with Agisoft’s Photoscan. This object is challenging because it
can crease significantly as it deforms, which makes its deformation
space very high dimensional and non-smooth. It also has little tex-
ture on its sides and repeated texture on its back. The second object
is a rugby ball made of rubber. The control mesh was built using a
David Scanner structured light system, with N = 1502, F = 3000.
This object is challenging because its texture is symmetric and it
has regions of little texture, and it certainly cannot be tackled with
a feature-based method. For each object we show five video frames,
and below each frame we show the recovered object’s shape from
our method. Timing information is given in Fig. 1 (top right). This

is broken down into the four main processes and timed on a stan-
dard x64 desktop PC running Windows 7 with an Intel i7 3820 pro-
cessor (4 cores), an NVidia GTX 780 graphics card and a Logitech
Pro 9000 webcam. We also quantitatively evaluated the accuracy
of our method using the bending paper dataset [14]. This is not an
ideal dataset because measurements come from the Kinect sensor,
which is accurate to within a few mm depending on the distance.
We computed a mean depth error of 3.41mm over the sequence.
This is similar to the most accurate method on that dataset [4] (see
the comparison in [5]), however [4] is a non-realtime feature-based
method that works for smooth flat surfaces.

We finish by applying our system to AR. The application is in-
teractive augmentation of a 2D image with a virtual 3D deformable
model, by physically manipulating a real object. This is desirable
because it allows a user to augment the image without any expertise
in computer graphics or CAD. The setup is shown in Fig. 1 (bottom
row), where we use the physical juice bottle as a proxy for deform-
ing a virtual plastic 3D milk bottle. This works by transferring in
realtime the recovered 3D motion of the juice bottle’s vertices to the
milk bottle vertices, in a manner based on [13]. Fig. 1 shows the
juice and milk bottles before and after the juice bottle was phys-
ically manipulated. Note that this is the first time this has been
achieved with a monocular camera and fully-3D models.

4 CONCLUSION AND EXPERIMENTAL PLATFORM

We have presented a robust and carefully-designed framework for
solving realtime SfT. We will release our source code to the com-
munity. This will provide computer vision and AR researchers with
a fast working platform to test new ideas, solutions and applica-
tions. Our code is modular and allows different constraints to be
easily swapped in or added to the energy function. There are several
open challenges that remain. These include automatically relocal-
ising the object when tracking is lost, handling untextured objects
and handling objects that stretch significantly.

REFERENCES

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patch-
match: A randomized correspondence algorithm for structural image
editing. ACM Trans. Graph., 2009.

[2] A. Bartoli, Y. Gerard, F. Chadebecq, T. Collins, and D. Pizarro. Shape-
from-Template. PAMI, 2015.

[3] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up robust
features. In ECCV, 2006.

[4] F. Brunet, A. Bartoli, and R. I. Hartley. Monocular template-based 3D
surface reconstruction: Convex inextensible and nonconvex isometric
methods. CVIU, 2014.

[5] A. Chhatkuli, D. Pizarro, and A. Bartoli. Stable template-based iso-
metric 3D reconstruction by linear least-squares. In CVPR, 2014.

[6] I. Leizea, H. Álvarez, and D. Borro. Real time non-rigid 3D surface
tracking using particle filter. CVIU, 2015.

[7] A. Malti, A. Bartoli, and T. Collins. A pixel-based approach to
template-based monocular 3D reconstruction of deformable surfaces.
In 4DMod-ICCV, 2011.

[8] J. Östlund, A. Varol, D. T. Ngo, and P. Fua. Laplacian meshes for
monocular 3D shape recovery. In ECCV, 2012.

[9] J. Pilet, V. Lepetit, and P. Fua. Fast non-rigid surface detection, regis-
tration and realistic augmentation. IJCV, 2008.

[10] M. Salzmann and P. Fua. Linear local models for monocular recon-
struction of deformable surfaces. PAMI, 2011.

[11] M. Salzmann, R. Urtasun, and P. Fua. Local deformation models for
monocular 3D shape recovery. In CVPR, 2008.

[12] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In
Eurographics Symposium on Geometry Processing, 2007.

[13] R. W. Sumner and J. Popović. Deformation transfer for triangle
meshes. ACM Trans. Graph., 2004.

[14] A. Varol, M. Salzmann, P. Fua, and R. Urtasun. A constrained latent
variable model. In CVPR, 2012.

[15] P. Wesseling. An introduction to multigrid methods. Wiley, 1992.

