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Abstract. Automatically segmenting organs in monocular laparoscopic
images is an important and challenging research objective in computer-
assisted intervention. For the uterus this is difficult because of high inter-
patient variability in tissue appearance and low-contrast boundaries with
the surrounding peritoneum. We present a new framework to accurately
segment the uterus which is completely automatic, requires only a single
monocular image, and does not require patient-specific prior knowledge
such as a 3D model. Our main idea is to use a patient-independent uterus
detector to roughly localize the organ, which is then used as a supervi-
sor to train a patient-specific organ segmenter. The segmenter uses a
physically-motivated organ boundary model designed specifically for il-
lumination in laparoscopy, which is fast to compute and gives strong
segmentation constraints. Our segmenter uses a lightweight CRF that
is solved globally with a single graphcut. On a dataset of 228 patients
our method obtains an average DICE score of 92.5%, and takes approxi-
mately one second per image on a standard desktop PC, without a GPU
or much code optimisation.

1 Introduction and Background

The problem of segmenting organs in monocular laparoscopic images without
any manual input is important yet unsolved for computer assisted laparoscopic
surgery. This is challenging due to multiple factors including inter and intra-
patient tissue appearance variability, low-contrast and /or ambiguous organ bound-
aries, texture inhomogeneity, bleeding, motion blur, partial views, surgical inter-
vention and lens smears. In previous works a manual operator has been needed
to identify the organ in one or more training images [3,9]. From these images,
models of patient-specific tissue appearance can be learned and used to seg-
ment the organ in other images. We present the first methodology to accurately
segment an organ in laparosurgery without any manual input. Our solution is
simple, fast and does not require separate training images, since training and
segmentation is performed on the same image. We also do not require patient-
specific prior knowledge such as a pre-operative 3D model. To use these mod-
els requires registration [9], where the model must be aligned to the image to
give the segmentation (i.e. segmentation-by-registration). This shifts the prob-
lem burden to registration, which itself is hard to do automatically and reliably
for soft organs and monocular laparoscopes [8]. Our approach uses recent work
in patient-generic organ detection in laparoscopic images [11]. It was shown that



the uterus can be reliably detected in an image without patient specific knowl-
edge using a state-of-the-art 2D Deformable Part Model (DPM) detector [?,13]
trained on a uterus image database. The problem of segmentation however was
not considered, which is a fundamentally different problem.

For a given image our goal is to compute the binary label matrix £(x) € {0,1}
where £(x) = 1 means pixel x is on the organ and £(x) = 0 means it is not. We
refer to these as the foreground and background labels respectively. We propose
an energy minimisation-based approach to solve £ that incorporates information
from the DPM detector to define the energy function. The function is a submod-
ular discrete Conditional Random Field (CRF) that is globally optimised with
a single graphcut. Much inspiration has come from graphcut-based interactive
image segmentation methods [2, 12, 10] where manual strokes or bounding boxes
are used to guide the segmentation. Instead of user interaction, we do this using
information from the DPM detector, which in contrast to user interaction infor-
mation is inherently uncertain. A second major difference is that most graphcut-
based methods use the contrast-sensitive Ising prior from [2], which encourages
segmentation boundaries at strong intensity step-edges (i.e. points with strong
first-order intensity derivatives). However step-edges do not accurately model
the projection of an organ’s boundary in laparoscopic images. We show that far
better segmentations are obtained using a physically-motivated trough-sensitive
Ising prior, which is computed from the response of a positive Laplacian of
Gaussian (LoG™) filter (i.e. a LoG filter with negative responses truncated to
zero). This encourages segmentation boundaries at points with strongly positive
second-order intensity derivatives.

2 Methodology

Segmentation pipeline. The main components of our method are illustrated in
Fig. 1, which processes an image in five stages. In stage 1 we detect the presence
of the organ with the DPM uterus detector from [11]. We take the detector’s
highest-confidence detection and if it exceeds the detector’s threshold we assume
the organ is visible and proceed with segmentation. The highest-confidence de-
tection has an associated bounding box B, which gives a rough localisation of
the organ. In stage 2 we use B to train rough appearance models for the organ
and background, which are used in the CRF as colour-based segmentation cues.
Similarly to grabcut we use Gaussian Mixture Models (GMMs) with parameters
denoted by 8¢, and 0, respectively. However unlike grabcut, we do not itera-
tively recompute the GMM parameters and the segmentation. This is because
with our organ boundary model, the first segmentation is usually very accu-
rate even if the appearance parameters are not. This has the clear advantage of
reduced computation speed since we only perform one graphcut.

In stage 3 we use the detection’s bounding box to extract a Region Of Interest
(ROI) R around the organ, and all pixels outside R are labelled background.
This reduces computation time because pixels outside R are not included in the
CRF. One cannot naively set R as the detection’s bounding box because there



is no guarantee that it will encompass the whole organ, as seen in Fig. 2, bottom
row. We then normalise R to have a default width of 200 pixels, which gives
sufficiently high resoluiton to accurately segment the uterus. The normalisation
step is important because it means the CRF energy is independent of the organ’s
scale. Therefore we do not need to adapt any parameters depending on the
organ’s physical size, distance to the camera or camera focal length. In stage 4 we
construct the CRF which includes information from three important sources. The
first is colour information from the foreground and background colour models.
The second is edge information from the response of a LoG™ filter applied to R.
The third are spatial priors that give energy to pixels depending on where they
are in R. All of the CRF energy terms are submodular which means it can be
solved globally and quickly using the maxflow algorithm. In practice this takes
between 20-50ms with a standard desktop CPU implementation.

Physically-motivated organ
boundary constraints
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Fig. 1. Proposed framework for segmenting the uterus in a monocular laparoscopic
image without manual input. The top row shows the five processing stages and the
bottom row shows example uterus detections using the DPM detector [11, 6].

The CRF energy function. The CRF is defined over the ROI R, which is com-
puted by enlarging the bounding box to encompass all likely foreground pixels.
This is done by scaling the bounding box about its centre x; by a factor of
2%. We set this very conservatively to x = 60%, which means all foreground
pixels will be within R when the bounding box of the detection overlaps the
ground truth bounding box by at least =~ 40%. In practice we do not normally
obtain detections with less than approximately 50% overlap with the ground
truth bounding box, because the corresponding detection score would normally
be too low to trigger a detection. The CRF energy function E is conditioned
on the image content in R and the detection’s bounding box B. This has the
following form:
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The first term E,,, denotes the appearance energy, which is a standard unary
term that encourages pixel labels to agree with the foreground and background
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GMM models [12]. The term Ej , (x;0) denotes the negative density of a GMM
parameterised by ¢. The terms Feqq and Espqtiqr denote the edge and spatial
energies, which are unary and pairwise clique energies respectively. The terms

Aedge and Agparial are weights that govern the relative influence of the energies.

A physically-motivated edge energy model based on the LoG™ filter. The pur-
pose of the edge energy is to encourage a smooth segmentation whose boundary
is attracted to probable organ boundaries. In nearly all graphcut-based optical
image segmentation methods, this is based on the step-edge model, which says
that a transition between labels should occur at regions with high first-order
intensity derivatives [2]. However this model does not match well with the phys-
ical image formation process in laparoscopic images. This is a combination of
the fact that the scene is illuminated by a proximal light source centred close to
the camera’s optical center, and that because organs are smooth, discontinuities
in surface orientation are rare. To see this, consider a point p on the organ’s
boundary with a normal vector n in camera coordinates. By definition n must
be orthogonal to the viewing ray, which implies n is approximately orthogonal
to the light source vector, so p necessarily reflects a very small fraction of direct
illumination. Consider now the image intensity profile as we transition from the
organ to a background structure (Fig. 2(h)). We observe a smooth intensity fall-
off as the boundary is reached, and then a discontinuous jump as we transition
to the background. Due to imperfect optics we measure a smooth version of this
profile, which is characterised by a smooth intensity trough at a boundary point.
Likely organ boundaries are therefore those image points with strongly positive
second-order intensity derivatives, and this can be computed stably with the
LoG™ filter. One issue is that edge filters such as LoG™ are also sensitive to
superficial texture variation of the organ. An effective way to deal with this is
to apply the filter on the red channel only, because red light diffuses deeper into
tissue than blue and green light [4]. Fig. 2 illustrates the effectiveness of the
LoG™ filter for revealing the uterus boundaries, which we compare to the Sobel
step-edge filter (manual segmentations are overlaid in red).

We define E.q4¢ in a similar manner to [2] but replace the intensity difference
term by the LoG™ response at the midpoint of two neighbouring pixels x and y:
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where N denotes the set of pixel neighbour pairs. The term wyy € R assigns
energy when the labels of x and y are different that decreases as the LoG™
response at their midpoint increases. The function d gives the Euclidean distance
between x and y, which reduces the influence of neighbours that are further away.
Inspired by [2] we set o automatically as the standard deviation of LoG™ across
all pixels in R. The LoG™ has a free parameter oy that pre-smoothes the image
to mitigate noise. We have found that results are not highly sensitive to o, and
in all experiments we use oy = 3 pixels with a filter window of 7 pixels.
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Fig. 2. Laparoscopic images of two uteri with different edge filter response maps. Sobel
step edge responses are shown in (b,f) and LoG™ responses are shown in (c,g). The
LoG™ geodesic distance transform D for (a) is shown in (d), with the detection’s
bounding box and central ellipse S overlaid. An illustration of the edge intensity profile
across an organ boundary edge is shown in (h).

Hard labels and spatial energy. We assign hard labels to pixels in the image that
we are virtually certain of either being on the organ or on the background. The
job of this is to prevent complete over or under-segmentation in instances when
the organ’s appearance is very similar to the background. We assign pixels within
a small region around the bounding box center x; the foreground label, which is
valid because the main body of the uterus is always highly convex. Specifically we
define a small elliptical region S by x € S & s?(x—x3) " diag(1/w, 1/h)(x—x;) <
1, and assign all pixels in S the foreground label. This is an ellipse with the same
aspect ratio as the bounding box, where w and h are the width and height of the
bounding box. The scale of § is given by s, which is not a sensitive parameter
and in all experiments we use s = 0.2. To prevent complete over-segmentation
we assign pixels very far from the bonding box the background label. We do this
by padding R by a small amount by replication (we use 20 pixels), and assign
the perimeter of the padded image the background label.

The spatial energy encodes the fact that pixels near the detection’s center
are more likely to be on the organ. We measure distances to the detection’s
center in terms of geodesics D(x) : R — R* using the LoG™ filter response as a
local metric. This is fast to compute and more informative than the Euclidean
distance because it takes into account probable organ boundaries in the image.
We compute D(x) by measuring the distance of x to S using the fast marching
method. We give a visualisation of D for the image in Fig. 2 (a) in Fig. 2 (d),
with the central ellipse overlaid in red. Dark blue indicates lower distances, and
the darkest shade corresponds to a distance of zero. One can see that for most
pixels either on the uterus body, or connected to the uterus body by ligaments or
the Fallopian tubes, the distance is zero, because for these points there exists a
path in the image to S that does cross an organ boundary. We therefore propose
a very simple spatial energy function, which works by decreasing the energy of
a pixel x if it is labelled foreground and has D(x) = 0. We do this for all pixels



within the detection’s bounding box, and define the spatial energy as:

def 1 if L(x) =0andD(x) =0andx € B
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The effect of Fgpatiar is to encourage pixels within the bounding box to be la-
belled foreground if they can reach the detection’s center by a path that does
not cross poins that are likely to be organ boundaries. To improve the compu-
tation speed for Espqtiqr We compute D on a down-sampled version of R (by a
factor of two). On a standard desktop PC this means Fpqtq1 can be computed
in approximately 100 to 200ms, and there is no real impact on segmentation
accuracy.

3 Experimental Results

We have evaluated on a new dataset consisting of 228 uterus images of 82 dif-
ferent patients, which extends the 40-patient database from [11] (Fig. 3). The
images were gathered from patients at our hospital (12 patients) and demon-
stration and tuition images from the web (70 patients). 27.7% of the patients
had uteri with pathological shape, caused mostly by uterine fibroids. For each
image we computed the best-scoring detection from the uterus detector, us-
ing the accelerated code of [5]. A detection was considered a true positive if
the overlap between the detection’s bounding box and the manually-computed
bounding box exceeded 55% (which is a typical threshold in object detection
literature). In total 201 images had true positive detections. In the other 27
images false positives were caused nearly always by very high amounts of tool
occlusion. We then segmented all images with true positive detections. Because
our method is the first to achieve completely automatic organ segmentation in
laparoscopic images, there is not a direct baseline method to compare to. We
therefore adapted a number of competitive interactive and seed-based segmenta-
tion methods, by replacing manual inputs with the output of the uterus detector.
These were as follows. (i) Grabcut-I [12]: we replaced the user-provided bound-
ing box required in grabcut with the bounding box from the detection, and
replaced hard labels from the user with the same hard labels as described above.
(i) Non-iterative Grabcut (GrabCut-NI): This was the same as GrabCut-I but
terminating after one iteration (i.e. the appearance models and segmentation
were not iteratively refined). (i) Growcut [13]: we used GrowCut with S as the
foreground seed region and the perimeter of R as the background seed region.
(i) Edge-based Levelset Region growing (ELR) [7]: we used a well-known re-
gion growing method based on levelsets, passing it S as the initial seed region.
For Grabcut-I, GrabCut-NI, Growcut and our method, we test with RGB and
chromaticity (i.e. illumination-invariant) colourspaces. We found negligible dif-
ferences between different chromaticity spaces, so report results with just one
(CrCb). The free parameters of the baseline methods were tuned by hand to
maximise their performance on the dataset. The free parameters of our method
(Aedge and Aspatiar) Were tuned using a set of 20 images held out from the dataset,



which gave Aegge = 60 and Aspatiar = 4. The hold-out set did not include patients
from the main dataset. We did not use a hold-out set for tuning the baseline
method parameters, which meant we could could measure their best possible
performance on the dataset.

We present the DICE score boxplots and summary statistics in Fig. 4. The
methods labelled Proposed-NI (RGB) and Proposed-NI (CrCb) represent our
method using RGB and CrCb colourspaces respectively for the appearance
models. We also investigated whether our method could be improved by iter-
atively retraining the colour models and resegmenting, like GrabCut. We la-
bel this Proposed-I (RGB) and Proposed-I (CrCb). !'THINGS TO NOTE!
(a) colourspace makes no real difference for the methods. (b) Doing colour
model/segmentation iterations does not lead to improved accuracy. (¢) Our
mean and median is much higher than the rest. (d) our max is higher than
grabcut. This is because our edge model makes the segmentation well to the
contours. Fig. 3 show 12 representative images from the dataset, with our au-
tomatic segmentations overlaid in green. The images show typical difficulties
including pathalogical shape, surgical changes, partial occlusions, strong light
fall-off, low-contrast bondaries and oversaturation.

Fig. 3. Example images from the test dataset and segmentations from our method.
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Fig. 4. DICE performance statistics of our proposed method in four diferent configu-
rations against baseline methods.



4 Conclusion

We have presented a new method for segmenting the uterus in monocular la-
paroscopic images that requires no manual input and no patient-specific prior
knowledge. The method is based on using a patient-independent uterus detector
to supervise the training of an CRF-based patient-specific segmenter. There are
several possible directions for future work. Firsly we aim to properly integrate
tool segmentation such as [1] with our method. Secondly because our method
produces patient-specific appearance models, we can combine this information
with the patient-generic detector to make a patient-specific detector. We expect
this will reduce false positive detections in later frames. Finally, our segmenter
can also be used for performing 3D shape-from-silhouette, and if we combine
this with Sructure-from-Motion we are likely to obtain better invivo 3D recon-
structions than SfM alone.
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