
As-Rigid-As-Possible Volumetric Shape-from-Template

Shaifali Parashar1, Daniel Pizarro2,1, Adrien Bartoli1 and Toby Collins1
1ALCoV-ISIT, UMR 6284 CNRS / Université d’Auvergne, Clermont-Ferrand, France
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Figure 1: Volumetric SfT versus thin-shell SfT. Existing methods are thin-shell SfT. They use deformation constraints on the
object’s surface. For instance, [4] uses isometric constraints on the object’s visible (front) surface and reconstructs the object
partially, while [16] uses isometric constraints on the object’s whole closed outer surface and reconstructs it entirely. Volu-
metric SfT uses deformation constraints on the object’s surface and interior. This greatly improves reconstruction accuracy
and facilitates reconstruction of the object’s interior. In this example, the thin-shell SfT methods [4, 16] reach a 3D error of
20 mm and 13 mm respectively on the visible surface, while the proposed volumetric SfT method reaches a 3D error of 7
mm. It reconstructs the non-visible (back) surface, for which no visual data is available, with a 3D error of 17 mm.

Abstract

The objective of Shape-from-Template (SfT) is to infer
an object’s shape from a single image and a 3D object tem-
plate. Existing methods are called thin-shell SfT as they
represent the object by its outer surface. This may be an
open surface for thin objects such as a piece of paper or a
closed surface for thicker objects such as a ball. We pro-
pose volumetric SfT, which specifically handles objects of
the latter kind. Volumetric SfT uses the object’s full volume
to express the deformation constraints and reconstructs the
object’s surface and interior deformation. This is a chal-
lenging problem because for opaque objects, only a part of
the outer surface is visible in the image. Inspired by mesh-
editing techniques, we use an As-Rigid-As-Possible (ARAP)
deformation model that softly imposes local rigidity. We
formalise ARAP isometric SfT as a constrained variational
optimisation problem which we solve using iterative opti-
misation. We present strategies to find an initial solution
based on thin-shell SfT and volume propagation. Experi-
ments with synthetic and real data show that our method
has a typical maximum relative error of 5% in reconstruct-
ing the deformation of an entire object, including its back
and interior for which no visual data is available.

1. Introduction

Reconstructing 3D objects from images is an impor-
tant problem in Computer Vision. It is solved in the case
of rigid environments with rigid Structure-from-Motion
(SfM). However, rigid SfM fails for deformable objects
such as a piece of paper, cloth or the human body. Non-
rigid reconstruction is an important current challenge with
a wide spectrum of applications in medical imaging and
the entertainment industry to name a few. Non-rigid recon-
struction encompasses at least two different problems: Non-
Rigid Structure-from-Motion (NRSfM) [2, 9, 10], which
uses a set of images of a deforming object, and Shape-from-
Template (SfT) [21, 4, 16] which uses a single image and a
textured 3D template of the object which may be matched
to the image. The objective in SfT is to obtain the object’s
deformed shape in the camera’s coordinate frame using a
deformation constraint formulated from the object’s phys-
ical material. Existing SfT methods use deformation con-
straints on the object’s outer surface, whose thickness is
considered infinitesimal. We thus call them thin-shell SfT
methods. Thin-shell SfT is very well adapted to thin ob-
jects, such as a piece of paper or a balloon, whose outer
surfaces may be well approximated by an open or a closed
surface. However, while thin-shell SfT handles thicker ob-
jects such as the woggle of figure 1 or a foam ball, it does
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not fully exploit the strong constraints induced by the ob-
ject’s non-empty interior.

We bring SfT one step further by introducing volumet-
ric SfT, defined as an SfT method which uses a deforma-
tion constraint on the object’s outer surface and interior.
An example is shown in figure 1. Volumetric SfT recon-
structs the object’s interior deformation, which is not re-
constructed by thin-shell SfT, and reconstructs the object’s
outer surface more accurately than thin-shell SfT thanks
to the stronger deformation constraint it uses. Volumetric
SfT is challenging as only the front part of the object’s sur-
face is visible in the image: the object’s back surface and
interior have to be inferred with no direct visual observa-
tions. We propose to instantiate volumetric SfT using the
As-Rigid-As-Possible (ARAP) deformation model, which
has been used extremely successfully in Computer Graph-
ics [23, 27]. The ARAP model maximises local rigid-
ity while penalising stretching, sheering and compression.
More specifically, ARAP has been widely used to perform
mesh editing of animated characters [28, 29] because the
resulting deformations locally preserve the object’s struc-
ture.

Contrary to thin-shell SfT, volumetric SfT is largely un-
explored. The closest method to volumetric SfT is per-
haps [26], where SfT has been combined with silhouette-
based reconstruction. The template is first reconstructed
from a reference image using a silhouette-based method
inspired from [13]. This method reconstructs objects that
have a plane of symmetry parallel to the image plane and
does not infer concavities, which is also a limitation of
most silhouette-based methods [13, 14]. The template is
then deformed using a data term based on silhouette, area
and orthographic reprojection constraints. The deforma-
tion model extends thin-shell isometry by placing virtual
nodes in the object’s interior, with the objective of preserv-
ing the object’s volume. The method has a flip ambiguity
which cannot be resolved automatically, owing to the or-
thographic camera model. In contrast, we solve volumetric
SfT without restricting the topology of the object and us-
ing the perspective camera. By using ARAP, our method
preserves the object’s interior structure while jointly recon-
structing the deformation of the object’s full outer surface
and interior, as illustrated in figure 2. The scope of SfT is
to handle objects such as a piece of paper or cloth whose
shape is unpredictable and thus lives in a large space. This
is different from methods whose aim is to reconstruct an
object-class such as the set of faces, whose shape space can
be approximated well by a smaller dimensional statistical
model [8, 24, 25].

Technically, we bring two main contributions. First,
we show that, unlike thin-shell isometry, imposing volume
isometry exactly reduces to global rigidity. This motivates
the use of ARAP, which maximises rigidity locally, thus

3D template with a   
virtual cylinder inside

Reconstructed deformation of the cylinder 
for two deformations of the object

Figure 2: As opposed to thin-shell SfT, volumetric SfT re-
constructs the object’s interior deformation. In this example
using the data from figure 1, a virtual cylinder is placed in-
side the woggle’s template. It is then deformed using the
deformation reconstructed by volumetric SfT to aid visu-
alization of the object’s reconstructed interior deformation.
The second deformation is the one shown in figure 1.

preserving the object’s structure, while complying with the
reprojection constraints.

ARAP volumetric SfT involves solving a non-convex
constrained variational optimisation problem. We discretise
the object’s volume and relax the constraints to convert the
variational problem into an unconstrained non-linear least-
squares optimisation problem. This problem can then be
solved with standard numerical solvers such as Levenberg-
Marquardt. Second, we contribute with two heuristic ini-
tialisation methods. These methods use isometric thin-shell
SfT and propagate the result through the object’s volume.
Experimental results on synthetic and real data show that
volumetric SfT improves accuracy to a large extent com-
pared to state-of-the-art thin-shell SfT methods.

2. Previous Work
Almost all existing SfT methods are thin-shell SfT:

they use a thin-shell deformation model with physical con-
straints, such as isometry [21, 22, 4], conformity (angle pre-
serving) [4] and linear elasticity [15, 11]. Thin-shell isom-
etry and conformity are formulated with geometric, thick-
less surfaces. Thin-shell isometry has been the most stud-
ied model and leads to a well-posed and analytically solv-
able SfT problem [4]. Interestingly, linear elasticity as used
in [15, 11] follows the plate theory. It requires the surface
model to include thickness, which must however be ‘small’
so that out-of-plane object deformations may be neglected.
In continuum mechanics, this means that the thickness is
at least ten times smaller than the object’s largest dimen-
sion. These methods are thus thin-shell SfT. They require



one to provide the Young modulus of the object’s material
and, more importantly, boundary conditions expressed as a
set of known 3D point coordinates, which may restrict their
applicability. We propose volumetric SfT which, in con-
trast to thin-shell SfT, recovers the deformation of the ob-
ject’s outer surface and interior, does not restrict the object’s
shape to follow the plate theory, does not require knowing
the Young modulus and does not need boundary conditions.
A related goal was pursued in [26] where a silhouette-based
method was combined with SfT. However, as discussed in
the introduction in detail, this method requires stronger im-
age cues, including silhouette and point correspondences,
and recovers two-way ambiguous shape solutions. In con-
trast, volumetric SfT only requires point correspondences
and produces a unique solution.

3. Modelling
Notation. We use Greek letters for functions and bold let-
ters for vectors and matrices. Scalars are in regular italics.
We use calligraphic letters for sets, and |A| for the size of
set A. We use the operator Jϕ for the Jacobian of ϕ.
Geometric model. Figure 3 shows a general diagram
of volumetric SfT extending an existing thin-shell frame-
work [4, 7]. We denote the 3D template as the volume
VT ⊂ R3, the unknown deformed volume as VS ⊂ R3,
and their respective outer surfaces as ∂VT and ∂VS . We
denote as S ⊂ ∂VS the deformed object’s visible surface
part, i.e. the part which is directly observed in the input
image I ⊂ R2, and T ⊂ ∂VT the corresponding part in
the template surface. We use a 2D surface parameterisa-
tion space F , called the flattened template. This allows us
to represent the template’s outer surface ∂VT by a known
invertible embedding ∆ ∈ C2(F ,R3). In practice, F and
∆ may be computed from ∂VT by any flattening method;
we use conformal flattening [3]. Using F , the unknown
deformed surface S may be represented by an embedding
ϕ ∈ C2(F ,R3). The deformation between VT and VS is
the unknown mapping ψ ∈ C2(VT ,R3).

The task in volumetric SfT is not only to compute the
volume VS of the deformed object, but to find a full volume
deformation function ψ ∈ C2(VT ,R3), matching points be-
tween the object’s template and deformed states. This is a
challenging task, as most of VS is not directly observed in
the image: assuming the object is opaque, the only visual in-
formation comes from the outer surface’s visible part. The
surface embedding ϕ may of course be directly recovered
from the volume deformation ψ computed by volumetric
SfT as ϕ = ψ ◦ ∆. Depending on the formulation, thin-
shell SfT computes either the surface embedding ϕ [4] or a
3D surface deformation, which is a restriction of ψ to ∂VT
[16]. The full volume deformation ψ cannot be directly re-
covered in either case. Our initialisation strategy for vol-
umetric SfT involves inferring ψ from ϕ through two new
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Figure 3: General diagram of volumetric SfT. The visible
surface part is shown in blue.

solutions which we name volume interpolation.
Finally, we define as η ∈ C2(F ,R2) the registration

warp between F and the image. The warp η may be es-
timated automatically from point correspondences [19, 18].
Estimating the warp directly gives two pieces of informa-
tion. First, it identifies the subset G ⊂ F corresponding to
the surface’s visible part in the flattened template. Second,
it establishes the reprojection constraint on ϕ and ψ as:

η = Π ◦ ϕ = Π ◦ ψ ◦∆, (1)

where Π denotes perspective projection in coordinates nor-
malised with respect to the camera’s intrinsics Π(Q) =
1
Qz

(Qx Qy)> with Q = (QxQy Qz)
>.

Deformation model. Thin-shell isometry allows SfT to re-
solve the visible surface part uniquely [4] and to extrapo-
late the non-visible surface part [16]. Applied to an object’s
interior volume, isometry yields the following differential
constraint on the mapping ψ:

J>ψJψ = I3×3. (2)

According to the Mazur-Ulam theorem [20], equation (2)
constrains ψ to be a rigid transformation. So as to model
deformations, one must relax equation (2). One possibility
is the so-called ARAP heuristic [23], which means search-

ing for ψ such that
∥∥∥J>ψJψ − I3×3

∥∥∥2

p
is minimised over VT .

We propose to combine ARAP with the reprojection con-
straint to preserve the object’s local structure while driving
its deformation to comply with the image constraints.

4. Volumetric SfT
We present ARAP volumetric SfT, which finds the defor-

mation ψ that transforms the volume VT into the unknown
volume VS whose surface is partially observed in I.



4.1. Formulation and Non-Convex Solution

Problem formulation. Combining the reprojection con-
straint (1) with ARAP leads to the following variational
problem:

min
ψ
ρ

∫
VT

∥∥∥J>
ψJψ − I

∥∥∥2
p
dVT︸ ︷︷ ︸

ARAP penalty

+(1− ρ)
∫
G
‖η − Π ◦ ψ ◦∆‖22 dG︸ ︷︷ ︸

Reprojection

. (3)

The reprojection constraint is convex, but the ARAP penalty
is not. Problem (3) is thus difficult to solve, as it involves in-
tegrals and equality constraints. Local analytical solutions,
as the ones proposed in [4] for thin-shell SfT, are not ap-
plicable at non-visible points since they do not have a data
term. This is because the reprojection constraint applies on
the visible surface part S only, corresponding to the subset
G of the flattened template.
Discretisation and optimisation. We evenly discretise the
template volume VT with a set of 3D points PVT . We define
the deformation functional εd[ψ] :

εd[ψ] =
1

|PVT |
∑

P∈PVT

∥∥J>ψ (P)Jψ(P)− I3×3

∥∥2

p
. (4)

We write εr[ψ] over a regular discretisation PG of G:

εr[ψ] =
1

|PG |
∑
p∈PG

‖η(p)−Π(ψ(∆(p)))‖22. (5)

Finally, we optimise the following unconstrained non-linear
least-squares problem:

ψ = arg min
ψ
ρεd[ψ] + (1− ρ)εr[ψ] 0 < ρ < 1, (6)

where ρ is a weight that balances the ARAP penalty and the
reprojection constraint.

In order to find a numerical solution to problem (6),
we use a parametric representation of the solution ψ̃ ∈
C2(VT ×Rn,R3), where n is the dimension of the parame-
ter space. Let L ∈ Rn be the parameter vector and Q ∈ VT ,
we have ψ̃(Q,L) ∈ VS . We have multiple choices for ψ̃
such as the popular linear basis expansion representations
(the NURBS [17], the Thin-Plate Splines (TPS) [5], the B-
Spline [6], tetrahedron mesh displacements, etc.). We use
the TPS representation.

Problem (6) is then optimised using Levenberg-
Marquardt. Iterative methods can be highly accurate but be-
cause problem (6) is non-convex due to the ARAP penalty,
the iterations may converge to a non-global minimum.
Therefore, it is important to provide an initial solution close
to the global minimum.

4.2. Convex Initialisation

Our initialisation strategy finds an approximate solution
ψ0 to problem (3) in two main steps.

1) Isometric thin-shell SfT. We first compute the em-
bedding ϕ that represents the visible surface S. We approx-
imate the deformation from T to S by thin-shell isometry,
giving the following problem reformulation:

Find ϕ s.t.

{
J>ϕJϕ = J>∆J∆

η = Π ◦ ψ ◦∆
on G, (7)

where Jϕ is a 3 × 2 matrix. Problem (7) has an analytical
solution given in [4].

2) Volume interpolation. We use ϕ to infer ψ represent-
ing the full volume deformation. We propose two strategies.

i) Global Smoothness (GS). Our first strategy is based
on the assumption that the deformation of the volume is
smooth. We can, therefore, formulate the problem as find-
ing the smoothest volumetric deformation such that the de-
formation at the surface agrees with the solution from thin-
shell SfT. We write the discretised transport error:

εe[ψ] =
1

|PG |
∑
p∈PG

‖ϕ(p)− ψ(∆(p))‖22. (8)

Because ϕ was computed in step 1), this is a linear least-
squares cost in ψ. We then compute ψ0 as the solution of
the following system:

ψ0 = arg min
ψ
αεe[ψ] + (1− α)εs[ψ] 0 < α < 1, (9)

where εs =
∫∫
‖d

2ψ
dp2 ‖22dp is a smoothing term called the

bending energy and α is a weight balancing the transport
error and smoothness. As in the non-convex solution, we
use a TPS representation of ψ. The bending energy is then a
quadratic function of the TPS parameters [5], making prob-
lem (9) linear least-squares, thus convex and easily solv-
able. GS is a natural way of initialising ψ from ϕ, but as
smoothness is the only constraint it uses to propagate the
visible surface deformation, it may spoil the object’s inner
local structure by causing local shear, shrinking and exten-
sion. Our second volume interpolation method addresses
this issue.

ii) Local Rigidity (LR). This method is based on the idea
that from thin-shell SfT, we can compute a local rigid trans-
form at every point on the visible surface to propagate shape
through the object’s volume, in an ARAP manner. The key
idea is to initialise ψ on the surface’s visible part from ϕ,
and use local rigidity to iteratively ‘complete’ ψ. This is
implemented by iteratively drawing local rigid transforma-
tions to locally extrapolate the deformation. Concretely, we
first find correspondences to all points in PVT (which may
be seen as a discretisation of ψ) and then fit a continuous
parametric representation of ψ. We write the corresponding
point of P ∈ PVT as Q(P).

We first use Delaunay triangulation of the point set PVT
to define a tetrahedral mesh. A given tetrahedron has four



vertices, which we denote as Pn1 , Pn2 , Pn3 and Pn4 .
Drawing a local rigid transformation is achieved by se-

Planar  vertices of a 
tetrahedron (known)

Out-of-Plane  vertices of 
a tetrahedron (known)

Out-of-Plane  vertices of 
a tetrahedron (unknown)

Figure 4: Volume interpolation using Local Rigidity.

lecting a tetrahedron which has three vertices, say the first
three ones, lying in the ‘completed’ domain of ψ, for which
Qni = Q(Pni) exist for i = 1, . . . , 3. At the early itera-
tions, this means that these three vertices will have to be in
the surface’s visible part, and that Qni = ϕ(∆−1(Pni)),
i = 1, . . . , 3. From these three correspondences {Pni ↔
Qni}, i = 1, . . . , 3, we fit a rigid transform Ω in the least-
squares sense using [12]. Completing ψ by local rigidity is
then simply done by setting Q(Pn4

) = Ω(Pn4
). At each

iteration, we cycle through all tetrahedra with three vertices
lying in the completed domain of ψ. This obviously causes
the fourth vertex of many tetrahedra to receive multiple pre-
dictions, as several tetrahedra may share it as their single
unknown vertex. In order to approximate ARAP as best
possible, we keep the prediction for which Ω was fitted with
the lowest error. We stop the iterations when all points in
PVT have been given a correspondence.

We finally define the discretised transport error:

ε′e[ψ] =
1

|PVT |
∑

P∈PVT

‖Q(P)− ψ(P)‖22, (10)

and obtain ψ0 as the solution of the following optimisation
problem:

ψ0 = arg min
ψ
αε′e[ψ] + (1− α)εs[ψ] 0 < α < 1, (11)

where α is a weight balancing the transport error and
smoothness. Equation (11) is linear least-squares, thus con-
vex and easily solved.

5. Experimental Results
We report experiments with synthetic data and three sets

of real data with different geometries and materials: a wog-
gle, a sponge and an arm. The refinement solution (3) is
tested using the L1 and L2 norms, and is then called L1-
refinement and L2-refinement respectively. The two ini-
tialisation solutions are called GS-initialisation and LR-
initialisation. We also compare with two isometric thin-
shell SfT methods [4, 16], which were discussed as being
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Figure 5: Synthetic data experiments.The graphs on the left
show the 3D volume error and the ones on the right show
the error on the 3D visible surface.

representative of the state-of-the-art in the introduction. We
use a constant weight ρ = 0.005 in the refinement prob-
lem (6) (for both L1-refinement and L2-refinement) and a
constant weight α = 0.0001 in both equation (9) for GS-
initialisation and equation (11) for LR-initialisation. We
noticed that the algorithms were not very sensitive to these
values up to an order of magnitude.
Experiments with synthetic data.

We test our method for volumetric SfT in various condi-
tions of noise, deformation and correspondences. We simu-
late a box of dimension 20× 20× 10 cm3 and deform it by
bending each of its layers along a vertical rule with some
varying bending angle. The higher the bending angle, the
more important the box’s deformation. If the bending an-
gle is zero, the box is undeformed. We then create a virtual
image of the box by projecting it using a perspective cam-
era and add noise in pixels. The default bending angle is 10
degrees.

The results are shown in figure 5, and are averages over
multiple runs for each geometric configuration. The three
graphs on the left column of figure 5 show the 3D volume
error in mm, computed as the RMSE (Root Mean Square
Error) over a dense grid of points sampled over the ob-
ject’s outer surface and interior. The results on these graphs
thus only concern the proposed volumetric SfT methods.
We observe that the refinement methods all do significantly
better than all initialisation methods. LR-initialisation does
consistently and substantially better than GS-initialisation.
This is explained by the fact that LR-initialisation follows
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Figure 6: Results on the woggle. The green boxes show the best performing algorithm for each deformation level.
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the ARAP methodology for local propagation, while GS-
initialisation simply uses smoothness, which is a weaker
constraint. L2-refinement does generally better than L1-
refinement, except when the deformation increases beyond
a certain point. All methods degrade with the amount of
deformation and noise. Increasing the number of points im-
proves the refinement methods but slightly degrades the ini-
tialisation methods. The three graphs on the right column
of figure 5 show the visible surface error in mm, computed
as the RMSE over a dense grid of points sampled over the
object’s visible surface. The same observations which we
made for the refinement methods on the 3D volume error
can be made, and the general trends also apply to the two
tested thin-shell SfT methods. Importantly, we observe that
volumetric SfT does consistently and in several case sub-
stantially better than thin-shell SfT, even if the measured
error concerns only the visible surface part, which is theo-
retically handled well by both types of methods. This means
that the extra constraints used in volumetric SfT compared
to thin-shell SfT have a very positive influence on this part
of the reconstruction too.
Experiments with real data.

We evaluate the performance of the methods with three
real-world objects captured across a range of deformed
states.

Test data and ground truth acquisition. The three ob-
jects are a foam tube called a woggle (figure 6), a sponge
(figure 7) and a human arm (figure 8). We construct the 3D
template of each object using Photoscan, a dense rigid SfM
package [1]. To achieve this we photograph the objects in
a rigid pose from a number of different viewpoints in order
to capture the full 3D geometry (we use 47, 55 and 78 im-
ages for the three objects respectively). We apply a small
amount of manual post-processing to fill holes and make
the templates watertight. Then we physically apply forces
to the real objects to obtain a set of deformed shapes, which
we grouped into three levels: low, medium and high defor-
mation. For each level we compute the ground truth shape
by photographing again the deformed object from approxi-
mately 50 viewpoints and then running Photoscan. Because
Photoscan provides the reconstructed object and the pose
for each camera image, this provides us with the ground
truth shape of the object’s outer surface (including the back
surface) in camera coordinates.

Similarly to the vast majority of previous SfT methods,
ours takes as input point correspondences between the 3D
template and the input image. These can be computed au-
tomatically using for instance SIFT combined with outlier
detection [19, 18]. However, to keep the results indepen-
dent of the matching algorithm, we define correspondences
manually. For the three objects this gives between 50 to
350 correspondences per image. We click between 30 to 40
correspondences per image and create the others using TPS

interpolation [5].
Performance metrics and method comparison. We cal-
culate two types of 3D errors, Ef and Eb, both expressed
in mm, for the visible and non-visible surface parts respec-
tively, as the RMSE discrepancy between the true and re-
constructed 3D points at the correspondences. For each of
the three datasets, and each of the three deformation lev-
els, the top of each figure shows the template, the input im-
age and the ground truth shape. On each figure, the defor-
mation goes through low, medium and high level from left
to right. The rows then show the results of both initialisa-
tion methods and their use to initialisation both refinement
methods, giving a total of six combinations. The 3D errors
Ef , including the two thin-shell methods, are finally sum-
marised in table 1. We observe that LR-initialisation gives
consistently better results than GS-initialisation, which is in
accordance with our observations made on simulated data.
The difference becomes very important for stronger defor-
mations. This has a very small impact on the refinement
results, for both refinement methods. We can observe small
differences between the two refinement methods. How-
ever, refinement+LR converges faster than refinement+GS
because LR-initialisation is closer to the correct solution.
However, none of them is consistently better than the other,
even if for the woggle L2-refinement is slightly more ac-
curate, whereas for the sponge and arm L1-refinement is
slightly more accurate. The 3D error Ef for volumetric SfT
for both refinement methods is consistently smaller than for
thin-shell SfT. Depending on the dataset and the deforma-
tion level, it is between two and ten times smaller. This con-
firms our observations made on simulated data that, even if
the surface’s visible part is handled naturally by both volu-
metric and thin-shell SfT, the stronger volume deformation
constraints used by the former allows it to obtain a much
more accurate result.

The results shown in figures 6, 7 and 8 show that the re-
constructed object shape is visually close to the true shape.
This means that volumetric SfT could allow a user to handle
a physical object as a proxy interactor in applications such
as virtual shape editing. Quantitatively, the woggle, sponge
and arm are 37 cm, 15 cm and 20 cm long, respectively.
The relative highest error over the whole reconstructed vol-
ume deformation, for the highest level of deformation, is
thus smaller than 5%, 7% and 5% of the objects’ size, re-
spectively. Our unoptimised MATLAB implementation on
a standard desktop with 3.1GHz processor takes between
10 - 25 seconds for the refinement to converge. The com-
putation time for LR-initialisation is 3-5 seconds while for
GS-initialisation it is 1-2 seconds.

6. Conclusion and Future Work
We presented volumetric SfT, which reconstructs an ob-

ject from a single image and a 3D template, by using de-
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Figure 8: Results on the arm. The green boxes show the best performing algorithm for each deformation level.

Tube Data Sponge Data Arm Data

Input Image

Front

Back

Error Analysis
(in mm) Low Med. High Low Med. High Low Med. High

Thin-shell SfT [4] 11.8 16.0 19.8 8.0 15.3 31.8 18.5 20.1 33.4
Thin-shell SfT [16] 10.4 11.4 12.7 6.0 25.5 35.4 15.5 18.9 35.7
GS-initialisation 11.1 13.5 17.3 6.9 15.1 31.6 15 18.3 31.6
LR-initialisation 10.8 11.3 13.8 6.9 13.0 28.5 13.5 14.2 25.6
L1-refinement + GS 2.1 6.7 11.0 5.4 5.2 7.0 3.4 4.1 5.2
L1-refinement + LR 1.8 6.4 9.0 5.3 5.1 6.9 2.9 4.1 5.1
L2-refinement + GS 2.2 5.6 7.1 3.4 4.9 8.5 3.0 4.5 7.3
L2-refinement + LR 2.1 5.6 7.1 3.6 4.5 8.3 2.7 4.2 6.8

Table 1: (left) 3D visible surface error Ef for the datasets shown in figures 6, 7 and 8. (right) In practice, volumetric SfT
always converges with LR or GS-initialisation. But, in order to create conditions of failure, we initialised the refinement at
equation (11) very far from the optimal solution. Testing with the top right image led to the local minimum shown bottom
right.

formation constraints on the object’s outer surface and in-
terior. Previous thin-shell SfT methods use constraints on
the object’s outer surface only. Volumetric SfT is thus to be
used with non-empty and non-flat objects. We proposed an
implementation of volumetric SfT using ARAP. Our imple-
mentation uses non-convex refinement and has an initialisa-
tion procedure following an ARAP propagation of a surface
deformation obtained by thin-shell SfT through the object’s

volume. On method has significantly more accurate results
than state-of-the-art isometric thin-shell SfT, reducing the
error of an order of magnitude in some cases. ARAP volu-
metric SfT opens the way to doing Human-Computer Inter-
action using a proxy object such as a cushion and a simple
monocular webcam. Volumetric SfT may also be instanti-
ated with other deformation models, such as biomechanical
models.
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