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prokopec.kristina@mail.ru

{toby.collins,adrien.bartoli}@gmail.com

Abstract. We present a method for the automatic detection of the
uterus and the Fallopian tube/Uterus junctions (FU-junctions) in a
monocular laparoscopic image. The main application is to perform auto-
matic registration and fusion between preoperative radiological images
of the uterus and laparoscopic images for image-guided surgery. In the
broader context of computer assisted intervention, our method is the first
that detects an organ and registration landmarks from laparoscopic im-
ages without manual input. Our detection problem is challenging because
of the large inter-patient anatomical variability and pathologies such as
uterine fibroids. We solve the problem using learned contextual geometric
constraints that statistically model the positions and orientations of the
FU-junctions relative to the uterus’ body. We train the uterus detector
using a modern part-based approach and the FU-junction detector using
junction-specific context-sensitive features. We have trained and tested
on a database of 95 uterus images with cross validation, and successfully
detected the uterus with Recall = 0.95 and average Number of False Pos-
itives per Image (NFPI) = 0.21, and FU-junctions with Recall = 0.80
and NFPI = 0.50. Our experimental results show that the contextual
constraints are fundamental to achieve high quality detection.

1 Introduction

An ongoing research objective in medical imaging is to perform inter-modal regis-
tration of organs during laparoscopic surgery. The main motivation is to provide
Augmented Reality (AR) by visualizing the position of important sub-surface
structures such as tumors and blood vessels. This has the potential to signifi-
cantly improve intraoperative resection planning. The registration problem falls
into two main categories depending on whether the non-optical modality is cap-
tured preoperatively e.g. [11, 12, 5, 18, 15] or simultaneously and intraoperatively
e.g. [17]. The registration problem is considerably more challenging in the first
category because the transform between modalities is not usually rigid. This is
due to changes in the organ’s shape between capture times, and caused mainly
by the patient lying in different positions, abdominal insufflation and interven-
tional incisions. All the methods for registering laparoscopic and preoperative
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images of an organ use anatomical landmarks, which are locations on the organ
that are visible in both modalities. A limitation of the above methods is that
the landmarks are found manually by a human operator. This is not ideal be-
cause it requires the operator to be on hand during surgery and is not practical
for locating landmarks in laparoscopic videos. The development of systems to
automatically locate landmarks is therefore an important research direction. A
second important problem that is also overlooked is organ detection. In previous
work the organ is assumed to be visible in the laparoscopic images, so the detec-
tion problem is avoided. However, a fully-automatic registration system should
detect when the organ is visible, and then instantiate registration. Automatic
organ detection also has other important applications, including surgical video
parsing and video summarization.

In the context of uterine laparoscopic surgery, it was recently shown that
FU-junctions are good landmarks, which are normally formed either sides of the
uterus body (Fig. 1). However in [5] FU-junctions were detected manually, and
the uterus was assumed to be visible in all laparoscopic images. We present a
system for fully automatic detection of the uterus and FU-junctions (with all
parameters trained), which brings us a step closer to automatic AR to assist
uterine surgeries such as myomectomy and endometriosis.

Fig. 1: Laparoscopic images of the uterus. FU-junctions are shown in blue and
green for left and right respectively. The detection difficulty comes from ligament
junctions, variation in the Fallopian tube orientations and their width. Images
(a-d) illustrate inter-patient appearance variation.

2 Background and Related Work

Registering preoperative images in laparoscopic surgery. Existing methods for
tackling this problem follow a common pipeline. First the organ is semi-
automatically segmented in the preoperative image and a mesh model of its
surface is constructed. A deformable model is also constructed to model the
non-rigid 3D transform that maps points in the organ to their positions in the
laparoscope’s coordinate frame. Most methods require stereo laparoscopic im-
ages [11, 12, 18] because these can provide intraoperative 3D surface information.
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Recently methods have been proposed for monocular laparoscopes [5]. The regis-
tration problem is considerably more challenging with monocular laparoscopes.
However the application is broader because the overwhelming majority of laparo-
scopic surgery is performed with monocular laparoscopes. All methods require a
suitable deformation model to constrain the organ’s shape. These have included
biomechanical models [12, 11], 3D splines or affine transforms [5]. Organs which
have been studied include the liver [12], kidney [11] and uterus [5]. A limitation
with all the above methods is that they assume the organ is visible in the laparo-
scopic images and that there is a manual operator on hand to locate anatomical
landmarks.

Detecting objects in optical images. Detecting objects in optical images is a long-
standing problem in computer vision that spans several decades of research.
In recent years Deformable Part Models (DPMs) have emerged as the best-
performing general-purpose object detector [3, 9]. DPMs work by modeling the
shape variation of an object class with a set of simple parts that are linked with
geometric constraints. Each part models the appearance of the object within
a local region. The parts can move to handle geometric variation caused by
shape and viewpoint changes. DPMs currently are the best performing detectors
in the Pascal Challenge dataset [8], and have been used successfully in other
areas of medical imaging such as lung nodule classification [20] and fetal nuchal
translucency [7]. However their application to organ detection in laparoscopic
images has not yet been investigated.

Junction detection in optical images. There are three main classes of methods for
junction detection in optical images. The first are corner-based methods which
measure ‘cornerness’ using the image structure tensor [13]. Junctions are then
detected as image points with high degree of cornerness. The second are contour-
based methods which detect junctions as intersection of image contours [2]. The
third are template-based methods which model junctions with a set of templates
that correspond to specific junction geometries such as ‘Y’ or ‘T’-shaped, and are
learned from natural images [19]. We found that the above classes of methods are
not suitable for detecting FU-junctions (Fig. 2). This is for two reasons: (i) they
are not discriminative enough to separate FU-junctions from other junctions,
such as vascular bifurcations, so they give many false positives and (ii) they
cannot handle well the appearance variation of FU-junctions (Fig. 1).

3 Detection Framework

We propose a learning-based fully-automatic system to detect the uterus and
FU-junctions. This is based on four concepts: (i) the uterus can be detected
prior to FU-junction detection. (ii) FU-junctions are too difficult to be detected
with generic corner detectors such as [13, 2, 19], so they should be detected with
a learned model. (iii) FU-junctions are always located close to tube-like struc-
tures, so we can filter out many incorrect FU-junction locations if they exist far
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(a) Harris [13] (b) CPDA [2] (c) AJC [19]

Fig. 2: Failure of generic junction detectors to detect FU-junctions.

from tube-like structures. (iv) There exist contextual constraints between the
uterus body and FU-junctions. We use two types of contextual constraints. The
first models the conditional probability of an FU-junction occurring at a position
in the image given the uterus center. Given a uterus detection we can eliminate
pixel locations which have low conditional probability giving us Regions of Inter-
est (ROIs) for the locations of FU-junctions. The second contextual constraint
encodes the fact that FU-junctions are on the uterus surface, which means there
should usually exist a path in the image that connects them to the uterus center
which does not cross an object boundary.

Automatically detecting the uterus and FU-junctions is not an easy prob-
lem to solve due to large inter-patient anatomic variability (both in shape and
texture) (Fig. 1). We restrict the scope of the problem to images of the uterus
before resection. This means that the uterus has not changed topologically by
surgical incisions. We also assume the uterus is not significantly occluded by sur-
gical tools. In uterine surgery the laparoscope is nearly always held in upright
position, so our detectors do not need to be invariant to high degrees of rotations
about the laparoscope’s optical axis.

We outline the full proposed detection process in Fig. 3. This consists of two
main steps: (i) uterus detection and (ii) FU-junction detection. We use a trained
DPM model to detect the whole uterus, its center and its bounding box. We then
proceed to detect the FU-junctions using contextual constraints and a number
of processing steps which reduce the search space for FU-junction locations.
We then compute local and contextual features for all candidate locations and
perform classification with a sparse linear SVM.

3.1 The Uterus Detector

Given an input laparoscopic image (Fig. 3 (a)) we use a trained DPM model
to detect the uterus body. This is achieved with an open-source implementation
of [10] and a set of annotated uterus images (details of the dataset are given in
§4.1). The detector scans the image at multiple scales and positions and returns
bounding boxes (Fig. 3 (b)) around positive detections and their corresponding
detection scores. We select the bounding box with the highest detection score
τu, and if τu is greater than an acceptance threshold τ ′u the detection is kept
(Fig. 3 (c)), otherwise it is rejected (details for computing τ ′u are in §4.1). We
use uw ∈ R, uh ∈ R and up ∈ R2 to denote the uterus bounding box width,
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Fig. 3: Diagram of the main pipeline of the proposed detection process.

height and center outputted from the DPM uterus detector. We then proceed to
detect the FU-junctions.

3.2 The FU-junction Detector

Step 1: Isotropic rescaling. First the image is isotropically rescaled so the bound-
ing box of the uterus has a default width of uw = 200 pixels (Fig. 3 (d)). This
fixes the scale of the uterus and allows us to detect FU-junctions without requir-
ing detection at multiple scales. This has the benefit of increasing computation
speed and reducing false positives.

Step 2: Image enhancement. We enhance the image with contrast stretching on
the red channel (Fig. 3 (e)). We perform coarse illumination correction to remove
uneven illumination with low pass filtering. We then perform edge preserving
smoothing using the guided filter method from Matlab (Fig. 3 (f)). We use only
the red channel because it is mostly insensitive to the uterus’ natural texture
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variation (unlike the green and blue channels [4]). This means that strong edges
in the red channel are highly indicative of object boundaries.

Step 3: ROI extraction. We filter out highly improbable locations for the left
and right FU-junctions. For each pixel p ∈ R2 in the image we compute the
conditional probability PL(p|up) ∈ R+ of the left junction occurring at p given
up. This is a contextual constraint that we model with a Gaussian Mixture
Model (GMM):

PL(p|up)
def
=

K∑
k=1

wLkG(p− up;µ
L
k ,Σ

L
k ) (1)

where K is the number of GMM components and {wLk ,µLk ,Σ
L
k } are the GMM

parameters. We keep p as a left junction candidate if PL(p|up) ≥ c, where
c is a small probability threshold. For the right FU-junction we also use a
GMM to model the conditional probability PR(p|up) of the FU-junction oc-
curring at p. To train the GMM parameters we exploit the fact that the FU-
junctions have strong bilateral symmetry about the uterus body (Fig. 1). Because
the laparoscope is normally in upright position this implies the FU-junctions
are horizontally symmetric. We therefore propose to simplify the model with
µRk (1) = −µLk (1), wRk = wLk and ΣR

k = ΣL
k . The advantage of doing this is that

we effectively double the amount of training data. This is because each training
example can now be used to train PL and PR by reflecting its position hori-
zontally relative to up. Training is performed with the standard K-means/EM
algorithm on the training set. We set c using a training dataset (see §4.1) at
the 99% percentile cut-off point. We select K automatically such that it mini-
mizes the cross-validation error using a hold-out training set (see §4.1). We then
compute two ROIs (Fig. 3 (g)), Rl and Rr for the left and right FU-junctions
respectively, with

Rl(p) =

{
1 if PL(p|up) ≥ c
0 otherwise

Rr(p) =

{
1 if PR(p|up) ≥ c
0 otherwise

(2)

Step 4: Detecting FU-junction candidates. We then detect candidate FU-
junction locations using the ROIs from Step 3 (Fig. 3 (h)). This uses the fact that
FU-junctions occur close to the medial axis of the Fallopian tubes. We find tube
like structures by performing edge detection on the enhanced image computed
in Step 2, using the Canny detector with automatic thresholding. Because we
use the enhanced image strong edges are highly indicative of object boundaries.
We then compute a skeleton S of the edge-map within the region Rl ∪Rr (Fig.
3 (h)) using the implementation of Contour-Pruned Skeletonization from [14],
where S(p) = 1 if p is on the skeleton and S(p) = 0 otherwise. As we see from
Fig. 3 (i) the skeleton can be computed quite robustly despite of imperfect edge
map. We take all pixels for which S(p) = 1 as a candidate FU-junction locations.

Step 5: Feature vector computation. For each candidate location p we compute
three types of local features (we denote these by xh, xθ and xw). The first xh
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are HOG features [6] to encode image gradient patterns around FU-junctions.
We extract HOG features within a local window of w pixels using default HOG
parameters, giving xh 81 dimensions. We have conducted experiments with dif-
ferent window sizes and found a default of w = 15 pixelrks well. The second
local feature xθ ∈ [0, π] encodes the orientation of the Fallopian tube as it enters
the uterus (Fig. 1). This is computed from the skeleton edge map, by fitting a
line to the 5 nearest-neighbors in the skeleton edge map and keeping its slope.
The third feature xw ∈ R+ encodes the width of the Fallopian tube as it enters
the uterus. This is approximated by twice the distance between p and the clos-
est edge in the edge map. The reason why we use both HOG and edge-based
features is that they complement one another. HOG features do not require com-
puting edge or skeleton maps, which makes them very robust particularly when
the contrast between the uterus and background structures is low (even after
enhancement). However, HOG features also include gradient information from
background structures within the HOG window. On the other hand, edge-based
features require edge detection, which makes them less robust. Nevertheless, the
benefit of using edge-based features is that if the edges have been computed
well, then the edge features encode only the shape of the FU-junction and not
structures in the background. We compute two types of contextual features (we
denote these by xg, xc). The first xg is computed from the position and direction
of p relative to the uterus center up in the rescaled image:

xg =
[
dx, dy, d

2
x, d

2
y, α
]>
, [dx, dy]

def
= p− up, α

def
= atan (dx/dy) (3)

The second contextual feature xc encodes the fact that FU-junctions lie on the
uterus. Assuming uterus is not occluded by a tool, this means there should exist
a path in the image between points p and up that does not cross the bounding
contour of the uterus (Fig. 1). To evaluate this exactly we would need to segment
the uterus, which is hard to achieve automatically. Instead we exploit the fact
that the uterus body is mostly convex. This means that with high probability the
straight line segment between p and up will not cross the bounding contour of the
uterus. In our dataset this assumption holds in all cases, including pathological
cases such as uteri with fibroids. We evaluate xc as the number of times the
line segment between p and up crosses an edge in the edge map. Typically we
find that when p is a correct junction location then xc = 0, however this is not
always the case because some spurious edges may exist in the edge map which
are caused by high-contrast texture variation.

Step 6: Linear classification. The features are combined into a feature vector
which is passed to two trained classifiers. We use one classifier for the left and one
for the right FU junctions. We use linear SVM classifiers with an L1 sparse prior,
which are known to work well for detectors with HOG features and small datasets
of order O(102). We then take the candidates with the highest detection scores
for the left and right FU-junctions, and output positive detections (Fig. 3 (k)) if
their scores are above an acceptance threshold τ ′j (details for computing τ ′j are
in §4.1).
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4 Dataset, Training and Performance Evaluation

4.1 Dataset and Training

We have not find any large publicly available collection of laparoscopic uterus
images. We therefore constructed the dataset from various sources. This has a
total of 95 uterus images from 38 different individuals. 45 images were collected
from internet image search engine queries; 26 of which were obtained from 3
publicly available surgical videos. The image resolution of these varied from
311×217 to 1377×1011 pixels. We collected 50 images from 13 videos of different
individuals recorded with monocular HD laparoscopes at a partner local hospital.
The image resolution of these varied from 553×311 to 817×556. 77 images in
the database were of healthy uteri and 18 were of abnormal uteri with fibroids.
All images were annotated manually with uterus bounding box and junction
locations. We obtained a negative dataset of 100 images from the 13 videos
where the uterus was not visible. These were randomly chosen frames in the
time period from insufflation to when the surgeon begun incising the uterus.
We divided the dataset into training and test sets using k-fold cross validation
with k = 7. To guarantee that we measure patient-independent performance,
we ensured that images of the same patient were not in training and test sets.
At most 4 images of each individual were put in the test set, which was done
to keep test performance results balanced across the population. The detection
thresholds τ ′u and τ ′j were computed for each fold as the best ‘cut-off’ point on
the recall vs. NFPI curve that was closest to [0, 1] (Fig. 4 (b) and Fig. 6).

4.2 Uterus Detection

To evaluate the performance of the uterus detector we adopted the PASCAL
VOC challenge protocol to generate Receiver Operating Curves (ROC). A pre-
dicted bounding box was considered a true positive if it overlapped more than
50% with the ground-truth bounding box, otherwise it was considered a false
positive. Two types of performance have been computed. The first is recall vs.
precision and the second is precision vs. Number of False Positives Per Image
(NFPI). The most important free parameter of the DPM detector is the number
of parts, which we varied from 1 to 12. The evaluation curves shown in Fig.
4 illustrate a general performance gain with increased number of parts. For a
precision of 0.90, the recall of the 12-parts modes was 0.86, and the recall of
the 6-part model was 0.78. We show some representative detection results in
Fig. 5. Typical correct detections are shown in the five top left images while the
bottom-right shows a failure due to it being mostly out of frame.

4.3 FU-junction Detection

We compared the performance of our FU-junction detector against two other
approaches. The first was a context-free version of our detector where we ex-
cluded the contextual features (we named this Context-free). The purpose was
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Fig. 4: Uterus detection performance. The Precision/Recall curves are shown in
(a) and the NFPPI/Recall curves are presented in (b) with different number of
parts.

Fig. 5: Examples of uterus’ detections. Bounding boxes of the uteri are shown in
green and the bounding boxes of the parts are shown in blue.

to reveal the benefit that contextual features had on the problem. The second
was the DPM detector from [9] (we named this DPM) that was trained on FU-
junctions (and not on the whole uterus). We tested different numbers of parts
for DPM and show results for the best number (which was 6). A detection was
a true positive if its central point was within the FU junction’s ground-truth
bounding box, otherwise it was a false positive. We show the recall vs. NFPI
curves in Fig. 6. The performance of Context-free and DPM is comparable. One
can see a dramatic improvement by our proposed method (i.e. when the con-
textual features are included). For a recall of 0.80 our method achieves a mean
NFPI for the left and right junctions of 0.47 and 0.53 respectively. The perfor-
mance plateaus at a recall of approximately 0.93%. Therefore in 7% of cases the
FU-junctions are so difficult to detect that they cannot be found without having
5 or more false positives. We show some example detections from our method in
Fig. 7. The examples show results with normal uteri (second row) and abnormal
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uteri with fibroids (first row). The images show the ability to handle significant
variation in orientation of the Fallopian tubes. In Fig. 7 bottom left we show a
test image where only the right FU-junction was visible (the left FU junction
was occluded by the uterus body). A failure is given in the bottom right image,
where there was confusion with the round ligament junctions.

In a second experiment we took each positive test image and computed the
distance of the best-scoring detection to the ground-truth position. The purpose
was to see how well the approaches could localize FU-junctions when they were
forced to make a hard decision (i.e. the point where the detection score was
maximal). Because the test images had different resolutions we rescaled the
images to a default width of 640 pixels before computing the distances. The
results are shown in Fig. 6 and summary of statistics is given in table 1. For a
distance of 25 pixels our method had a recall of 0.73 and 0.64 for the left and
right FU-junctions respectively. If we consider the application of registering the
uterus, it therefore makes sense for our detector to return a small number of high-
scoring detections rather than return the single highest-scoring detection. The
set can be used for registration because the correct detection may be determined
during registration with e.g. softassign [16]. We see that our proposed method
performs the best in all statistics except the minimum distance (although it is
still under a pixel).

Left FU-Junction Right FU-junction
mean median min max std mean median min max std

Proposed 27.16 10.26 0.25 381.47 56.45 Proposed 25.46 16.12 0.80 117.76 24.95
Context-free 77.96 40.69 0.97 479.17 95.61 Context-free 44.23 24.41 0.52 415.80 65.66

DPM 51.60 23.63 2.12 477.25 78.87 DPM 54.99 29.84 0.31 373.20 82.73

Table 1: Comparison statistics (in pixels) for the three methods in the second
experiment with the best method highlighted.

5 Conclusion and Future Work

We have presented an automatic system for detecting the uterus and FU-
junctions in laparoscopic images. This work brings us an important step closer
to fully automatic inter-modal registration. The average detection time with our
current implementation is approximately 8 seconds in unoptimized Matlab code,
but with an efficient parallelized implementation can be reduced dramatically
because many operations are easily parallelized. With the inclusion of a tool
detector e.g. [1] the assumption about absence of tool occlusion can be relaxed.
We also want to extend the database which will improve performance. Another
direction is to extend the detector to stereo images, and it will be valuable to
know if the depth data helps detection performance. The possibility to exploit
multiple images and/or motion information is also promising for further research.
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Fig. 6: FU-junction detection performance.

Fig. 7: Examples of detected FU-junctions. The Left FU-junction is shown in blue
and right in green. Arrows in the top left image show multiple small fibroids.
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