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ABSTRACT

Shape-from-Template (SfT) uses an object’s shape template and a
deformation law to achieve single-image reconstruction. SfT is a
fundamental tool to retexture or augment a deformable object in
a monocular video. It has matured for isometric deformations, but
the non-isometric case is yet largely open. This is because modeling
is generally more complicated and the constraints certainly weaker.
Existing algorithms use, for instance, linear elasticity, require one to
provide boundary conditions represented by known deformed shape
parts and need nonconvex optimization. We use a very simple and
generic model to show that non-isometric SfT has a unique solution
up to scale under strong perspective imaging and mild deformation
curvature. Our model uses a novel type of homography interpreta-
tion that we call Perspective-Projection-Affine-Embedding. It may
use boundary conditions if available and can be estimated with Lin-
ear Least Squares optimization. We provide experimental results
on synthetic and real data.

1 INTRODUCTION

Shape-from-Template (SfT) aims at reconstructing an object’s
shape from a single image, using a template shape and a defor-
mation law. By shape we refer to some representation of the ob-
ject’s 3D outer surface. SfT is applicable to objects which have a
matchable appearance, which means that correspondences may be
established between their template shape and the image. The tem-
plate shape may correspond to any configuration of the object. It
is constructed prior to using SfT by leaving the object static and
3D scanning it using for instance Shape-from-Motion (SfM) [12].
The object may then be moved and deformed: SfT will find its new
shape from a single image and correspondences between the tem-
plate shape and the image. As figure 1 illustrates, this makes SfT a
fundamental tool to achieve Augmented Reality with a monocular
camera: whether one wants to retexture or augment an object’s ap-
pearance, one will have to first design the desired augmentation on
the template shape, and then transfer the augmentation to the cur-
rent video frame in realtime. This second step requires one to solve
for correspondences between the current video frame and the tem-
plate shape, and to reconstruct the shape as observed in the current
video frame. This is exactly what SfT achieves, by using defor-
mation priors, defining how the object may deform, to constrain
the solution. The deformation law is a physics-based deformation
prior. The isometric deformation law says deformation preserves
geodesic distances. All other non-trivial deformation laws are non-
isometric. Isometric SfT is an important case as it handles many
objects such as paper sheets and some types of cloth. It has recently
matured algorithmically [5, 16, 14] and theoretically [4, 7]. Non-
isometric SfT however has not been understood as deeply. Most
existing algorithms require additional cues such as shading [15] or
boundary conditions [11, 13], represented by known 3D points on
the object’s shape. However, no theoretical results were established
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regarding the number and position of these points and the problem’s
solvability.

Figure 1: Shape-from-Template and Augmented Reality on a de-
formable surface. This example shows a piece of fabric which was
bent and substantially stretched upward, and which shrunk later-
ally. The user manually designed an augmentation, by adding the
dinosaur and palm trees on the template, shown left. The template
is a 3D deformable model, a simple plane in this example. The aug-
mentation was then automatically transferred to the image, shown
right. This required us to compute the registration between the tem-
plate and the image, to know where to augment, and the 3D shape
observed in the image, to know how to render the augmentation. In
particular, we computed the amount of stretching, and used it to ex-
aggeratedly rescale the dinosaur. Both image registration and shape
reconstruction are outputs of SfT.

This paper contributes to the theory and algorithms of non-
isometric SfT. One of the central theoretical questions in SfT is
well-posedness. Because there is an infinite number of shapes
which may explain the image, well-posedness questions whether
the true shape is uniquely and stably recoverable. It was established
that the well-posedness of isometric SfT depends on the imaging
geometry: it has a unique solution for perspective imaging [4] but
multiple solutions for affine imaging [7]. In non-isometric SfT,
it was established that the shape cannot be resolved unless ex-
tra constraints such as multi-image temporal consistency are pro-
vided [18]. We prove a general result: the true shape is uniquely
recoverable up to scale in non-isometric SfT for strongly perspec-
tive imaging and mild curvature deformation. We will make the
definition of strong perspective clear. This result holds for any de-
formation law. It was a known result from [18], which uses a mesh
representation of shape to demonstrate it. Our new demonstration
is substantially different. It uses differential geometry, shows that
the shape’s normal is locally recoverable (which was not known
from previous work) and that the reconstruction ambiguities can be
raised using a curvature prior. This last point is important from a
practical standpoint: previous work requires multiple images, while
we achieve reconstruction from a single image. We provide five al-
gorithms which solve non-isometric SfT in the strong-perspective-
mild-curvature case. The first one follows the steps of our theoret-
ical proof and illustrates it. The four others minimize a global cost
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Figure 2: Modeling Shape-from-Template. We model the unknown shape by an embedding ϕ ∈ C2(T ,R3), with T ⊂ R2 the uv-map, and the
known camera by a projection function Π. In this semi-synthetic example, we used 200 SIFT keypoint correspondences, a simulated A4-size
surface stretched of 25% in one axis and a 35 mm camera with a 15 mm focal length. The overlaid black grid represents ground truth.

function. Three of them are Linear Least-Squares (LLS) and thus
convex and one is Nonlinear Least-Squares (NLS) and nonconvex.
We provide experimental results which support the proposed theory
and algorithms.

2 PREVIOUS WORK

The vast majority of existing SfT systems establish point correspon-
dences between the template shape and the image. They then infer
shape and refine the correspondences [8, 19, 20]. At the heart of an
SfT system thus lies a shape inference module which reconstructs
the shape from 3D to 2D point correspondences.

Non-isometric SfT is a general problem, which was instanti-
ated with several deformation laws: conformity [4], linear elastic-
ity [11, 13] and learnt linear shape subspace [15]. Linear elasticity
was also used in NRSfM to build a linear shape subspace [2]. Ex-
cept [4], these works study the problem primarily from the algorith-
mic and experimental viewpoints. The formulations in [11, 13] are
nonconvex, involve shape globally and use boundary conditions.
The formulation in [15] exploits shading to disambiguite the prob-
lem. However, it is a fundamental theoretical question in SfT to
study the well-posedness for some deformation law. For instance,
conformal SfT has a discrete set of solutions for perspective imag-
ing [4]. A close work to ours is [18], which shows using a mesh-
based representation that each shape point is well constrained in
two degrees-of-freedom by the reprojection constraint, while its
depth is very weakly constrained. For video inputs, [18] proposes
to resolve this ambiguity using the shape’s previous state from tem-
poral consistency, which resembles the boundary conditions used
in [11, 13]. Temporal consistency is not applicable in the single
image case.

Similarly to [18], we use a generic formulation of non-isometric
SfT without a specific deformation law. We show however that
under some conditions, namely strong perspective and mild curva-
ture, shape is stably recoverable from a single image without using
boundary conditions and temporal consistency. More precisely, we
show that the shape’s normal is locally recoverable, from which
shape may be recovered up to scale by curvature-regularized inte-
gration. Our results thus match those of [18], which shows that
depth is globally recoverable up to scale, but not locally, and is
weakly constrained. We thus bring the theoretical results that (i) the
shape’s normal is locally recoverable, even though depth is not, and
(ii) the reconstruction ambiguities are resolved by curvature-based
shape regularization, without the need to use multiple images. In
practice, we use the Thin-Plate Spline (TPS) to represent functions
and implement our theory algorithmically. The TPS is practical be-
cause it allows one to measure and penalize the integral curvature
analytically and as a convex function of its parameters. However,

any other smooth function representation with this property, such
as the tensor product of B-splines [17], could be used.

3 PROBLEM FORMULATION AND PRELIMINARIES

Setup. We formulate the problem as illustrated in figure 2. We
use an embedding ϕ ∈ C2(T ,R3) as in [4] to represent the un-
known shape. Here T ⊂ R2 is a uv-map obtained by flattening the
template shape using for instance conformal flattening [21]. We
assume without loss of generality that the template shape is flat,
for simplicity of the equations. We assume that m point correspon-
dences p j ↔ q j, j = 1, . . . ,m, are given between the uv-map and
the image. The camera is calibrated with intrinsics contained in
matrix K ∈ R3×3. The shape is reconstructed in camera coordi-
nates, and perspective projection is then simply q̃ ∝ KQ with q̃ the

homogeneous coordinates of point q ∈R2 or Π(Q)
def
= Ψ(KQ) with

Ψ([X Y Z]>) def
= 1

Z [X Y ]>.

Problem formulation. We formulate non-isometric SfT with
three terms:  (Π◦ϕ)(p j) = q j j = 1, . . . ,m

‖D2ϕ‖2→min on T
W [ϕ] = s.

(1)

The first term is the reprojection constraint. The second term
expresses the smoothness of ϕ by penalizing its curvature. The
third term simply fixes the shape’s scale. It uses the operator
W [ϕ] =

∫
T ‖ϕ‖2

2 dp which returns the average square distance of
the shape’s points to the camera centre and sets its value to an ar-
bitrary non-zero constant s ∈ R∗. This term is important as in non-
isometric SfT scale is not recoverable. Without this third term, the
formulation would have ϕ = 0 as trivial solution. The third term
may be replaced by boundary conditions B[ϕ] = 0, if available. In
an isometric formulation, the powerful geodesic distance preserva-
tion would replace the third term. At first sight, formulation (1)
seems to be extremely ambiguous. The main research questions we
address in this paper are (i) if this non-isometric formulation of SfT
is solvable and (ii) if it may be solved numerically efficiently.

Function representation. Solving SfT numerically requires
choosing a representation of the functions being involved such as
the embedding ϕ . As already mentioned, we use the TPS rep-
resentation [9]. We write TPS(T ) the space of TPS functions
constructed using l control points regularly positioned in the uv-
map T , with TPS(T )⊂C2(T ,R). We thus represent multivalued
functions by several TPS sharing their control points. For instance,



we represent ϕ by three such TPS functions. Slightly abusing nota-
tion, we write as ϕ ∈TPS(T ) the single and multivalued TPS func-
tions. The TPS representation is well adapted to our problem as (i)
it interpolates between points by minimizing the integral curvature

and (ii) its integral curvature S [ϕ]
def
=
∫
R2 ‖D2ϕ‖2

2 dp is a simple
LLS function of its control points. We use S [ϕ] for the second
term of formulation (1). The integral domain being R2 instead of T
has no influence as curvature vanishes very quickly away from the
correspondence points in T . Importantly, S [ϕ] measures the out-
of-plane and the in-plane curvature. In all our algorithms but one,
S [ϕ] will be weighted by a regularization weight λ . The shape’s
scale W [ϕ] is an LLS function of the control points.

4 THEORY

4.1 Main Result on Well-Posedness
Definition 1 (Strong perspective imaging geometry). We define the
imaging geometry to be strongly perspective if the effect of perspec-
tive is observable in a local neighborhood for each shape point in
the image.

Definition 2 (Mild shape curvature). We define the shape curvature
to be mild if the shape’s embedding can be locally approximated
well by an affine tranformation. This means that the out-of-plane
and the in-plane curvatures are both small.

Theorem 1. If curvature is mild and perspective strong then shape
is uniquely recoverable up to scale in non-isometric SfT.

Lemma 1. If curvature is mild and perspective strong then the
shape’s normal is uniquely recoverable locally.

Proof of theorem 1. We first show that shape is uniquely recov-
erable up to scale, and then that scale is unrecoverable. From
lemma 1, the shape’s normal is uniquely recoverable. By normal
field integration, shape is then uniquely recoverable up to scale [10].
Scaling the shape does not change reprojection because of the per-
spective camera but scales smoothness accordingly. More precisely,
we have S [kϕ] = k2S [ϕ] for any k ∈ R∗. Any attempt at estimat-
ing scale will thus shrink the estimated shape to the camera centre.
Scale is thus unrecoverable.

4.2 A New Homography Interpretation
The interpretation of 2D homographies. An homography H

may be estimated from image data. It can then be interpreted in a
way which depends on the imaging context. For instance, the ho-
mography estimated between two images given by a purely rotating
camera observing a rigid scene may be interpreted as H ∝ KRK−1

where R is the camera rotation. Plane-based pose is represented by
a rigid motion (R,T) ∈ SO3×R3 which may be solved by com-
puting the homography between the plane’s model and its image,
with H ∝ K[R1 R2 T], R1 and R2 being the first two columns of
R. This last formula is a specialization of the well-known ho-
mography decomposition H ∝ K2(dR− tn>)K−1

1 . In non-isometric
SfT however, none of the existing interpretations holds. The for-
mer is for pure rotation, the latter for plane pose, and applies lo-
cally to isometric SfT only. We thus propose a novel interpretation
which applies locally to non-isometric SfT, called the Perspective-
Projection-Affine-Embedding (PPAE) homography.

Affine embeddings. We show that a plane’s model is related
by an homography to a perspective image of its affine embedding,
and that the plane’s normal may be uniquely recovered from this
homography. Affine embedding may be understood easily starting
from the notion of rigid embedding, which is the rigid transfor-
mation mapping the plane’s model to 3D in plane-based pose. A
rigid embedding thus has 6 degrees-of-freedom. Affine embedding
is similar, but adds anisotropic scaling and shear, and thus has 9

degrees-of-freedom. It is simply represented by (A,T)∈R3×2×R3

and is applied as p ∈ R2 → Ap+T ∈ R3. The two columns of A,
A1,A2 ∈R3, form a basis for the embedded plane, with T as origin.

Perspective-Projection-Affine-Embedding homographies.
We define the PPAE homography as H ∝ K[A T]. It may be easily
verified that this is the composition of perspective projection with
an affine embedding of a plane in the camera’s coordinate frame.
By estimating H from image data, one may thus recover the affine
embedding (A,T) up to scale as [A T] ∝ K−1H. The affine embed-
ding has 9 degrees-of-freedom; 8 of which may be recovered from
the 8 degrees-of-freedom of the homography. The plane’s normal
N ∈ R3 can then be recovered as the normalized cross-product of
the two columns of A, as N ∝ A1 ×A2. In the absence of per-
spective, H will be an affine transformation, whose last row will be
[0 0 a] with a 6= 0. The normal vector which may be computed
in this case will necessarily be [0 0 1], which means that the esti-
mated plane orientation will be fronto-parallel. In other words, the
observed perspective gives surface orientation.

4.3 Proof of Lemma 1
Proof. Using the assumption that the shape’s curvature is mild, we
may approximate the embedding locally by its first-order Taylor
expansion at point p ∈T as ϕ(p′)≈Q+J(p′−p) with Q = ϕ(p)
and J = Dϕ(p). This is an affine embedding. Therefore, as we
have shown, the shape normal at p can be estimated given the local
homography Hp induced by the shape’s tangent plane at p. Because
the deformation is smooth and perspective is assumed to be strong,
the homography Hp can be estimated from image data. One possible
way is to use the optic flow field between the uv-map and the image
in the vicinity of p. According to [18], the optic flow field may be
estimated for any point given sufficiently many correspondences.
We represent it by an image warp η ∈ C2(T ,R2) which may be
computed by smoothly densifying the correspondences. We define
the image warp η as a function mapping points from the uv-map to
the image. The warp provides 2 constraints at zeroth-order on the
homography as:

η(p) = Ψ(Hpp̃). (2)

Differentiating this constraint to first- and second-orders provides 4
and 6 additional constraints respectively, from which the 8 degrees-
of-freedom of homography Hp can be estimated.

5 A NUMERICAL ALGORITHM FOLLOWING THE PROOFS

We give an algorithm which implements a proof of concept for our
theory by following the ideas used in the proofs of theorem 1 and
lemma 1. We name this algorithm TI for non-isometric Tangent-
plane-Integration. TI computes local surface information which is
then integrated to recover shape. Rather than computing the normal
field, it uses the more informative tangent-plane field. It is illus-
trated in figure 3.

Differentiation of the optic flow field at the correspon-
dences. The goal of this step is to estimate the flow field’s
first and second derivatives at the correspondences. This may be
achieved in many ways. For instance, one may exploit the image
intensity around each correspondence to fit a local warp. In TI, we
fit a warp η ∈ TPS(T ) with automatic estimation of the regular-
ization weight [3]. We have η(p) = [ηx(p)ηy(p)]> and p = [uv]>.
The sought derivatives are then obtained in closed-form. We denote
the 4 first-order derivatives as ∇{u,v}η{x,y}(p) and the 6 second-
order derivatives as ∇{uu,vv,uv}η{x,y}(p).

Tangent-plane field estimation. This step estimates the
tangent-plane field at the correspondences. This requires one to first
estimate a homography field and then extract the tangent-planes
using the PPAE interpretation. An homography H j is estimated
around each correspondence p j ↔ q j, using the optic flow field’s
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Figure 3: Results of TI. (a) and (b) show the reconstructed normal field and (c) the reconstructed points and surface in blue. The normal error is
6.7 degrees and the position error is 44.6 mm. (d) shows the result of an isometric algorithm [16]. Ground truth is in black.

2DAE 3DOD 2DRE HARD

Figure 4: Results of the proposed direct global numerical algorithms. The normal errors are 6.5, 6.0, 7.8 and 10.7 degrees. The position errors
are 42.7, 40.0, 60.4 and 63.4 mm.

zeroth-, first- and second-order derivatives, as in [6]. The main dif-
ference is that [6] derived nonlinear constraints, while we derive
linear constraints, which we can thus solve easily. Defining vect as
row-wise vectorization, we start by rewriting the reprojection con-
straint (2) as:

ζ0(p j)vect(H j) = 02×1 with ζ0(p)
def
=

[
−p̃> 01×3 ηx(p)p̃>

01×3 −p̃> ηy(p)p̃>

]
,

We call this equation the Algebraic Transfer Constraint (ATC) of
zeroth-order. This is because when minimized in the least-squares
sense this equation gives the algebraic distance used in the Direct
Linear Transform (DLT) [12, §4.1]. However, (i) we have only one
point, (ii) instead of a fixed target point, we have a warp function
which provides extra constraints by differentiation. The first- and
second-order ATCs are then obtained by simply differentiating ζ0.

Defining Ĩ
def
= [I2×2 02×1] as a truncated 3× 3 identity matrix and

its two rows as e>1 and e>2 we have:

ζ1(p)
def
=

 Ĩ 02×3
∇uηx(p)p̃>+ηx(p)e>1
∇vηx(p)p̃>+ηx(p)e>2

02×3 Ĩ
∇uηy(p)p̃>+ηy(p)e>1
∇vηy(p)p̃>+ηy(p)e>2



ζ2(p)
def
=

06×6

∇uuηx(p)p̃>+2∇uηx(p)e>1
∇uuηy(p)p̃>+2∇uηy(p)e>1
∇vvηx(p)p̃>+2∇vηx(p)e>2
∇vvηy(p)p̃>+2∇vηy(p)e>2

∇uvηx(p)p̃>+∇vηx(p)e>1 +∇uηx(p)e>2
∇uvηy(p)p̃>+∇vηy(p)e>1 +∇uηy(p)e>2

 .
We estimate the homography H j by finding the least singular vector
of a (12×9) matrix using an SVD [12, A5.3] to solve the following

norm-constrained homogeneous LLS problem:

min
H j∈R3×3

3

∑
i=1
‖ζi(p j)vect(H j)‖2

2 s.t. ‖H j‖2 = 1. (3)

Using the PPAE homography interpretation, we finally estimate a

basis for the tangent plane as the two columns of G j
def
= K−1H jĨ

>,
j = 1, . . . ,m.

Shape-from-Tangent-Plane. This is the integration step,
which estimates the embedding ϕ representing the shape. The ba-
sis for the tangent plane is given by Dϕ , and we thus have the
constraints Dϕ(p j) ∝ G j, j = 1, . . . ,m. We translate these con-
straints into a minimizable LLS penalty by introducing an unknown
vector a = [a1 · · ·am]

> ∈ Rm such that the squared L2 norm of
Dϕ(p j)− a jG j can be minimized. We also incorporate the con-
straints from problem (1). The bending energy S [ϕ] is already
expressed as a minimizable LLS penalty and the scale constraint
W [ϕ] = s is used directly as a quadratic norm constraint. We use
the algebraic error for the reprojection constraint, which we write
as the squared L2 norm of Ĩ

[
q̃ j
]
× Kϕ(p j), where [·]× is the skew-

symmetric cross-product matrix. This leads to the following homo-
geneous LLS problem with an (8m+ 3l)× (m+ 3l) design matrix
representing:

min
ϕ∈TPS(T )

a∈Rm

m

∑
j=1

(
‖Dϕ(p j)−a jG j‖2

2 +‖Ĩ
[
q̃ j
]
× Kϕ(p j)‖2

2

)
+λS [ϕ]

s.t. W [ϕ] = s or B[ϕ] = 0.

6 DIRECT GLOBAL NUMERICAL ALGORITHMS

Instantiating and solving problem (1) by directly searching for an
embedding satisfying all constraints is a much simpler type of al-
gorithm than TI. The rationale is that all the information derived
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Figure 5: Results on simulated data. The x-axis is the percentage of simulated surface extension (left) and the focal length (right).

through the steps of TI such as the tangent-plane field is contained
in the correspondence data and derived from the initial constraints
of problem (1). We give four possible ways to instantiate and solve
problem (1) numerically. They all use the surface’s bending en-
ergy S [ϕ] and scale constraint W [ϕ] = s or boundary conditions
B[ϕ] = 0 and differ in how they instantiate the reprojection con-
straint. They are illustrated in figure 4.

2DAE: minimizing the 2D Algebraic Error. Our first algo-
rithm instantiates the reprojection constraint with the square alge-
braic error. It is important as it is strictly similar to the integration
step of TI, but without the penalty on the tangent-plane field. We
arrive at an homogeneous LLS formulation with a (2m+ 3l)× 3l
design matrix representing:

min
ϕ∈TPS(T )

m

∑
j=1

∥∥∥Ĩ[q̃ j
]
× Kϕ(p j)

∥∥∥2

2
+λS [ϕ] s.t. W [ϕ] = s or B[ϕ] = 0.

3DOD: minimizing the 3D Orthogonal Distance. We in-
stantiate the reprojection constraint with the square distance be-
tween the predicted shape point ϕ(p j) and the sight-line of point
q j. We arrive at an homogeneous LLS formulation with a (3m+
3l)×3l design matrix representing:

min
ϕ∈TPS(T )

m

∑
j=1

∥∥∥∥∥
(
I−

Kq̃ jq̃>j K
>

q̃>j K>Kq̃ j

)
ϕ(p j)

∥∥∥∥∥
2

2

+λS [ϕ]

s.t. W [ϕ] = s or B[ϕ] = 0.

2DRE: minimizing the 2D Reprojection Error. We instanti-
ate the reprojection constraint with the square distance between the
predicted image point Π(ϕ(p j)) and the corresponding point q j.
We arrive at an affine NLS formulation with 2m+3l equations and
3l unknowns, which we solve with Levenberg-Marquardt [12, A6]
initialized by the result from 3DOD:

min
ϕ∈TPS(T )

m

∑
j=1

∥∥Π(ϕ(p j))−q j
∥∥2

2+λS [ϕ] s.t. W [ϕ] = s or B[ϕ] = 0.

HARD: exact reprojection. In contrast to the three above al-
gorithms which instantiate the reprojection constraint by a penalty,
HARD enforces it exactly. This is a sensible algorithm to try as we
use weak priors and so data must be used primarily to constrain the

solution. We arrive at an homogeneous LLS formulation:

min
ϕ∈TPS(T )

m

∑
j=1

S [ϕ]

s.t.
{
(Π◦ϕ)(p j) = q j

}m
j=1 and W [ϕ] = s or B[ϕ] = 0.

Interestingly, this algorithm has not regularization weight as it only
minimizes the bending energy. We solve it using the constrained
SVD algorithm [12, A5.4] with a 3m×3m design matrix and a 2m×
3m constraint matrix.

7 EXPERIMENTAL EVALUATION

Compared algorithms and measured errors. We com-
pared the five proposed algorithms with two isometric algorithms
(ISO1 [5] and ISO2 [16]), a conformal algorithm (CNF [4]) and two
Linear Elastic algorithms (LE1-BC [13] and LE2-BC [11]). BC is
for Boundary Conditions. We give the results of the proposed algo-
rithm with and without boundary conditions (named as 3DOD-BC
and 3DOD, for instance). All algorithms have tunable parameters;
we chose them by trial and error. We measured the position and
normal errors in mm and degrees respectively, as the averages of
the point distance and angular normal difference to ground truth.

Simulated data. We simulated a deforming and extending sur-
face from which we synthesized images with a setup similar to fig-
ure 2 and adding a 1 pixel magnitude noise to image points. We
averaged results over 10 subsets of 100 points, and used 20 points
as boundary conditions. The results are shown in figure 5. Isomet-
ric algorithms do not handle extension beyond a few percents, nei-
ther does the conformal algorithm, as the extension is non-isotropic.
The linear elastic and all proposed algorithms cope extremely well
with extension. The proposed algorithms without boundary condi-
tions perform well for focal length shorter than about 20 mm. The
linear elastic and all proposed algorithms with boundary conditions
degrade very slightly as focal length increases, except HARD-BC
which slightly improves.

Real data. We drew a regular grid on a piece of extensible fab-
ric. We then pinned its upper and lower parts down to a fixed cork
board, and inserted an object between the fabric and the board to
create extension and curvature, as shown in figure 6. The extension
is 33% on the y-axis and causes shrinking of 20% on the x-axis. We
took 25 photos with a 35 mm camera and a 18 mm focal length,
from which we used dense SfM [1] to compute ground truth. For
boundary conditions we used the 17 points forming the template
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Figure 6: Results on real data. The ground-truth is shown in black in the right plots.

shape’s convex hull. We ran all algorithms on 10 photos and re-
port average errors and show example reconstructions in figure 6.
This matches the observations from simulated data. Isometric algo-
rithms fail. The proposed algorithms without boundary conditions
are slightly less accurate than with boundary conditions. LE1 is less
accurate than the proposed algorithms with boundary conditions,
while LE2 is equivalent for position error. However, the proposed
algorithms with boundary conditions have lower normal errors.

8 CONCLUSION

We have studied a generic and simple formulation of non-isometric
SfT. Thanks to PPAE, a novel type of homography interpretation,
we have shown that with strong perspective and mild curvature, the
formulation is solvable. This extends the local analytic solutions of
isometric SfT [4]. Intuitively, an isometric deformation is locally
rigid, and the local image scale thus gives depth while shear and
anisotropy give orientation. To solve non-isometric SfT with PPAE,
we assumed that deformation is locally affine, in other words that
curvature is mild. The local image scale, shear and anisotropy are
then related to deformation, and not to pose, but we showed that
orientation is then uniquely recoverable from local perspective.

We have given five numerical algorithms. Three of them solve
the formulation globally by optimizing a convex cost, and may use
boundary conditions if available. In contrast, existing non-isometric
SfT algorithms are restricted to specific models, require tuning and
nonconvex optimization and have not been shown to be solvable.
In our experiments, our algorithms outperformed existing ones in
terms of position and normal errors. Our future work will focus
on (i) adapting the proposed methods to lenses such as the fish-
eye producing a very short effective focal length, (ii) understanding
the relationship between the proposed model and linear elasticity
and (iii) developping the method’s usage to achieve the automatic
augmentation of non-isometric surfaces, by extending our results
from figure 1.
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