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Abstract. An open problem in computer-assisted surgery is to robustly
track soft-tissue 3D organ models in laparoscopic videos in real-time and
over long durations. Previous real-time approaches use locally-tracked
features such as SIFT or SURF to drive the process, usually with KLT
tracking. However this is not robust and breaks down with occlusions,
blur, specularities, rapid motion and poor texture. We have developed a
fundamentally different framework that can deal with most of the above
challenges and in real-time. This works by densely matching tissue tex-
ture at the pixel level, without requiring feature detection or matching. It
naturally handles texture distortion caused by deformation and/or view-
point change, does not cause drift, is robust to occlusions from tools and
other structures, and handles blurred frames. It also integrates robust
boundary contour matching, which provides tracking constraints at the
organ’s boundaries. We show that it can track over long durations and
can handles challenging cases that were previously unsolvable.

1 Introduction and Background

There is much ongoing research to develop and apply Augmented Reality (AR)
to improve laparoscopic surgery. One important goal is to visualise hidden sub-
surface structures such as tumors or major vessels by augmenting optical images
from a laparoscope with 3D radiological data from e.g. MRI or CT. Solutions
are currently being developed to assist various procedures including liver tumor
resection such as [6], myomectomy [3] and partial nephrectomy [9]. To solve the
problem one must register the data modalities. The general strategy is to build
a deformable 3D organ model from the radiological data, then to determine the
model’s 3D transformation to the laparoscope’s coordinate system at any given
time. This is very challenging and a general, automatic, robust and real-time so-
lution does not yet exist. The problem is especially hard with monocular laparo-
scopes because of the lack of depth information. A crucial missing component is
a way to robustly compute dense matches between the organ’s surface and the
laparoscopic images. Currently, real-time results have only been achieved with
sparse feature-based matches using KLT [10, 5], however this is quite fragile, suf-
fers from drift, and can quickly break down for a number of reasons including
occlusions, sudden camera motion, motion blur and optical blur.

To reliably solve the problem a much more advanced, integrated framework
is required, which is the focus of this paper. Our framework is fundamentally
a template-driven approach which works by matching each image directly to a
deformable 3D template, which in our case is a textured 3D biomechanical model
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Fig. 1. Overview of R2D2 tracking with monocular laparoscopes. Top row: modelling
the organ’s texture by texture-mapping it from a set of reference laparoscopic images.
Bottom row: Real-time tracking of the textured model.

of the organ. The model’s intrinsic, physical constraints are fully integrated which
allows a high level of robustness. This differs from registration using KLT tracks,
where tracks are made by independently tracking points frame-to-frame without
being constrained by the model. This causes a lack of robustness and drift,
where over time the tracked points no longer corresponds to the same physical
point. We propose to solve this by densely and robustly matching the organ’s
texture at the pixel level, which is designed to overcome several fundamental
limitations of feature-base matching. Specifically, feature-based matches exist
only at sparse. discriminative, repeatable feature points (or interest points), and
for tissues with weak and/or repetitive texture it can be difficult to detect and
match enough features to recover the deformation. This is especially true with
blurred frames, lens smears, significant illumination changes, and distortions
caused by deformations or viewpoint change. By contrast we match the organ’s
texture densely, without requiring any feature detection or feature matching,
and in a way that naturally handles texture distortions and illumination change.

2 Methodology

We now present the framework, which we refer to as Robust, Real-time, Dense
and Deformable (R2D2) tracking. Figure 1 gives an overview of R2D2 tracking
using an in-vivo porcine kidney experiment as an example.

Model Requirements. We require three main models. The first is a geometric
model of the organ’s outer surface, which we assume is represented by a closed
surface mesh S. We denote its interior by Ω ⊂ R3. The second is a deformation
model, which has a transform function f (p;xt) : Ω → R3 that transforms a 3D
point p ∈ Ω to the laparoscope’s coordinates frame at time t. The vector xt
denotes the model’s parameters at time t, and our task is to recover it. We also
require the deformation model to have an internal energy function, which gives
the associated energy for transforming the organ according to xt. We use Et to
regularise the tracking problem. In the presented experiments the deformation



models used are tetrahedral finite element models, generated by a regular 3D
vertex grid cropped to the organ’s surface mesh (sometimes called a cage), and
we compute f with trilinear interpolation. Thus xt denotes the unknown 3D
positions of the grid vertices in the laparoscope’s coordinate frame. For Einternal
we have used the isotropic Saint Venant-Kirchoff (StVK) strain energy, which
has been shown to work well for reconstructing deformations from 2D images [5].
Further modelling deails are given in the experimental section. The third model
that we require is a texture model, which models the photometric appearance of S.
Unlike feature-based tracking, where the texture model is essentially a collection
of 2D features, we will be densely tracking its texture, and so we require a
dense texture model. We do this with a texture-map, which is a common model
used in computer graphics. Specifically, our texture-map is a 2D colour image
T (u, v) : R2 → [0, 255]3 which models the surface appearance up to changes of
illumination.

Texture-map Construction. Before tracking begins we construct T through a
process known as image-based texture-mapping. This requires taking laparoscopic
images of the organ from several viewpoints (we call these reference images).
The reference images are then used to generate T through an image mosaicing
process. To do this we must align S to the reference images. Once done T can be
constructed automatically using an existing method (we currently use Agisoft’s
Photoscan’s method [1], using a default mosaic resolution of 4096× 4096 pixels).
The difficult part is computing the alignments. Note that this is done just once
so it does not need to be real-time. We do this using an existing semi-automatic
approach based on [3], which assumes the organ does not deform when the
reference images are taken. This requires a minimum of two reference images,
however more can be used to build a more complete texture model (in our
experiments we use between 4 and 8 reference images), taking approximately
three minutes to compute with non-optimised code.

Tracking overview. Our solution builds on a new technique called Deformable
Render-based Block Matching (DRBM) [2], which was originally proposed to
track thin-shell objects such as cloth and plastic bottles, yet has great potential
for our problem. It works by densely matching each image It to a time-varying
2D photometric render Rt of the deforming object. The render is generated from
the camera’s viewpoint and is continuously updated to reflect the current defor-
mation. Matching is performed by dividingRt into local pixel windows, then each
window is matched to It with an illumination-invariant score function and a fast
coarse-to-fine search process. At a final stage most incorrect matches, caused by
e.g. occlusions or specularities are detected and eliminated using several consis-
tency tests. The remaining matches are used as deformation constraints, which
are combined with the model’s internal energy, then xt is solved with energy
minimisation. Once completed the new solution is used to update the render,
the next image is acquired and the process repeats. Because this process tracks
the model frame-to-frame a mechanism is needed for initialisation (to provide
an initial extimate of xt at the start) and re-initialisation (to provide and initial
estimate if tracking fails). We discuss these mechanisms below.



We use DRBM as a basis and extend it to our problem. Firstly, DRBM re-
quires at least some texture variation to be present, however tissue can be quite
textureless in some regions. To deal with this additional constraints are needed.
One that has rarely been exploited before are organ boundary constraints. Specif-
ically, if the organ’s boundary is visible (either partially or fully) it can be used
as a tracking constraint. Organ boundaries have been used previously to semi-
automatically register pre-operative models [3], but not for automatic real-time
tracking. This is non-trivial because one does not know which points correspond
to the organ’s boundary a priori. Secondly, we extend it to volumetric biome-
chanical deformable models, and thirdly we introduce semi-automatic texture
map updating, which allows strong changes of the organ’s appearance to be
handled, due to e.g. coagulation.

Overview and energy-based formulation. To ease readability we now drop the
time index. During tracking texture matches are found using DRBM, which

outputs a quasi-dense set of texture matches Ctexture
def
= {(p1,q1), . . . , (pN ,qN )}

between 3D points pi ∈ R3 on the surface mesh S and points qi ∈ R2 in the image.

We also compute a dense set of boundary matches Cbound
def
= {(p̃1, q̃1), . . . , (p̃M , q̃M )}

along the model’s boundary, as described below. Note that this set can be empty
if none of its boundaries are visible. The boundary matches work in an Iterative
Closest Point (ICP) sense, where over time the boundary correspondences slide
over the surface as it deforms.

Our energy function E(x) ∈ R+ encodes tracking cues from the image (Ctexture,
Cbound) and the model’s internal deformation energy, and has the following form:

E(x) = Ematch(x;Ctexture) + λboundEmatch(x;Cbound) + λinternalEinternal(x) (1)

The term Ematch is a point-match energy, which generates the energy for both
texture and boundary matches. This is defined as follows:

Ematch(x;C)
def
=

∑
(pi,qi)∈C

ρ (‖π(f(pi;x))− qi‖2) (2)

where π : R3 → R2 is the camera’s projection function. We assume the la-
paroscope is intrinsically calibrated, which means π is known. The function
ρ : R → R+ is an M-estimator and is crucial to achieve robust tracking. It ts
purpose is to align the model point pi with the image point qi, but to do so
robustly to account for erroneous matches, which are practically unavoidable.
When a match is erroneous the model should not align the match, and the M-
estimator provides this by reducing the influence of an erroneous match on E.
We have tested various M-estimators and found good results are obtained with

pseudo-L1 ρ(x)
def
=
√
x2 + ε with ε = 10−3 being a small constant to make Ematch

differentiable everywhere.
The terms λbound and λinternal are influence weights, and discuss how they

have been set in the experimental section. We follow the same procedure to
minimise E as described in [2]. This is done by linearising E about the current
estimate (which is the solution from the previous frame), then we form the
associated linear system and solve its normal equations using a coarse-to-fine
multi-grid Gauss-Newton optimisation with backtracking line-search.



Computing boundary matches. We illustrate this process in Figure 2(k). First we
take R and extract all pixels P on the render’s boundary. For each pixel pi ∈ P
we denote its 3D position on the model by p̃i, which is determined from the
render’s depthmap. We then conduct a 1D search in I for a putative match q̃i.
The search is centred at pi in the direction orthogonal to the render’s boundary,
which we denote by the unit vector vi. We search within a range [−l,+l] in one
pixel increments where l is a free parameter, and measure the likelihood b(p) ∈ R
that a sample p corresponds to the organ’s boundary. We currently compute b
with a hand-crafted detector, based on the fact that organ boundaries tend
to occur at low-frequency intensity gradients, which correspond to a change of
predominant tissue albedo. We give the precise algorithm for computing b in the
supplementary material. We take q̃i as the sample with the maximal b beyond a
detection threshold bτ . If no such sample exists then we do not have a boundary
match. An important stage is then to eliminate false positives because there
may be other nearby boundary structures that could cause confusion. For this
we adopt a conservative strategy and reject the match if there exists another
local minimum of b along the search line that also exceeds bτ .

Initialisation, re-localisation and texture model updating. There are various ap-
proaches one can use for initialisation and re-localisation. One is with an auto-
matic wide-baseline pose estimation method such as [7]. An alternative is to have
the laparoscope operator provide them, by roughly aligning the live video with a
overlaid render of the organ from some canonical viewpoint (Figure 1, 2a), and
then tracking is activated. The alignment does not need to be particularly pre-
cise due to the robustness of our match terms, which makes it a practical option.
For the default viewpoint we use the model’s pose in one of the reference images
from the texture-map construction stage. The exact choice is not too important
so we simply use the one where the model centroid is closest to the image centre.
During tracking, we have the option to update the texture model by re-texturing
its front-facing surface regions with the current image. This is useful where the
texture changes substantially during surgery. Currently this is semi-automatic
to ensure the organ is not being occluded by tools or other organs in the current
image, and is activated by a user notification. In future work aim to make this
automatic, but this is non-trivial.

3 Experimental Results

We evaluate performance with five test cases which are visualised in Figure 2
as five columns. These are two in-vivo porcine kidneys (a,b), an in-vivo hu-
man uterus (c), an ex-vivo chicken thigh used for laparoscopy training (d) and
an ex-vivo porcine kidney (e). We used the same kidney in cases (a) and (e).
The models were constructed from CT (a,b,d,e) and T2 weighted MRI (c), and
segmented interactively with MITK. For each case we recorded a monocular
laparoscopic video (10mm Karl Storz 1080p, 25fps with CLARA image enhance-
ment) of the object being moved and deformed with surgical tools (a,b,c,d) or
with human hands (e). The video durations ranged from 1424 to 2166 frames (57
to 82 seconds). The objects never moved completely out-of-frame in the videos,
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Fig. 2. Visualisations of the five test cases and tracking results. Best viewed in colour.

so we used them to test tracking performance without re-localisation. The main
challenges present are low light and high noise (c), strong motion blur (b,c),
significant texture change caused by intervention (a,c), tool occlusions (a,b,c,d),
specularities (a,b,c,d,e), dehydration (b), smoke (c), and partial occlusion where
the organ disappears behind the peritoneum (b,c). We constructed deformable
models with a 6mm grid spacing with the number of respective tetrahedral el-
ements for (a-e) being 1591, 1757, 8618, 10028 and 1591. Homogeneous StVK
elements were used for (a,b,c,e) using rough generic Poison’s ratio ν values from
the literature. These were ν = 0.43 for (a,b,e) [4] and ν = 0.45 for (c). Note
that when we use homogeneous elements, the Young’s modulus E is not actually
a useful parameter for us. This because if we double E and halve λinternal we
end up with the same internal energy. We therefore arbitrarily set E = 1 for
(a,b,c,e). For (d) we used two coarse element classes corresponding to bone and
all other tissue, and we set their Young’s moduli using relative values of 200 and
1 respectively.

Our tracking framework has several tunable parameters, which are (i) the
energy weights, (ii) the boundary search length l, (iii) the boundary detector
parameters and (iv) the DRBM parameters. To make them independent of the
image resolution, we pre-scale the images to a canonical width of 640 pixels. For
all five cases we used the same values of (iii) and (iv) (their respective defaults),
and the same value for (iii) of l = 15 pixels. For (i), we used the same value
of λbound = 0.7 in all cases. For λinternal we used category-specific values, which
were λinternal = 0.2 for the uterus, λinternal = 0.09 for kidneys and λinternal = 0.2

for the chicken thigh. In the interest of space, the results presented here do
not use texture model updating. This is to evaluate tracking robustness despite
significant appearance change. We refer the reader to the associated videos to
see texture model updating in action. We benchmarked processing speed on a



mid-range Intel i7-5960X desktop PC with a single NVidia GTX 980Ti GPU.
With our current multi-threaded C++/CUDA implementation the average pro-
cessing speeds were 35, 27, 22, 17 and 31fps for cases (a-e) respectively. We also
ran our framework without the boundary constraints (λbound = 0). This was to
analyse its influence on tracking accuracy, and we call this version R2D2-b. We
show snapshot results from the videos in Figure 2. In Figure 2(f-j) we show five
columns corresponding to each case. The top image is an example input image,
the middle image shows DRBM matches (with coarse-scale matches in green,
fine-scale matches in blue, gross outliers in red) and the boundary matches in
yellow. The third image shows an overlay of the tracked surface mesh. We show
three other images with corresponding overlays in Figure 2(l-n). The light path
on the uterus in Figure 2(h) is a coagulation path used for interventional inci-
sion planning, and it significantly changed the appearance. The haze in Figure
2(m) is a smoke plume. In Figure 2(o) we show the overlay with and without
boundary constraints (top and bottom respectively). This is an example where
the boundary constraints have clearly improved tracking.

We tested how well KLT-based tracking worked by measuring how long it
could sustain tracks from the first video frames. Due to the challenges of the
conditions, KLT tracks dropped off quickly in most cases. mostly due to blur or
tool occlusions. Only in case (b) did some KLT tracks persist to the end, however
they were limited to a small surface region which congregated around speculari-
ties (and therefore were drifting). By contrast our framework sustained tracking
through all videos. It is difficult to quantitatively evaluate tracking accuracy
in 3D without interventional radiological images, which were not available. We
therefore measured accuracy using 2D proxies. These were (i) Correspondence
Prediction Error (CPE) and (ii) Boundary Prediction Error (BPE). CPE tells us
how well the tracker aligns the model with respect to a set of manually located
point correspondences. We found approximately 20 per case, and located them
in 30 representative video frames. We then measured the distance (in pixels)
to their tracked positions. BPE tells us how well the tracker aligns the model’s
boundaries to the image. This was done by manually marking any contours in
the representative images that corresponded to the object’s boundary. We then
measured the distance (in pixels) between each contour point and the model’s
boundary. The results are shown in Table 1, where we give summary statistics
(median, inter-quartile range, median, standard deviation and maximum). The
table also includes results from R2D2-b. To show the benefits of tracking with
a deformable model, we also compare with a fast feature-based baseline method
using a rigid transform model. For this we used SIFT matching with HMA out-
lier detection [8] (using the author’s implementation) and rigid pose estimation
using OpenCV’s PnP implementation. We denote this by R-HMA. Its perfor-
mance is certainly worse, which is because it cannot model deformation, and
also because HMA was sometimes unable to find any correct feature clusters,
most notably in (c) due to poor texture, blur and appearance changes.

4 Conclusion

We have presented a new, integrated, robust and real-time solution for dense
tracking of deformable 3D soft-tissue organ models in laparoscopic videos. There
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S.D. 1.18 1.37 40.28 3.30 5.73 38.62 8.35 10.00 43.18 2.59 3.98 10.67 0.97 4.41 26.78

Max. 9.71 8.98 261.74 30.20 36.49 264.76 61.12 77.67 210.32 21.44 33.61 94.58 8.49 31.75 159.43

CPE

Med. 2.41 2.51 3.61 2.03 2.22 3.01 4.64 4.69 14.56 1.55 1.59 5.21 1.14 2.89 3.73

IQR 2.23 2.40 4.27 2.06 2.16 4.03 4.29 4.42 144.67 1.46 1.52 8.63 1.06 3.24 16.99

Mean 2.94 3.09 11.98 2.49 2.52 9.08 7.21 6.85 288.83 1.81 1.96 9.50 1.39 3.48 15.67

S.D. 2.36 2.48 27.16 2.26 1.67 22.81 8.56 8.45 1100.44 1.22 1.64 12.84 1.05 2.76 31.01

Max. 16.89 18.75 169.57 22.27 9.61 203.52 42.73 42.71 9779.96 7.82 16.61 86.29 6.48 21.44 373.69

BPE

(a) In-vivo kidney 1 (b) In-vivo kidney 2 (c) In-vivo uterus (d) Chicken Thigh (e) Ex-vivo kidney

(a) In-vivo kidney 1 (b) In-vivo kidney 2 (c) In-vivo uterus (d) Chicken Thigh (e) Ex-vivo kidney

Table 1. Summary statistics of the quantitative performance evaluation (in pixels).
Errors are computed using a default image width of 640 pixels.

are a number of possible future directions. The main three are to investigate
automatic texture map updating, to investigate its performance using stereo
laparoscopic images, and to automatically detect when tracking fails.
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