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Abstract

Planar Structure-from-Motion (SfM) is the problem of reconstructing a planar object or surface from 2D images using

motion information. This is well-understood with the perspective camera model and can be solved with Homography

Decomposition (HD). However when the structure is small and/or viewed far from the camera the perspective effects

diminish, and in the limit the projections become affine. In these situations HD fails because the problem itself becomes

ill-posed. We propose a stable alternative using affine camera models. These have been used extensively to reconstruct

non-planar structures, however the problem is fundamentally different with planar structures because the affine camera

models one can use are more restricted and it is inherently more ambiguous and non-linear. We provide a general, accurate

and closed-form solution for the orthographic camera model, which returns all metric structure solutions and camera poses.

This does not require initialisation and optimises an objective function that is very similar to the reprojection error. In fact

there is no clear benefit in refining its solutions with bundle adjustment, which is a significant result. We also present a new

theoretical analysis that deepens our understanding of the problem. The main result is a complete geometric characterisation

of degeneracies with the orthographic camera. We also show there can exist up to two metric structure solutions with four

or more images (previously it was assumed to be unique), and we give the necessary and sufficient geometric conditions

for disambiguation. Other theoretical results include showing that in the case of three images the optimal reconstruction

(with respect to reprojection error) can usually be found in closed-form, and additional prior knowledge needed to solve

with non-orthographic affine cameras.

Index Terms

Structure-from-Motion, factorization, stratification, critical motion, degeneracy, ambiguity, plane, orthographic, weak-

perspective, para-perspective.

I. INTRODUCTION

A. Context and Motivation

The development and analysis of closed-form solutions to Structure-from-Motion (SfM) problems is an ongoing

objective in computer vision that spans research over several decades [1], [2], [3], [4], [5], [6], [7], [8]. SfM is the

problem of finding the 3D structure of a scene and the pose of cameras imaging the scene using 2D motion information

in the camera images. The most common form of SfM is when motion comes from point correspondences, which can be
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computed by matching pairs of views or by tracking points in a video. This is often the precursor to dense SfM where

pixel-level photoconsistency is used to determine dense structure. SfM foremost requires a camera projection model.

The Perspective projection model is the most common and can accurately model most real cameras. Affine projection

models have also been used extensively and can be very accurate for certain scenes. They have been used for rigid SfM

with non-planar structures [2], [9], [10], [3], [11], rigid multi-body and articulated objects [12], [13] and deformable

objects [14], [15]. Traditionally affine projection models are used to simplify SfM because unlike perspective projection,

they have linear projection functions. However there are several other important reasons to use them. The first is that

one cannot solve the problem reliably with perspective projection for planar structures that are small and far from the

camera, because the problem becomes badly-conditioned. The second reason is that the theoretical analysis of SfM with

affine camera projection is important to understand degeneracies and ambiguities for both affine and perspective cameras.

This is because perspective cameras behave like affine cameras when the perspective effects are small, and in the limit

they become affine cameras. Any analysis of degeneracies or ambiguities with affine cameras is therefore important to

complete our understanding of SfM with the perspective camera, because as the perspective effect diminishes and the

effect of noise increases we will know which scene configurations become unstable or ambiguous. Our work is also

relevant to nonrigid SfM, where the problem can be solved by dividing an object’s surface into local planar regions and

performing rigid SfM on each region [16], [15]. Because these regions need to be small one must work with affine or

quasi-affine projections.

B. Existing Approaches

When the structure is non-planar it is possible to solve SfM with affine cameras uniquely up to scale and a global

coordinate transform [9]. This can be done in closed-form using factorisation-based stratification [2], [9], [10], [3], [11],

which works by stacking the correspondences to form a correspondence matrix with a theoretical rank of three and then

computing the scene’s affine reconstruction by a rank-three factorisation of the matrix. The factorisation is not unique

but up to a non-singular 3×3 matrix known as the upgrade matrix. This can be resolved using orthogonality constraints

from the camera projection matrices, and is found by solving a system of linear upgrade equations. However, these

methods fail when the structure is planar because these upgrade equations cannot sufficiently constrain the problem (see

Appendix A for details). Indeed, the nature of the problem is drastically different to SfM with non-planar structures. The

types of affine projection models one can use are more restricted and the problem is inherently much more ambiguous.

Unlike affine cameras, solutions to planar SfM and perspective cameras are well established [17], [18], [19]. When

the camera intrinsics are known the problem can be solved with only two images, which has a closed-form solution by

factorising the inter-view homography matrix [17], [18]. This has a two-fold solution ambiguity in general which can be

resolved with a third view. To date there are no closed-form solutions that are optimal in terms of reprojection error for

a general number of images. Usually this is solved with local gradient-based optimisation with bundle adjustment [20],

[21] which is initialised by computing relative poses between pairs of views and chaining them to a common coordinate

system [21]. These solutions work well unless the plane’s projection is quasi-affine (caused by the plane being small or

viewed far from the camera), which makes the problem badly-conditioned.

Various affine camera models exist in the literature. The most common are the orthographic, weak-perspective and

para-perspective (the latter being the most general model). We refer to the problem of Planar SfM with the Orthographic
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model by PSfM-O, the Weak-perspective model by PSfM-W and the Para-perspective model by PSfM-PP. It is possible

to solve PSfM-O (up to discrete ambiguities) using only motion information [22]. However SfM-WP or PSfM-PP

cannot be solved without additional information, because the reprojection constraints are insufficient to resolve all of

the camera Degrees-of-Freedom (DoFs) (see §II-D). There are some previous methods that solve PSfM-O but only in

special configurations. Solutions for the case of three views of three non-colinear points were presented in [23], [22].

However they are of limited practical use because they require the reprojection constraints to be satisfied exactly, and

often fail to return real-valued solutions when there is noise. A closed-form solution to PSfM-O was presented in [15]

that can handle noise and more than three views. This however solves a convex relaxation of the problem, and only

when there are three points and four or more views. Furthermore it cannot handle cases where there is more than one

structure solution. The algorithms in [23], [22], [15] also have flaws in their design because they introduce artificial

degeneracies (see Appendix B).

C. Gauge Transforms, Ambiguities, Degeneracies, Well-posedness and Optimal Solutions

We review here several important SfM concepts. A metric reconstruction is a reconstruction of the scene up to scale

and a global coordinate transform (also known as a gauge transform). For problems involving affine cameras the gauge

transform is in general a rigid transform plus reflection [1]. An ambiguity occurs when there exists more than one metric

reconstruction that can exactly satisfy the image measurements when noise is removed and the gauge transform has

been fixed. Ambiguities can either be continuous, in which case there exist an infinite number of solutions or discrete,

in which case there exist a finite number of solutions. We also divide ambiguities into structure ambiguities and camera

resection ambiguities. A structure ambiguity is when there exists more than one structure solution and a camera resection

ambiguity is when there exists more than one camera pose solution for a given structure solution. In general we can

break down the causes of ambiguities into four groups. These are critical structures, critical motion sequences, missing

measurements and mixed. Critical structures are when the ambiguity is caused by the structure being in a particular

configuration. Critical motion sequences are when the ambiguity is caused by the camera poses being in a particular

configuration. Missing measurement ambiguities are when the ambiguity is caused by one or more views having missing

correspondences. Mixed ambiguities are when the ambiguity is caused by a particular combination of structure, camera

poses and missing measurements.

Unlike most other SfM problems, planar SfM with affine camera models always has discrete ambiguities (see §II-D).

Therefore the problem is never well-posed in the usual sense since it never has a unique solution. Instead, we say that

the problem is well-posed if it can be solved up to a discrete number of solutions. Otherwise we say the problem is

degenerate. An artificial degeneracy is when the problem is well-posed but a particular algorithm cannot solve it due to

its design. If an algorithm is guaranteed to not introduce artificial degeneracies we call it a Non-Artificially Degenerate

Algorithm (NADA). We say that a solution is optimal if it minimises the reprojection error. This is also the solution

which is statistically optimal by assuming zero-mean IID Gaussian measurement noise. For point correspondences this

noise model has been demonstrated many times to be a good choice [5].
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D. Technical Contributions

We present a fast, closed-form and stratified approach to solve PSfM-O. The general process is as follows. First the

plane’s 2D affine structure is recovered from point correspondences. When all points have correspondences this can be

done optimally in terms of reprojection error by a rank-two SVD. We then solve globally a set of non-convex upgrade

constraints to determine all solutions for the plane’s metric structure. Finally, for each solution the corresponding camera

poses are recovered by an optimal plane-based pose estimation process. We present two variants of our approach, which

serve two different purposes. The first, which we call Approximate PSfM-O solves the upgrade constraints in a least-

squares sense, and is the method we use in practice. The second, which we call Exact PSfM-O solves the upgrade

constraints exactly, and is mainly used to answer core theoretical questions. We list here some important properties of

Approximate PSfM-O:

1) Approximate PSfM-O solves the general PSfM-O problem. This is when there are three or more views, the structure

has three or more points and when there are missing correspondences.

2) Approximate PSfM-O generates all solutions when there is no exact physical interpretation of the data due to noise

or modelling approximation error. This has not been achieved before for general scenes.

3) Extensive empirical evaluation shows that there is usually no noticeable benefit in using Bundle Adjustment (BA)

to refine the solutions from Approximate PSfM-O. This is a remarkable result because Approximate PSfM-O does

not optimize the full reprojection error, but rather an approximation of it. In the special case of three points our

solutions are consistently more accurate than [15].

We also extend our approach to solve special cases of PSfM-W and PSfM-PP. Specifically, if within the set of views

we know three or more views where the depth of the structure along the camera’s projection direction is similar, PSfM-

W can be approximated by an PSfM-O problem and solved/analysed with our approach. If we also have a perspective

intrinsic calibration then PSfM-PP can also be approximated by an PSfM-O problem and solved/analysed with our

approach.

E. Theoretical Contributions

Our theoretical contributions are presented in §II-E as eight new theorems. Our main contribution is to give the

necessary and sufficient geometric conditions for PSfM-O to be degenerate given complete measurements (Theorem 1).

To achieve this one must geometrically characterise all degeneracies and prove that the list is exhaustive. Our second

main theoretical contribution is to show that for a general number of orthographic views there can exist up to two

solutions for the plane’s metric structure (previously it was assumed to be unique [15]). We give the necessary and

sufficient geometric conditions to disambiguate structure with extra views in Theorem 2. We then extend these theorems

to incomplete measurements in Theorems 3 and 4. Other theorems (Theorems 5 to 8) give some important theoretical

guarantees for Exact PSfM-O, and extra knowledge necessary to solve with other affine cameras.

F. Paper Structure

In §II we give a notation guide, further background and the new theorems. In §III we present Exact PSfM-O and

Approximate PSfM-O. We then generalise them to solve certain cases of PSfM-W and PSfM-PP. We finish §III with a
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table summarising the key differences between SfM with affine cameras and planar versus non-planar structures. In §IV

we examine the performance of Exact PSfM-O and Approximate PSfM-O compared to other methods using simulated

and real image data. In §V we conclude and discuss future research directions. In Appendices H and J we prove all

theorems given in §II.

II. BACKGROUND AND NEW THEOREMS

A. Notation and Problem Setup

Vectors and matrices are in bold, scalars are in regular italic and sets are in upper-case calligraphic. We use [A]kl to

denote the element at row k, column l of a matrix A, and [A]k×l to denote its top-left k × l submatrix. We use vk to

denote the kth element of a vector v. We use 0K×L and 1K×L to denote the all-zeros and all-ones K×L matrices and

IK to denote the K×K identity matrix. We use Â to denote an estimate of a matrix A from noisy measurements. Given

a set of matrices A = {A1,A2, . . . ,AM} where all Ai have the same width, we define stack(A1,A2, . . . ,AM ) =[
A>1 A>2 . . .A

>
M

]>
to be the operator that stacks A row-wise. We define unstack(

[
A>1 A>2 . . .A

>
K

]>
) = A to be the

operator that unstacks the matrices. We use sk(A) to denote the kth largest singular value of a matrix A. We use λk(F)

to denote the kth largest eigenvalue of a square symmetric matrix F and Vk(F) to denote the set of unit eigenvectors of

F with eigenvalue λk(F). We use S2×3 to denote the 2× 3 Stiefel manifold (i.e. M ∈ S2×3 ⇔MM> = I2). We use

SS2×2 to denote the 2 × 2 sub-Stiefel manifold in S2×3 (i.e. A ∈ SS2×2 ⇔ ∃M ∈ S2×3 s.t. A = [M]2×2). We use

G2×2 to denote the Gramian of SS2×2 (i.e. G ∈ G2×2 ⇔ ∃A ∈ SS2×2 such that A>A = G). The spectral definitions

of SS2×2 and G2×2 are also used:

A ∈ SS2×2 ⇔ s1(A) = 1⇒ (s2(A) = |det(A)|)

G ∈ G2×2 ⇔ (G ∈ SS2×2, G � 0)⇔ (s1(G) = λ1(G) = 1, s2(G) = λ2(G) = det(G))
(1)

The scene geometry is illustrated in Figure 1. We use M to be the number of views in the scene indexed by

i ∈ {1, 2, . . . ,M}. We use N to be the number of points in the scene indexed by j ∈ {1, 2, . . . , N}. We define the

structure plane to be the support plane of the structure points in world coordinates at z = 0. We use S ∈ R3×N to be

the unknown structure matrix that holds the jth structure point sj in its jth column (with its third row being all-zeros).

Without loss of generality we define the centroid of the structure points at the origin of world coordinates. We use

V ∈ {0, 1}M×N to be a binary visibility matrix where [V]ij = 1 if we have a correspondence for point j in view i,

and [V]ij = 0 otherwise.

The polar coordinates of a 3D vector a ∈ R3 in world coordinates are given by:

a = k [sin θ cosφ sin θ sinφ cos θ]
> (2)

where θ ∈ [0, π] is the inclination angle, φ ∈ [0, 2π] is the azimuth angle and k = ‖a‖2 is the length. The inclination

angle is the angle between a and the structure plane. The azimuth angle is the anticlockwise angle between the projection

of a onto the structure plane and the x-axis of world coordinates.

B. Affine Cameras

The affine projection of a 3D point s ∈ R3 in world coordinates to its 2D position q ∈ R2 in image i is given by

q = Mi stack(s, 1) where Mi is the 2× 4 projection matrix. There are a few ways to geometrically interpret an affine
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camera projection. A common way is to consider it as an orthographic camera whose image is warped by a 2D linear

transform. This is equivalent to the decomposition

Mi = kiAi

[
I2 02×2

] Ri ti

01×3 1

 = kiAi [[Ri]2×3 [ti]2×1] (3)

The terms Ri ∈ S3×3 and ti ∈ R3 are the extrinsic 3D rotation and translation of the orthographic camera. The term

ki ∈ R+ is the camera’s magnification factor and Ai is a upper-triangular full-rank 2 × 2 matrix with [Ai]11 = 1. An

affine camera has a single projection direction ai ∈ R3 which is given in world coordinates by the nullspace of [Mi]2×3.

This is equivalent to the third row of Ri. An affine camera’s projection plane is a plane whose normal is colinear to

the projection direction.

Different affine cameras are obtained according to the DoFs of ki and Ai. Three main ones are the orthographic camera

where Ai = I2 and ki = k is fixed across all views for some k ∈ R+ (with five free DoFs), the weak-perspective

camera where Ai = I2 and ki can vary between views (with six free DoFs), and the para-perspective camera where ki

and the two free terms in Ai can vary between views (with eight free DoFs). There exist other affine camera definitions,

for example [11] proposed a seven DoF affine camera that was designed to best mimic perspective projection.

Unlike perspective cameras it is difficult to separate intrinsic from extrinsic parameters with affine cameras. Sometimes

the combined term kiAi is called the intrinsic matrix [9], however this can be misleading because we cannot usually

calibrate ki. This is because unless the true camera’s projection directions are perfectly parallel ki increases as the depth

of structure (which is unknown) decreases, so it is more like an extrinsic. For para-perspective cameras Ai can be

considered as an intrinsic because it can be calibrated without knowing the depth of the structure. This has been done

previously for non-planar structures using either a perspective intrinsic calibration or by self-calibration [9], [11].

C. Reprojection Error, Camera Resection and Resection Ambiguities with Planar Structures and Affine Cameras

a) Reprojection error and the camera resection problem: Following Equation (3), a structure point s ∈ R3 in world

coordinates on the plane z = 0 projects to image i with q = Pistack([s]2×1, 1) where Pi is a 2D-to-2D affine transform

given by

Pi
def
=
[
kiAi[Ri]2×2 [ti]2×1

]
(4)

We can specify Pi with a particular camera model. For the three main types we have:

Pi =


[
k[Ri]2×2 [ti]2×1

]
,
[
ki[Ri]2×2 [ti]2×1

]
,

 ki

 1 γi

0 βi

 [Ri]2×2 [ti]2×1


(Orthographic) (Weak-Perspective) (Para-Perspective)

(5)

With the orthographic, weak and para-perspective cameras Pi has five, six and eight free DoFs respectively. Given a set

of noisy correspondences {q̂ji} and a visibility matrix V, the reprojection error writes as follows:

Ereproj =

M∑
i=1

N∑
j=1

[V]ij‖Pistack ([sj ]2×1, 1)− q̂ji‖
2
2 (6)

Camera resection is the problem of computing the camera matrices {Pi} given an estimate of the scene’s structure

{sj}. We say the resection is optimal if it minimises the reprojection error. We discuss resection here because it is
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equivalent to solving for each view the plane-based pose estimation problem, for which a number of solutions exist

[24], [25], [26]. One should ask wither it is ever possible to recover the depth component of ti. For weak and para-

perspective cameras it is possible when the magnification factor ki can be recovered, because it is approximately inversely

proportional to the depth of the camera. This can be seen by interpreting the weak and para-perspective cameras as

linearised perspective cameras (see Appendix C). By contrast, one cannot estimate the depth of an orthographic camera

because the magnification factor k is constant.

b) Plane-based pose estimation with weak and para-perspective cameras: Globally optimal solutions exist for

weak-perspective cameras [24], [25]. This is done by first estimating Pi ≈ P̂i by the least-squares 2D affine transform

from {sj} to {q̂ij}. This is then exactly factored according to Equation (5). The factorisation is unique if and only if

{sj} is not colinear [24]. We then recover the full rotation matrix Ri from [Ri]2×2, which has two solutions, leading to

a per-view two-fold camera resection ambiguity. Geometrically it is equivalent to an arbitrary reflection of the structure

plane about each camera’s projection plane [25]. Plane-based pose estimation with para-perspective cameras is only

possible if two or more terms in {ki, βi, γi} are known. If this is not the case the camera has seven or more unknown

DoFs, which are not sufficiently constrained by the six coefficients of Pi. The most common instance is when ki is

unknown but βi and γi are known. This is because ki varies inversely to depth, whereas βi and γi can be computed

directly from the 2D correspondences [25]. The problem can be solved in closed-form by factorising P̂i similarly to the

weak-perspective camera.

c) Plane-based pose estimation with orthographic cameras: Optimal plane-based pose estimation with orthographic

cameras is less easy than weak and para-perspective cameras, since it cannot be done by factorising P̂i. This is because

with noise P̂i has six DoFs, but the orthographic camera has only five view-dependent DoFs. Recall that in SfM with

orthographic cameras k cannot be recovered because of the scale ambiguity (we cannot distinguish a larger structure

from a larger k), so it must be fixed. We are then left with estimating the camera rotations and translations. We have not

seen a globally-optimal solution to this before ([15] is the closest work but used gradient-based local optimisation with

Levenberg-Marquardt). We have developed one using the fact that the problem is a small-scale Generalized Problem of

Moments and can be solved globally with e.g. Gloptipoly [27]. We consider this a minor contribution and provide the

details in Appendix D. Note that similarly to the weak and para-perspective cameras there are in general two optimal

camera poses per view.

D. Known Degeneracies and Ambiguities in Planar SfM with Affine Cameras

The problem is always degenerate if each camera has six or more unknown DoFs. Therefore it is degenerate with weak-

perspective, para-perspective and axial symmetric cameras [11] unless we have some additional constraints. The reason

is because there are insufficient reprojection constraints to resolve both metric structure and the camera poses, which

is evident by parameter counting: For each view the structure plane-to-image transform Pi gives up to six constraints

(because it is a 2D affine transform), so for M views we have 6M constraints. If each camera has six or more unknown

DoFs then there are insufficient constrants to resolve their 6M DoFs and the plane’s metric structure. The situation

is different for orthographic cameras because they have only five view-dependent DoFs rather than six. This gives us

redundancy for determining the plane’s metric structure.
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There is some knowledge about degenerate scenes with orthographic cameras but it is very incomplete. It has a

trivial critical structure which is when the structure points are colinear [22]. This causes continuous camera resection

ambiguities, since each camera is free to rotate about the structure line. A critical motion sequence was found in the related

problem of Shape-from-Texture with orthographic cameras [28]. This happens when the camera projection directions

all lie on a plane that is orthogonal to the structure plane. However the necessary and sufficient degeneracy conditions

have not been established. Discrete structure ambiguities are known to exist in PSfM-O but have only been identified

in three-view scenes. There are in general two structure solutions with three views [22], which leads to a maximum

of 16 scene interpretations (23 possible camera poses for either structure). Unlike camera resection ambiguities, very

little is known geometrically about these structure ambiguities. The geometric relationship between them has not been

established, nor the requirement for disambiguating structure.

E. New Theorems

1) Full Geometric Characterisation of Degenerate Scenes in PSfM-O: Recall that a degenerate scene in PSfM-O is

one where we cannot solve the problem up to a discrete number of solutions given complete measurements.

Theorem 1. A scene is degenerate if and only if at least one of three geometric conditions are satisfied. The first

condition is when structure is colinear. This is the only critical structure in PSfM-O. The second condition is a critical

motion sequence which is when the camera projection directions lie on a plane that is orthogonal to the structure plane

(Figure 1). Equivalently, in terms of polar coordinates, this is when all camera projection directions have the same

azimuth. This is the only critical motion sequence in PSfM-O. The third condition is when there are fewer than three

cameras whose projection directions are unique up to reflection about the structure plane and change of sign. There are

no mixed degeneracies in PSfM-O between camera poses and structure.

Corollary 1. We can state Theorem 1 equally in terms of non-degenerate scenes by negating the implication using De

Morgan’s negation. A scene in PSfM-O is non-degenerate if and only if the structure points are non-colinear, at least

one of the camera projection directions has a different azimuth to the other projection directions, and there are three or

more cameras with projection directions that are unique up to reflection about the structure plane and change of sign.

2) Structure Uniqueness in PSfM-O given Four or More Views and Complete Measurements:

Theorem 2. Recall that PSfM-O with three views has at most two solutions for the plane’s metric structure. Suppose

the scene has three views i ∈ {1, 2, 3}, is non-degenerate and has two such solutions. Given an additional orthographic

view i = 4 we can disambiguate structure if and only if the camera projection directions {a1,a2,a3,a4} are not in a

special configuration when projected onto the structure plane. Specifically the outer product of [a4]2×1 must not be an

affine combination of the outer products of [a1]2×1, [a2]2×1 and [a3]2×1. Formally, structure can be disambiguated if

and only if:

@α, β ∈ R s.t. [a4]2×1[a4]>2×1 = α[a1]2×1[a1]>2×1 + β[a2]2×1[a2]>2×1 + (1− α− β)[a3]2×1[a3]>2×1 (7)

In general, given any number of additional orthographic views, structure can be disambiguated if and only if Equation (7)

holds for at least one of the additional views.
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Structure plane at z=0

Camera pose in 
world coordinates

Camera projection direction 
in world coordinates

Critical motion sequence

Structure plane at z=0

Structure plane at z=0

Fig. 1. Scene geometry with orthographic cameras and a planar structure (left top and left bottom) and the critical motion sequence (right). Vector

ai denotes the projection direction of the ith camera. The critical motion sequence that causes the problem to be ill-posed (right).

3) Generalisation of Theorems 1 and 2 to Missing Measurements: PSfM-O problems with missing measurements can

be partitioned into two types. The first (Type 1) are those where we can complete the rank-two correspondence matrix

from the incomplete measurements. The second (Type 2) are those where we cannot. Type 1 problems are equivalent to

those where we can compute the structure’s 2D affine reconstruction, and Type 2 problems to those where we cannot.

Theorem 3. Type 1 problems are degenerate if and only if the equivalent problem with complete measurements is

degenerate. Therefore Type 1 problems do not have missing measurement degeneracies. Type 2 problems are always

degenerate.

Theorem 4. Suppose the scene has three views, is non-degenerate and has two solutions for the plane’s metric structure.

If there is at least one additional view which has three or more correspondences that are non-colinear on the structure

plane and Equation (7) holds, then we can disambiguate structure. If there is at least one additional view which has

two correspondences and Equation (7) holds then it may be possible to disambiguate structure from the foreshortening

effect. If all additional views have only one point correspondence then we cannot disambiguate structure.

4) Theoretical Guarantees of Exact PSfM-O: Recall that Exact PSfM-O is our solution to PSfM-O for three views

that satisfies a set of upgrade constraints exactly. Unlike previous solutions for three views [23], [22], Exact PSfM-O

handles a general number of points (three or more) and has the following guarantees:

Theorem 5. In the absence of noise Exact PSfM-O fails to find a metric reconstruction if and only if the scene

configuration is degenerate. Therefore Exact PSfM-O is NADA.

Theorem 6. In the presence of noise, assume we have the structure’s optimal affine reconstruction (which can be

computed in closed-form when there are no missing measurements). If this can be upgraded by Exact PSfM-O to a

metric reconstruction, then Exact-PSfM-O finds all optimal metric reconstructions.
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Theorem 5 is important for two reasons. The first is that Exact PSfM-O will never fail for problems that are theoretically

solvable. The second is that it allows us to systematically characterise all degeneracies, by geometrically interpreting

all inputs that cause Exact PSfM-O to fail. Theorem 6 is important because it tells us that the optimal solutions (those

that minimise the reprojection error) for three views can be found in closed-form using Exact PSfM-O. This is not true

in all cases: Exact PSfM-O will not have a solution if the affine reconstruction cannot be exactly upgraded to a metric

reconstruction. In practice we find that the likelihood of Exact PSfM-O having solutions is typically between 80-90% of

the time depending on the level of noise. Consequently, Exact PSfM-O is able to solve the problem optimally between

80-90% of the time.

5) Generalisation of Theorems to Other Affine Cameras:

Theorem 7. Recall that we cannot solve SfM with affine cameras and planar structure if each camera has six or

more unknown DoFs (see §II-D). Therefore without additional constraints we cannot solve with the weak-perspective,

para-perspective or axially symmetric [11] affine cameras. From the affine camera interpretation in Equation (3) this is

equivalent to saying that we cannot solve the problem if the magnification factors ki are free DoFs and/or the terms in

Ai are free DoFs. However if there exist dependencies it may be possible to solve the problem. Three interesting cases

are as follows:

• Case 1: We can isolate a subset I ′ of three or more views where Ai∈I′ is known and ki∈I′ is assumed to be

constant.

• Case 2: We can isolate a subset I ′′ of five or more views where Ai∈I′′ and ki∈I′′ are unknown and assumed to

be constant.

• Case 3: We can isolate three or more pairs of views where for each pair (i, i′) ∈ {1, 2, . . . ,M}2, Ai and Ai′ are

known and we assume ki = ki′ .

In Case 1, the problem of upgrading affine to metric structure is constrained only by the views in I ′. In the absence of

noise this is exactly equivalent to upgrading with orthographic cameras using only the views in I ′.

Theorem 8. Suppose the cameras have been intrinsically calibrated with the perspective camera model and we can

isolate a subset I ′ of three or more views where the distance between the camera and a planar structure is far and

approximately constant. We can solve this SfM problem with weak or para-perspective cameras because this is an

instance of Case 1 in Theorem 7.

III. STRATIFIED PLANAR SFM WITH ORTHOGRAPHIC CAMERAS

A. Upgrade Constraints and Upgrade Parameterisation

We first consider the case when correspondences are measured in all views. When there are missing correspondences

the upgrade constraints are the same but the way to compute the scene’s affine reconstruction is different (see §III-B).

The upgrade constraints in PSfM-O act on a rank-two factorisation of the correspondence matrix Q̂ ∈ R2M×N . We

build Q̂ by zero-centering the correspondences in each image (which eliminates translation) and stacking them row-wise.

This is similar to the correspondence matrix used in non-planar reconstruction with the key difference that for planar
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structures it has a maximum theoretical rank of two whereas for non-planar structures it has a maximum theoretical rank

of three. This is seen by factorising Q̂ using Equation (4):

Q̂ = stack ([P1]2×2, [P2]2×2, . . . , [PM]2×2) [S]2×N + ε (8)

where ε denotes correspondence noise. The two factors can be recovered up to noise and an unknown 2 × 2 upgrade

matrix X using a rank-two SVD of Q̂: Q̂ = UΣV>. This gives

Q̂ ≈MASA, MA def
= [U]2M×2[Σ]

1/2
2×2, SA

def
= [Σ]

1/2
2×2[V]>N×2 (9)

where stack ([P1]2×2, [P2]2×2, . . . , [PM]2×2) ≈ MAX and [S]2×N ≈ X−1SA. We now instantiate {Pi} with the

orthographic camera to obtain constraints on X. From Equation (5), in the absence of noise each view provides the

following metric constraint:

[Ri]2×2 = MA
i X⇔MA

i X ∈ SS2×2 ⇔ s1
(
MA

i X
)

= 1 (10)

where MA
i denotes the ith 2× 2 sub-block of MA. We can also express this constraint in terms of the Gramian matrix

W
def
= XX>. From Equation (1) we have MA

i X ∈ SS2×2 ⇔MA
i WMA>

i ∈ G2×2. Therefore the equivalent constraint

on W is

λ1
(
MA

i WMA>
i

)
= 1 (11)

We refer to Equation (11) as the PSfM-O upgrade constraint. This provides one non-convex equality constraint per view

on a 2× 2 positive definite upgrade matrix W. By contrast, the upgrade constraint for non-planar structures (Equation

(31)) provides three linear equality constraints per view on a 3× 3 positive definite upgrade matrix.

Given W we can recover X from its Cholesky decomposition. We parameterise W with a three-vector w as follows:

W = f(w), f(w)
def
=

 w1 w2

w2 w3

 , w1 > 0, w3 > 0, w1w3 − w2
2 > 0 (12)

where the inequality constraints enforce positive definiteness. We then recover X from w with

X =

 √w1 − w2
2/w3 w2/

√
w3

0
√
w3

 (13)

This gives X up to an arbitrary 2D unitary gauge transform U ∈ S2×2 because for any U ∈ S2×2, W = (XU)(XU)>.

B. Missing Correspondences

When there are missing correspondences we cannot factorise Q̂ straighforwardly with the SVD. For non-planar

structures the usual strategy is to apply heuristics to obtain an initial factorisation and then to refine it either by gradient-

based optimisation or alternation. For planar structures we can use the fact that the 2D-to-2D inter-image transform

Pij
def
= Pj stack(Pi, [0, 0, 1])−1 from view i to view j is a 2D affine transform, so it can be used to fill-in missing

correspondences in view j by transferring correspondences from view i. By chaining views we can complete Q̂ and

factor it with the SVD. This factorisation is not optimal in terms of reprojection error, and can usually be improved by

gradient-based refinement. The specific algorithm we use is given in Appendix F.
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C. Exact PSfM-O: An Exact Stratified Solution to PSfM-O for Three views

1) Method Overview: Exact PSfM-O solves PSfM-O with three views by satisfying the upgrade constraint in Equa-

tion (11) exactly. Given the 2D affine camera factor MA (which is 6 × 2 for three views), Exact PSfM-O solves the

following upgrade problem:

Exact PSfM-O upgrade(MA)

find w ∈ R3 s.t. λ1
(
MA

i f(w)MA>
i

)
= 1, ∀i ∈ {1, 2, 3} (a)

f(w) � 0 (b)

(14)

The solution to problem (14) is given in Algorithm 1. In the absence of noise it has two solutions in general, and

with noise it has either zero, one or two solutions. For each solution we recover the upgrade matrix X from w using

Equation (13) and then estimate the plane’s metric structure with Ŝ = stack(X−1SA,01×N ). For each Ŝ we then resect

the cameras, which has in general 23 solutions due to two-fold camera pose ambiguity per view (see §II-C0c). The

maximal number of solutions is therefore sixteen. The complete algorithm for Exact PSfM-O is given in Algorithm 2.

Algorithm 1 (The solution to problem (14))
Require: MA ∈ R6×2 . the affine camera factor for three views

1: function Exact PSfM-O Upgrade(MA)

2: {MA
1 ,M

A
2 ,M

A
3 } ← unstack(MA)

3: W ← ∅ . the set of upgrade solutions

4: Ei ←MA>
i MA

i , i ∈ {1, 2, 3}

5: AE ←


[E1]11 2[E1]12 [E1]22 −det(E1)

[E2]11 2[E2]12 [E2]22 −det(E2)

[E3]11 2[E3]12 [E3]22 −det(E3)


6: z← null(AE) with z>z = 1

7: stack(w′, s′)← A>E(AEA>E)−113×1

8: a← z22 − z1z3
9: b← z4 − w′1z3 + 2w′2z2 − w′3z1

10: c← w′22 + s′ − w′1w′3
11: {α1, . . . , αL} ← realRoots(aα2 + bα+ c), 0 ≤ L ≤ 2

12: for l = 1 to L do

13: w← w′ + αl[z]3×1

14: if
(
f(w) � 0 and det(MA

i f(w)MA>
i ) ≤ 1, ∀i ∈ {1, 2, 3}

)
then, W ←W ∪ {w}

15: return W

2) Solving the upgrade: This is done by transforming the upgrade constraints to quadratic constraints with inequalities:

λ1
(
MA

i f(w)MA>
i

)
= 1⇔

{
λ1

(
MA

i f(w)MA>
i

)
= 1orλ2

(
MA

i f(w)MA>
i

)
= 1

λ2

(
MA

i f(w)MA>
i

)
≤ 1

⇔

{
det(MA

i f(w)MA>
i − I2) = 0

det(MA
i f(w)MA>

i ) ≤ 1

(15)

DRAFT



PLANAR STRUCTURE-FROM-MOTION WITH AFFINE CAMERA MODELS: CLOSED-FORM SOLUTIONS, AMBIGUITIES AND DEGENERACY ANALYSIS13

Algorithm 2 (Exact PSfM-O)

Require: {q̂ji} . point correspondences with view index i ∈ {1, . . . ,M} and point index j ∈ {1, . . . , N}

1:

2: function Exact PSfM-O({q̂ji})

3: (MA,SA)← affineReconstruct2D({q̂ji}) . Gives the 2D affine scene reconstruction (see appendix F)

4: W ← Exact PSfM-O Upgrade{MA} . the upgrade matrix solutions

5: U ,R, T ← ∅ . solutions to structure, rotation and translation respectively

6: for k = 1 to size(W) do

7: w←Wk, X←

 √w1 − w2
2

w3

w2√
w3

0
√
w3

, Ŝ = stack(X−1SA,01×N )

8: {[R̂i]2×2} ← unstack(MAX)

9:
{

[̂ti]2×1
}
←
∑N
j=1[V]ij

(
[ŝj ]2×1 − qji

)
/
∑N
j=1[V]ij . [V]ij = 1 if point j is measured in view i,

otherwise [V]ij = 0

10: Uk ← Ŝ, Rk ← {[R̂1]2×2, [R̂2]2×2, [R̂3]2×2}, Tk ←
{

[̂t1]2×1, [̂t2]2×1, [̂t3]2×1
}

11: return U ,R, T

The first equivalence comes because λ2 ≤ λ1. The second equivalence comes from the characteristic polynomial

of MA
i f(w)MA>

i and using λ2
(
MA

i f(w)MA>
i

)
= det(MA

i f(w)MA>
i ) (which comes from Equation (1) because

MA
i f(w)MA>

i ∈ G2×2). From Equation (15) a solution to problem (14) must satisfy:

det(MA
i f(w)MA>

i − I2) = 0, ∀i (16)

The three quadratic constraints on w in Equation (16) actually have a special structure that reduces them to a single

quadratic constraint in one variable α. This is then solved with at most two solutions. For each solution we compute the

corresponding value of w. We then test whether f(w) is (i) positive definite and (ii) satisfies det
(
MA

i f(w)MA>
i

)
≤

1, ∀i. If it does then it satisfies all constraints and hence is a solution to problem (14), and is put into the solution set

W . We give a full derivation of Algorithm 1 in Appendix G.

3) Camera Resection: Becase the upgrade constraints are satisfied exactly the camera poses are computed directly

from the upgraded camera factor. For each view we have [R̂i]2×2 = MA
i X. The full rotation matrix can be completed

from [R̂i]2×2 up to two solutions using orthonormality constraints (we give the Equation in Appendix D). The camera

translation is given by the point centroid of the visible correspondences in the image.

D. Approximate PSfM-O: An Approximate Stratified Solution to PSfM-O for Three or More views

1) Method Overview: Approximate PSfM-O solves metric structure with three or more views by satisfying the upgrade

constraints approximately in a least squares sense. It then solves the camera poses using our optimal method described in

Appendix D. We give the full algorithm for Approximate PSfM-O in Algorithm 4. The upgrade constraints are satisfied

with a least squares cost function C : R3 → R+ based on Equation (16):
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C(w)
def
=

M∑
i=1

det2(MA
i f(w)MA>

i − I2) (17)

An important property of Approximate PSfM-O is that it finds all local minima of C and not just the global minimum.

This is necessary to handle cases where we cannot uniquely resolve metric structure. In these cases there will be multiple

upgrade matrices that can satisfy the upgrade constraints up to noise, which causes C (and the reprojection error) to be

multi-modal. The correct upgrade solution is therefore not necessarily the one that globally minimises C. Instead, by

computing all local minima of C we obtain a small number of locally-optimal upgrade matrices (which we will show

is at most four). We can then verify each upgrade matrix a posteriori for how well it can explain the data. All upgrade

matrices that can explain the data up to noise should be kept.

Our task is to compute all local minima of C over the domain f(w) � 0. Because the domain is an open set we may

not always find a local minimum. However if a local minimum exists then it is a local minimum of C(w ∈ R3). The

problem is solved therefore by finding all local minima of C(w ∈ R3) then discarding those where f(w) 6� 0. Because

C is quartic in w its local minima are roots of a system of three third-order polynomials. We have developed a very

fast method to find these by exploiting the particular form of C. Specifically we show that its critical points are roots

of a univariate degree-seven polynomial, which can be found quickly with the SVD of an associated 7× 7 companion

matrix. There are either 1, 3, 5 or 7 real-valued critical points, and because C(w) is a Sum-of-Squares polynomial it

therefore has either 1, 2, 3 or 4 real-valued local minima.

For each local minimum w̃ we keep it if f(w̃) � 0 (which means it is a feasible upgrade solution) and we generate

the associated upgrade matrix X using Equation (13). Next we compute its associated metric structure matrix Ŝ =

stack(X−1SA,01×N ). Unlike Exact PSfM-O the upgraded camera factor MAX is not guaranteed to be a metric camera

factor because the metric constraints have been satisfied approximately. We deal with this by resecting with our optimal

solution described in Appendix D. Note that an alternative solution is to correct the upgraded camera factor to the closest

metric camera factor. However this correction involves minimising an algebraic error function (typically the Frobenius

norm is used) so its solution is not optimal in terms or reprojection error. In practice we find this leads to worse pose

estimates (typically by a few degrees). Because our resection method is closed-form there is no good reason to use the

upgraded camera matrices.

We finish this section by showing how to find the local minima of C. We have tried to keep this light for the curious

reader but it is not essential for understanding the overall algorithm.

2) Finding the Local Minima of C: We can rewrite C(w) as follows:

C(w) =
∑M
i=1 det2

(
MA

i f(w)MA>
i − I2

)
=
∥∥B stack(w, w1w3 − w2

2)− 1M×1
∥∥2
2

Ei
def
= MA>

i MA
i , B

def
=


[E1]11 2[E1]12 [E1]22 −det(E1)

[E2]11 2[E2]12 [E2]22 −det(E2)
...

...
...

...

[EM ]11 2[EM ]12 [EM ]22 −det(EM )


(18)

Using the slack variable s = w1w3 − w2
2 , the local minima of C(w ∈ R3) are stationary points of the Lagrangian

L(w, s, ν)
def
= ‖B stack(w, s)− 1M×1‖22 + ν

(
w1w3 − w2

2 − s
)

(19)
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where ν is a Lagrange multiplier for the constraint s = w1w3 − w2
2 . We now show that the stationary points of L are

the roots of a degree-seven polynomial in ν. The stationary points are the solutions to

∂
∂(w,s,ν)L(w, s, ν) = 05×1 ⇔

 H stack (w, s)−B>1M×1 + ν stack (Fw, 1) = 04×1 (a)

w1w3 − w2
2 − s = 0 (b)

H
def
= B>B, F

def
=


0 0 −1

0 2 0

−1 0 0


(20)

We decompose H with the QL decomposition to give H = QL where Q is a 4 × 4 orthogonal matrix and L is a

lower-triangular 4× 4 matrix. Left-multiplying Equation (20-a) by Q> and re-substituting s← w1w3 − w2
2 gives

L stack(w, w1w3 − w2
2)−Q>B>1M×1 + νQ> stack(Fw, 1) = 04×1 (21)

Now consider only the first three rows of Equation (21). Because L3×4 stack(w, w1w3 − w2
2) = L3×3w (since L is

lower triangular) we have

[L]3×3w − [Q]>4×3B
>1M×1+ν[Q]>4×3 stack (Fw, 1) = 03×1 (22)

Therefore given a solution to ν we can recover w by solving a linear system using Equation (22). This is given after

rearrangement by

w = det−1(M(ν))g(ν)

M(ν) : R→ R3×3 def
= [L]3×3 + ν[Q]>3×3F

g(ν) : R→ R3 def
= adj (M(ν)) [I3|03×1]

(
Q>B>1M×1 − νQ>[0 0 0 1]>

) (23)

where adj (M(ν)) is the adjoint of M(ν). We now re-introduce the constraint from the fourth row of Equation (20-a):

ν = a− h4 stack
(
w, w1w3 − w2

2

)
(24)

where a is the fourth element of B>1M×1 and h4 is the fourth row of H. Multiplying both sides of Equation (24) by

det(M(ν))2 and substituting det(M(ν))w← g(ν) gives after simplification:

det(M(ν))2ν − det(M(ν))2a+ h4 stack (det(M(ν))g(ν),det(g(ν))) = 0 (25)

Equation (25) defines a polynomial p(ν) in ν because det(M(ν)) and g(ν) are quadratic and cubic polynomials in ν

respectively (and a and h4 are constant and known). The polynomial is non-homogeneous in general because det(g(ν))

is non-homogeneous in ν in general. The polynomial’s highest order term is det(M(ν))2ν, which means it is a degree-

seven polynomial in general. The roots {ν1, . . . , νL} of p(ν) are computed efficiently by the SVD of the associated

7× 7 companion matrix.

E. Generalising PSfM-O Solutions to Other Affine Cameras

Recall that we cannot solve planar SfM with affine cameras if the cameras have six or more unknown DoFs (see

§II-D). Theorem 7 provides three cases where additional knowledge can be used to make the problem solvable. In Cases

1 and 2 we can isolate a subset of views I ′ ⊆ I where the magnification factors ki∈I′ are assumed to be constant. In

practice this occurs when the variation of the depth of the structure is small in those views. In Case 1 we also know
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the ‘intrinsic’ terms Ai. From the decomposition of the affine camera in Equation (3) we can effectively convert the

cameras in I ′ to orthographic cameras by transforming the points in I ′ by qji ← A−1i qji . Because Theorem 7 tells us

that the upgrade problem is only constrained by the views in I ′, we can solve the problem using Exact PSfM-O or

Approximate PSfM-O only for the views in I ′. After this is solved the cameras can be resected (including those not in

I ′), as discussed in II-C. In Case 2 Ai∈I′ is assumed constant and unknown: Ai∈I′ = A for some A. Here we must

solve the metric upgrade matrix and A. This can be considered an autocalibration problem that has not been looked at

before, and is left to future work.

Algorithm 3 (The local minima of C)
Require: MA ∈ R2M×2, M ≥ 3 . the affine camera factor for M views

1: function localMinimaOfC(MA)

2: {MA
1 ,M

A
2 , . . . ,M

A
M} ← unstack(MA)

3: W ← ∅ . the set of upgrade solutions

4: Ei ←MA>
i MA

i

5: B←


[E1]11 2[E1]12 [E1]22 − det(E1)

[E2]11 2[E2]12 [E2]22 − det(E2)

...
...

...
...

[EM ]11 2[EM ]12 [EM ]22 −det(EM )


6: H← B>B, (Q,L)← lq(H), p← Q>B>1M×1, F←


0 0 −1
0 2 0

−1 0 0

 . lq denotes the LQ decomposition

7: c← P (L,Q,p) , c ∈ R8 . computes coefficients of the degree 7 polynomial p(ν) in Equation (25).

8: {ν1, . . . , νL} = realRoots (c) , L ∈ {1, 3, 5, 7} . real roots of p(ν)

9: for l = 1 to L do

10: M← L3×3 + νlQ
>
3×3F, g← adj (M) [I3|03×1]

(
Q>B>1M×1 − νlQ>[0 0 0 1]>

)
, ŵ← det(M)−1f

11: if ∂2

∂w2C(ŵ) � 0 then

12: W ← {ŵ} . ŵ is a local minimum of C

13: return W

Algorithm 4 (Approximate PSfM-O)
Require: {qj

i} . point correspondences with view index i ∈ {1, . . . ,M} point index j ∈ {1, . . . , N}

1: {Ai} . known affine projection matrix terms

2: function Approximate PSfM-O({qj
i})

3: (MA,SA)← affineReconstruct2D({qj
i}, {Ai}) . affine scene factorisation with planar structures (see appendix F)

4: W ← localMinimaOfC{MA}

5: U,R, T ← ∅ . solutions to structure, rotation and translation respectively

6: k ← 0 . the number of upgrade matrices/metric structure solutions

7: for l = 1 to size(W) do

8: w ←Wl

9: if f(w) � 0 then

10: k ← k + 1, X←


√
w1 −

w2
2

w3

w2√
w3

0
√
w3

, Ŝ = stack(X−1SA, 01×N )

11: for i = 1 to M do

12:
(
[R̂i]2×2, [̂ti]2×1

)
← orthographicResect(Ŝ, {q1

i ,q
2
i , . . . ,q

N
i }) . optimal resection with orthographic camera (see Appendix D)

13: Uk ← Ŝ, Rk ← {[R̂1]2×2, [R̂2]2×2, . . . , [R̂M ]2×2}, Tk ←
{
[̂t1]2×1, [̂t2]2×1, . . . , [̂tM ]2×1

}
14: return U,R, T
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F. Summary of the Differences between Stratified SfM with Affine Cameras for Planar and Non-planar Scenes

We finish this section with a summary of the core differences between solving SfM with affine cameras by stratification

for planar and non-planar structures (Table I). For non-planar structures results have been aggregated from [2], [9], [1].

Non-planar structures Planar structures

Maximal theoretical rank of the 2M ×N measurement matrix Q̂ 3 2

Unknown upgrade matrix Y ∈ R3×3, rank(Y) = 3 X ∈ R2×2, rank(X) = 2

Orthographic Cameras

Gauge transform 3D rotation and reflection 2D rotation and reflection

Upgrade constraint M̃A
i Y ∈ S2×3, M̃A

i ∈ R2×3 is known MA
i X ∈ SS2×2, MA

i ∈ R2×2 is known

Number of equality constraints on upgrade matrix per view 3 1

Minimal number of views required for metric upgrade 3 3

Upgrade constraint complexity Quadratic in Y, linear in YY> Quartic in X, quadratic in XX>.

Number of distinct upgrade/structure solutions for three views with

noise (up to gauge transforms)
0 or 1 0,1 or 2

Can the problem have a critical motion sequence? No Yes

Can the problem have discrete structure ambiguities? No Yes

Can the problem have critical structures? Yes Yes

Can the problem have camera resection ambiguities? No Yes (two-fold ambiguous for each view)

Can the upgrade solutions for three views be optimal in terms of

reprojection error?
No Yes

Other Affine Cameras

Can we solve with the weak and para-perspective cameras without

additional information?
Yes No

Can we solve with these cameras with some knowledge about the

camera magnification factors?
Yes Yes

If the magnification factors are constant and Ai is constant and

unknown for all views, what is the complexity of upgrading & self

calibration?

Ai can be trivially eliminated, and

is quadratic in Y, linear in YY>.

Ai cannot be trivially eliminated, and is 5 quadratic

equations in 5 unknowns

TABLE I

SUMMARY OF THE DIFFERENCES BETWEEN STRATIFIED SFM WITH AFFINE CAMERAS FOR NON-PLANAR AND PLANAR STRUCTURES

IV. EMPIRICAL EVALUATION

We now evaluate the accuracy of Exact PSfM-O and Approximate PSfM-O compared to other methods with extensive

simulation and real-data experiments.
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A. Method Comparison Summary

The methods under comparison are as follows. Exact PSfM-O: Proposed exact solution (§III-C); Approximate PSfM-

O: Proposed approximate solution (§III-D); Approximate PSfM-O(LRE): Proposed approximate solution but returning

at most one structure solution, which is the one that produces the Lowest Reprojection Error (Equation (6)); TJK-

CVPR10: Solution from [15]; TK-Factor: Solution from [2]; MC-CVIU09: solution from [29] using the orthographic

camera model; MOVA: A stratified method using the Most Orthogonal Viewpoint Approximation heuristic (details are

provided in Appendix E). We summarise the applicability of the methods in Table II. The purpose for comparing

Approximate PSfM-O(LRE) is to show how performance is affected in ambiguous cases when we force Approximate

PSfM-O to select the structure solution that yields the lowest reprojection error. For the stratified methods (Exact PSfM-

O, Approximate PSfM-O, Approximate PSfM-O(LRE), MOVA and TK-factorization) we use exactly the same method

to compute the structures’s affine reconstruction, given in Appendix F.

Exact PSfM-O Approximate PSfM-O Approximate PSfM-O(LRE) TJK-CVPR10 TK-Factor MC-CVIU09 MOVA

Range of N ≥ 3 ≥ 3 ≥ 3 = 3 ≥ 3 ≥ 3 ≥ 3

Range of M = 3 ≥ 3 ≥ 3 ≥ 4 ≥ 3 ≥ 3 ≥ 1

Possible number of structure solutions 0,1,2 0,1,2,3,4 0,1 0,1 0,1 1 1

Are the solutions guaranteed to be planar? Yes Yes Yes Yes No No Yes

TABLE II

PROPERTIES OF METHODS UNDER COMPARISON.

A difficulty with comparing all methods is that for a given test input some methods may be able to produce a metric

structure solution but other methods may not (e.g. the stratified methods may not produce a valid upgrade matrix). This

makes it hard to compute and compare accuracy statistics. We deal with this by applying a fall-back method, and a

method reverts to the fall-back’s solution if it does not produce a solution. The fall-back method should return a solution

in all cases but is not necessarily the most accurate method. The fall-back method we use is MOVA.

A problem with TK-Factor and MC-CVIU09 is that they return a single solution to camera resection. Therefore for

planar structures, even if they compute metric structure correctly their camera poses will be wrong approximately 50%

of the time due to the two-fold ambiguity. To handle this fairly we resect the cameras in exactly the same way for

all methods. This is done using our optimal method given in Appendix D. Note that this requires a planar estimate of

metric structure which is not guaranteed by TK-Factor and MC-CVIU09. We deal with this by converting their structure

solution Ŝ to the closest planar solution before resecting using the rank-two SVD of Ŝ.

We also evaluate the gain in accuracy by refining the best solution among all methods with Orthographic camera

Bundle Adjustment (OBA), which we denote by Best+OBA. This is done by taking the metric structure solution among

all methods with the lowest error (see below) then resecting the cameras as described in Appendix D. Then structure

and camera poses are jointly refined until convergence by minimising Equation (6) using Levenberg-Marquardt.

B. Error Metrics

We measure performance using four metrics. These are (i) structure error, (ii) rotation error, (iii) translation error

and (iv) success rate. We use U = {Ŝ1, . . . ŜK} to denote the set of K metric structure solutions produced by a method.
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If a method fails to compute a structure solution then U = ∅. We use ŜMOVA to denote the structure solution produced

by the fall-back method MOVA. We use SGT ∈ R2×N , RGT ∈ SOM3 and T GT ∈ R2×M to denote the ground truth

structure, camera rotations and translations respectively.

1) Structure Error: ES ∈ R+. Structure error is computed using the solution in U that is closest to ground truth up

to a similarity transform. If a method does not return a structure solution the solution from the fall-back method is used

(MOVA). Formally, we define it as:

ES
def
=

 1
N

∑N
j=1 ‖SGT

j − Ŝ′j‖2 if U 6= ∅

EMOVA
S otherwise

Ŝ′
def
= arg min

Ŝ∈U
‖ABSOR(Ŝ,SGT)− SGT‖22 (26)

The function ABSOR(Ŝ,SGT) aligns an estimate Ŝ to SGT in the least squares sense over all 2D similarity transforms.

This alignment is necessary to account for the gauge transform. Therefore Ŝ′ is the structure solution that has aligned

best to SGT. The value EMOVA
S ∈ R+ is the structure error from MOVA.

2) Rotation and Translation Error: ER ∈ R+, ET ∈ R+. For each method we take the best structure solution Ŝ′,

resect the cameras as described in Appendix D, then we measure the error of the camera poses. If a method has not

produced a structure solution we use the camera poses from the fall-back method (MOVA). Let
(
R̂a
i , t̂

a
i

)
and

(
R̂b
i , t̂

b
i

)
be the camera pose estimates for view i (recall there are two due to the two-fold ambiguity). The rotation error is defined

as follows:

ER =


1
M

∑M
i=1 min

[
ang(R̂a

i ,R
GT
i ), ang(R̂b

i ,R
GT
i )

]
if U 6= ∅

EMOVA
R otherwise

(27)

The function ang(R,R′) : SO2
3 → [0, 180] denotes the smallest angle in degrees of the rotation that maps R to R′.

Because there are two rotation estimates per view, the error of the one with the smallest angular error is used. The value

EMOVA
R ∈ R+ is the rotation error from MOVA.

We measure translation error as follows. For each view we determine which of the two pose estimates has the lowest

rotation error, then measure the accuracy of its corresponding translation estimate t̂i ∈ R2. This is defined as

ET =

 1
M

∑M
i=1

∥∥t̂i − tGT
i

∥∥
2

if U 6= ∅

EMOVA
T otherwise

(28)

where EMOVA
T ∈ R+ is the translation error from MOVA. We note here that the translation error is only useful for

comparing methods when there are missing measurements. This is because when there are no missing measurements

t̂i is the centroid of the point correspondences in view i, so it is the same for all methods. When there are missing

measurements t̂i will depend on the particular rotation solution (see Appendix D), so it will differ depending on the

method.

3) Success Rate: Esucc ∈ [0, 100]. We define the success rate as the percentage of instances for which a method

produces a metric structure solution. The success rate of MC-CVIU09, MOVA and Best+OBA is 100%, so we only

compare success rates for Exact PSfM-O, Approximate PSfM-O, TJK-CVPR10 and TK-factor. The success rate of

Approximate PSfM-O(LRE) is the same as Approximate PSfM-O so we omit it from the results.

C. Simulation Experiments

We ran a large number of simulation experiments to test the accuracy of the methods in a variety of conditions. We

generated ground truth structure matrices SGT by synthesizing N points positioned randomly on the structure plane z = 0
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N M σn σk γ

Experiment 1 [3, 40] 3 2 0 0

Experiment 2 [3, 40] 4 2 0 0

Experiment 3 [3, 40] 8 2 0 0

Experiment 4 [3, 40] 12 2 0 0

Experiment 5 3 4 2 [0, 10] 0

Experiment 6 3 8 2 [0, 10] 0

Experiment 7 50 3 2 5 [0, 70]

Experiment 8 50 8 2 5 [0, 70]

TABLE III

EXPERIMENTAL PARAMETERS USED IN EIGHT SIMULATION EXPERIMENTS.

in world coordinates. These were drawn within the square centred at the origin. The points were then normalised so the

centroid was at the origin and the mean distance from the origin was 100 units. A set of M random rotations were then

generated: RGT =
{
RGT

1 , . . . ,RGT
M

}
where RGT

i ∈ SO3 rotates the structure plane to camera coordinates. Similarly

to [30] we randomly generated these using Euler angles where each angle was assigned with uniform probability in the

range [−80,+80] degrees. It was unnecessary to simulate variation in the camera translations because is has no effect on

a method’s accuracy (because the point correspondences are simply translated in the image), so we set tGT
i = 02×1 for

all views. We also simulated variation of the camera magnification factors ki because in real conditions the orthographic

model may not hold perfectly due to variation in the scene’s depths. For each view we assigned ki with a random

distribution ki ∼ N (1, σk/100), σk ∈ R. We then projected the scene points for each view and perturbed them with IID

zero-mean Gaussian noise with standard deviation σn. To simulate missing measurements we randomly removed γ%

of the correspondences in each view. This was done while ensuring the scene’s affine structure could still be recovered

using Algorithm F.

We excluded from the evaluation all simulations that were badly conditioned, since they cannot be used to draw

meaningful comparisons between the methods. This was done with the following policy. For a given simulation we first

ran bundle adjustment initialised using the ground truth. If it converged far from the ground truth solution we assumed

the problem was ill-conditioned and did not select it (we used a structure error threshold of 10%). We also tested whether

the reprojection error had a local minimum at the point of convergence using the conditioning number of the residual

error Jacobian matrix with a threshold of 1×10−7. If so it was used for evaluation. We computed performance statistics

over different values of the experimental parameters {N,M, σk, σn, γ} by averaging over T = 1000 simulated scenes.

We conducted eight experiments given in Table III.

1) Results: The results of experiments one to four are shown in Figure 2. Each column corresponds to one experiment

and the six rows show different performance statistics across the methods (the success rate, mean and median structure

error, mean and median rotation error and mean reprojection error). Results for Exact PSfM-O are shown only in the

first column because it is only applicable when M = 3. TJK-CVPR10 is not present in experiment one and shown as

a black cross in experiments two, three and four because it is applicable when N = 3 and M > 3 only. Results for

translation error were not plotted because they were the same for all methods (because γ = 0%).

With respect to success rate, when N = 3 points the success rate of TK-Factor is 0%. This is because when N = 3
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the measurement matrix Q̂ never has a rank greater than two even with noise, so TK-Factor fails because it returns rank-

deficient upgrade matrices that cannot be inverted. When N > 3, noise increases the rank of Q̂ beyond its theoretical

rank, which means it is possible to find full-rank upgrade matrices using TK-Factor, which is about 65% of the time

when M = 4 and 95% for M = 12. However the solutions from TK-Factor are poor compared to all other methods

except MC-CVIU09, both of which perform worse than the fall-back method (i.e. MOVA). Structure and rotation errors

for Exact PSfM-O, Approximate PSfM-O, Approximate PSfM-O(LRE) and Best+OBA tend to decrease with more points

because the effect of noise reduces. There is virtually no difference between the accuracy of Approximate PSfM-O and

Best+OBA across all statistics. For M = 3 there is a significant difference in the structure error from Approximate

PSfM-O(LRE) and Approximate PSfM-O. This is expected because for three views structure is not in general unique.

Therefore the structure solution from Approximate PSfM-O that is closest to ground truth is not necessarily the correct

one. When M = 4 and beyond we see that the accuracy of Approximate PSfM-O(LRE) and Approximate PSfM-O is

similar. There is slight deviation for M = 4, which can be explained by the fact that sometimes there can be multiple

structure solutions when the cameras are in a particular configuration (see Theorem 2). With more views the likelihood

of this occurring rapidly diminishes, which explains why they show the same error for M > 4.

The success rate of Approximate PSfM-O (and Approximate PSfM-O(LRE)) was approximately constant in all

experiments and for all N at approximately 99.8%. For Exact PSfM-O, we see in experiment one a gradual improvement

in success rate from 82% to 94% as the number of points increases. This suggests that as the influence of noise decreases

the chances of being able to exactly upgrade the scene’s affine structure to metric structure increases. Because the solution

from Exact PSfM-O gives the optimal solution to PSfM-O (from Theorem 6), this indicates that we can find the optimal

solutions in closed-form for three views between 82% to 94% of the time in these cases. The reason why Exact PSfM-O

has worse performance than Approximate PSfM-O is because it fails more often, so we revert back to the fall-back

method more often than with Approximate PSfM-O.

The results for experiments five and six are shown in the first two columns of Figure 3. For all methods we see

a reduction in accuracy as the magnification factor standard deviation σk increases, which is due to increasing the

modelling error. In experiment six we see a significant reduction in the success rate of TKJ-CVPR10 to 80.6% when

σk = 10%. There is also a very small drop in success rate of Approximate PSfM-O and Approximate PSfM-O(LRE)

but only to 99.1% when σk = 10%. The success rate of TK-Factor is 0% for all values of σk, which as discussed

above is because it never computes an invertible upgrade matrix when N = 3. Unusually, we see that the mean structure

error of bundle adjustment appears worse than our methods, however the median error is very similar. The problems

are caused by the fact that for large k the data violate the noise model (it is no longer IID Gaussian), so we may

not necessarily observe bundle adjustment giving the most accurate solutions. By contrast we see the mean errors of

Approximate PSfM-O and Approximate PSfM-O(LRE) degrade gracefully with increased k. Similarly to the previous

experiments we see that the accuracy of Approximate PSfM-O and Approximate PSfM-O(LRE) is indistinguishable

when the number of views reaches eight, because the likelihood of there being discrete structure ambiguities diminishes

considerably. As σk increases we see a greater difference in accuracy between TKJ-CVPR10 and Approximate PSfM-

O, which indicates TKJ-CVPR10 cannot handle modelling approximation error as well as Approximate PSfM-O. The

results for experiments seven and eight are shown in the last two columns of Figure 3. In these experiments we plot

DRAFT



PLANAR STRUCTURE-FROM-MOTION WITH AFFINE CAMERA MODELS: CLOSED-FORM SOLUTIONS, AMBIGUITIES AND DEGENERACY ANALYSIS22

the translation error in the last two rows (recall that the translation error is only relevant when γ > 0). Again we see

virtually no difference between bundle adjustment and Approximate PSfM-O. When M = 8 Approximate PSfM-O and

Approximate PSfM-O(LRE) are indistinguishable.

In summary, these experiments show that under I. I. D. Gaussian measurement noise there is virtually no gain in the

bundle adjustment solution compared to Approximate PSfM-O. This is an unusual and interesting result because bundle

adjustment optimises both structure and camera poses with the full reprojection error. By contrast Approximate PSfM-O

estimates structure by an algebraic upgrade function (Equation (17)). This result tells us something quite profound about

the problem. It indicates that the optimal metric structure is extremely similar to the optimal affine structure up to an

upgrade transform, and Equation (17) does an excellent job for finding the transform (or transforms if the problem is

ambiguous).

D. Real-Data Experiments

In this section we present results using real image data. We add to the methods bundle adjustment with a perspective

camera (with fixed and pre-calibrated intrinsic matrices), which we call Best+PBA. Similarly to Best+OBA we compute

this by taking the best solution to structure across all methods, but then we resect the cameras with perspective planar

PnP [24]. We then run bundle adjustment to jointly refine the structure (which we constrain to lie on the plane z = 0

in world coordinates) and perspective camera poses with Levenberg-Marquardt.

1) Reconstruction with a Textured Planar Surface: The first set of real-data experiments were performed with an

unorganised collection of eight views of a textured sheet of A4 paper mounted on a flat surface (Figure 5). The views

were taken with a Nikon D800 DSLR with a 120mm lens with fixed focal length and image resolution of 3680× 2456.

The pattern on the paper measured 23.0× 20.5mm with an average distance to the camera of approximately 3.2m. We

intrinsically pre-calibrated the camera with Bouguet’s toolbox [31] which gave an effective focal length of 1.0068×104px

and 1.0060× 104px in the x and y axes respectively (which is approximately 2.27 times the image diagonal). Feature

points were computed over the pattern with SIFT [32] using the VLFeat implementation [33], which gave on average

288.3 features per view. We computed ground truth camera poses using a digital image of the paper as a 2D template

which we registered in 3D to each view using a direct approach based on the DIRT toolbox [34]. Correspondences

and ground truth structure were determined by matching SIFT descriptors and computing the optimal positions of the

features on the 2D template given the camera poses. For this we computed all inter-image homographies from the camera

poses then computed putative correspondences between each pair by matching features with the closest SIFT descriptors.

Correspondences were used if predicted by the homography to within 7 pixels. The correspondences were then chained

to give 1842 unique points, and we then refined the points’ positions on the 2D template by minimising the reprojection

error using Levenberg-Marquardt. The average number of missing correspondence per view was 64.5%.

We measured the performance of each method across two dimensions. The first dimension was the number of views

M which we varied from M = 3 to M = 7. For each M we ran the methods over all possible subsets of M views. We

also measured how performance varied with smaller neighbourhoods of correspondences. The purpose was to investigate

how methods perform as the number of point correspondences decreased. We performed this by taking each of the 1842

points in turn, and for each point we used only neighbouring correspondences that were within a neighbourhood radius

r to that point. In our experiments we varied r between 15% and 60% of the whole pattern’s size.
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Fig. 2. Simulation experimental results: experiments one to four with one experiment per column. Best viewed in colour.
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Fig. 3. Simulation experimental results: experiments five to eight with one experiment per column. Best viewed in colour.
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The results are shown in Figure 4. Along each column we plot results for M = 4, M = 5 and M = 8 from left to

right. Along each row we plot the mean and median structure error, mean and median rotation error, and success rate

against the neighbourhood radius. We first inspect structure error. For all M the accuracy of Best+PBA is poor but tends

to improve with a larger neighbourhood size. This is because for smaller neighbourhoods planar SfM with perspective

cameras becomes badly-conditioned. The results for TK-FACTOR look better than they actually are, which is because

its success rate is so low. Therefore very often it had to revert to the solution from MOVA. We again see that across

all settings there is very little difference between Approximate PSfM-O and bundle adjustment. In terms of success rate

Approximate PSfM-O never dropped below 99.92%.

2) Reconstruction from an Orbiting Image Sequence: The second real-data experiment involved reconstructing the

top surface of a bottle cap from an ordered set of orbiting views (Figure 6). The image set consists of 18 1600×1800px

views taken with an automatic compact camera with fixed zoom. Views 1, 10 and 18 are shown in Figure 6 (first

row, left). We intrinsically pre-calibrated the camera with Bouguet’s toolbox which gave an effective focal length of

1.26× 104px in the x and y axes (which is approximately 6.32 times the image diagonal). Points were computed using

the Harris detector on the first view of the bottle cap (using default parameters), which gave 137 points (Figure 6 (row

three, left image)). We tracked the points in subsequent views using KLT. To reduce tracking drop-off, for each view

i ∈ {2, . . . 18} we computed an approximate homography between view 1 and i, then back-warped image i to image 1,

and then ran KLT on the back-warped image. The approximate homography was computed using SIFT feature matching

and RANSAC. Outliers from KLT were detected by refitting the homography with RANSAC to the KLT matches and

rejecting matches with a transport error beyond 5 pixels. We used the fact that the bottle cap’s top surface is circular

to rectify image 1 with a homography (Figure 6 (row three, left image)). Ground truth structure was computed by first

computing the optimal 2D affine structure using Algorithm 6 and mapping the point’ affine structure to the rectified

image. The number of missing correspondences began at 0% in image 1 and rose to 56.2% in image 18.

Similarly to the previous experiment, we measured performance by randomly sampling sub-sets of views from the

full collection of 18 views, whose size we varied from 3 to 10. For each size we drew 50 random subsets and computed

performance statistics over the 50 subsets. The results for mean structure error, median structure error, mean reprojection

error and success rate are shown in Figure 6, second row. We see that PSfM-O again performs very well and there is

no significant difference with bundle adjustment. The success rate of Approximate PSfM-O (and Approximate PSfM-

O(LRE)) was 100% in all cases. The success rate of TK-Factor generally reduced with more views, and for 10 views

was 36%. The method with lowest reprojection error was Best+PBA, however this also produced much higher structure

error. This tells us the perspective camera is unsuitable for solving this problem, due to the bottle cap being too small to

reliably estimate structure and the perspective camera projection matrices. In the last two rows of Figure 6 we show the

reconstructed points computed from each method with a subset size of 10. The ground truth structure is shown by the

set of red circles. The dark circles show the reconstructed points from a method. Because for each method we performed

50 reconstructions, we overlaid all 50 reconstructions. One can see a good clustering of the points by Approximate

PSfM-O and Approximate PSfM-O(LRE) about the ground truth positions.

We also ran a second experiment to test how the methods performed by adding views in sequential order, starting from

the first three views. The purpose was to see how accuracy improved as the baseline of the image set increased. The
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Fig. 4. Results on the image set shown in Figure 5. In the three columns we show results using three, five and eight of the views. In the rows we

show the corresponding performance statistics.

results are shown in Figure 6, top-right. One can see a smooth reduction error of Approximate PSfM-O, Approximate

PSfM-O(LRE) and Best+OBA as the number of views (and the the baseline) increased. This demonstrates again the

accuracy of our method and that there is no significant gain in accuracy by refining our solutions with bundle adjustment.

V. CONCLUSION

We have presented a number of important technical and theoretical contributions for planar Structure-from-Motion

with affine cameras. The problem is fundamentally different to SfM with non-planar structures, because the affine camera
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Fig. 5. A real test set consisting of eight unorganised 3680× 2456 views of a textured flat A4 sheet of paper.
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Fig. 6. Results for reconstructing the top section of a bottle top from an orbiting image sequence (best viewed in colour).

models one can use are more restricted, the upgrade constraints are non-linear and non-convex, and the problem is far

more ambiguous. We have presented eight new theorems that significantly deepen our understanding of the problem.

Our main theoretical result is a complete geometric characterisation of degeneracies with orthographic cameras (i.e. the

PSfM-O problem). A key to achieving this was Exact PSfM-O, which is the first non-artificially degenerate algorithm to
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solve the PSfM-O problem. The second main theoretical result is to show that the PSfM-O problem can have discrete

structure ambiguities with a general number of views, and to give the necessary and sufficient geometric conditions

for disambiguation. We have also presented three cases when SfM may be solvable with other affine cameras, which

necessarily requires additional knowledge.

Our main technical contribution is Approximate PSfM-O, which solves the PSfM-O problem in its most general

form. Approximate PSfM-O handles cases when there exist discrete structure ambiguities, which is not true of previous

algorithms. The solutions from Approximate PSfM-O tend to be very close to locally-optimal metric reconstructions. This

has been demonstrated by extensive empirical evaluation which shows that the solutions are not significantly improved

by running bundle adjustment. Because Approximate PSfM-O is stratified it does not optimise the reprojection error at

all stages (it does this only at the affine reconstruction and camera resection stages). The fact that the results are very

close in accuracy compared to fully optimising the reprojection error tells us two important things that were previously

unknown. The first is that we can compute the plane’s metric structure very well from the optimal affine reconstruction

up to an unknown upgrade transform. The second is that our upgrade cost function does an excellent job of finding the

transform (or multiple transforms if the problem is ambiguous) in closed-form, even for high levels of measurement

noise. In the case of three views we have some theory to explain this phenomenon (Theorem 6). Specifically, if we

can exactly upgrade an optimal affine reconstruction to a metric reconstruction then the upgraded reconstruction is the

optimal metric reconstruction. In these cases running bundle adjustment will do absolutely nothing. Empirically we have

found that we can do this for 80 to 90 percent of cases depending on noise (see Section 4c1). More theoretical analysis

is required to study the precise relationship between optimising the full reprojection error and the stratified cost functions

in our method for more than three views, and we leave this to future work. This is non-trivial and requires uncertainty

propagation to analyse how error in the measurements propagate to errors in the upgrade cost function.
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APPENDIX A

WHY EXISTING STRATIFIED METHODS CANNOT SOLVE PLANAR SFM WITH AFFINE CAMERAS

Assuming complete measurements, let q̃ji
def
= q̂ji −

∑N
k=1 q̂jk be the zero centred correspondence of the jth point in

the ith view. Measurements stack to form the 2M ×N measurement matrix Q̂ that factorises as follows:

Q̂ =


q̃1
1 q̃2

1 . . . q̃N1

q̃1
2 q̃2

2 . . . q̃N2
...

...
. . .

...

q̃1
M q̃2

M . . . q̃NM

 = stack ([M1]2×3, [M2]2×3, . . . , [MM ]2×3)S + ε (29)

where ε ∈ R2M×N denotes measurement noise. Existing stratified methods would first compute an affine reconstruction

using the rank-three approximation of Q̂, then use orthogonality constraints to upgrade it to a metric reconstruction. The

optimal affine reconstruction is computed from the SVD of Q̂: Q̂ = UΣV>, where U and V are unitary matrices and

Σ is the diagonal singular value matrix (sorted by decreasing magnitude). Ignoring noise we have

stack ([M1]2×3, [M2]2×3, . . . , [MM ]2×3) = [U]2M×3[Σ]
1/2
3×3Y, S = Y−1[Σ]

1/2
3×3[V]>N×3 (30)

where Y is the unknown full-rank 3 × 3 upgrade matrix. The problem is solved by finding Y using metric upgrade

constraints. For orthographic cameras we have [Mi]2×3 ∈ S2×3 ⇔ UiY ∈ S2×3 ⇔ UiYY>U>i = I2, where Ui

denotes the ith 2 × 3 sub-block of [U]2M×3[Σ]
1/2
3×3. This imposes linear equality constraints on the Gramian matrix

Z
def
= YY>. When the structure is planar the maximum theoretical rank of S is two, so [Σ]33 = 0, and the metric

upgrade constraint becomes:

Ui

 [Σ]
1/2
2×2[Z]2×2[Σ]

1/2
2×2 02×1

01×2 0

U>i = I2 (31)

Existing stratified methods would try to recover Z using Equation (31) by relaxing Z � 0 to Z being symmetric, which

makes this an unconstrained Linear Least Squares (LLS) problem. If the solution to Z is positive definite, Y would

be recovered from its Cholesky decomposition (which is up to a 3D unitary gauge transform). However Equation (31)

constrains only the top-left 2 × 2 submatrix of Z. Because Z is positive definite this means only 3 of its 6 DoFs are

constrained, so it cannot be recovered.

APPENDIX B

ARTIFICIAL DEGENERACIES IN PREVIOUS PSFM-O METHODS

The method of [23] produces artificial degeneracies because there exist non-degenerate inputs which cause the

coefficients in Equation (2.9) to be zero, which means a solution cannot be computed. An example is as follows:

M1 =

 −0.4893 −0.0706 −0.8693 0

−0.6538 −0.6299 0.4192 0

 M2 =

 −0.5100 0.8452 −0.1597 0

−0.4637 −0.4265 −0.7766 0


M3 =

 −0.5265 −0.5458 −0.6518 0

−0.4506 −0.4710 0.7584 0

 S =


0 0.7492 0.7637

0 0.0392 0.5588

0 0 0


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The method of [22] produces artificial degeneracies because it fails when the structure points are colinear in the views,

which occurs when the structure plane’s normal is orthogonal to the camera projection directions. However this is not not

a necessary condition for a degeneracy (see Theorem 1). The method of [15] produces artificial degeneracies because

it cannot solve the minimal case of three views, and fails with four or more views when there is discrete structure

ambiguity (see Theorem 7 for the geometric conditions when this occurs).

APPENDIX C

AFFINE CAMERA DECOMPOSITION AND INTERPRETATION AS A LINEARIZED PERSPECTIVE CAMERA

Any affine camera can be interpreted as a linearised perspective camera. In Table IV we give the relationship between

a perspective camera and its corresponding affine camera by linearising the pinhole projection function π : R3 → R2

about some 3D point y ∈ R3 in camera coordinates. This also requires decomposing a full-rank affine projection matrix

M according to Equation (3), which is given in Algorithm 5. We obtain different types of affine cameras with different

parameterisations of y. Specifically, we obtain an orthographic camera with y = stack(0, 0, 1) (the linearisation is made

on the optical axis at a depth 1). We obtain a weak-perspective camera with y = stack(0, 0, d) (the linearisation is made

on the optical axis at a depth d, which can vary between views). We obtain a para-perspective camera with y ∈ R3 (the

linearisation can be made anywhere in space).

Algorithm 5 affineCameraFactorisation: Factorises a 2× 4 affine projection matrix according to Equation (3)
Require: M ∈ R2×4

1: function affineCameraFactorisation(M)

2: UΣV> ← svd([M]2×3), det(V) = 1

3: AQ← lq (UΣ) . LQ decomposition

4: R←

 Q 03×1

01×3 1

V>

5: [t]2×1 ←M
[
0>3×1 1

]>
6: return A, R, [t]2×1

APPENDIX D

OPTIMAL PLANE-BASED POSE ESTIMATION WITH ORTHOGRAPHIC CAMERAS

For simplicity we drop the view index. We assume there are L point correspondences in the image with 3 ≤ L ≤ N .

We use s0 ∈ R2 and q0 ∈ R2 to denote the point centroids of the structure and image points respectively. We first center

the points by subtracting their centroids, which eliminates translation and we are left with computing rotation. We define

the centered point sets by {s̃j} and {q̃j} respectively, and define the unknown sub-rotation matrix C
def
= [R̂]2×2. We

then have the problem
arg min
C∈SS2×2

∑L
j=1 ‖C[s̃1, s̃2, . . . s̃L]− [q̂1, q̂2, . . . q̂L]‖22

= arg min
C∈SS2×2

trace
(
CZC> −CY

) (32)
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The point y = d[v>1]>

where π is linearised

Affine projection matrix

M = kA [[R]2×3 [t]2×1]
Projection direction

Orthographic
d = 1

v = 02×1

k = 1, A ≈ [K]2×2

R ≈ Rp

t ≈ tp +

 [K]−1
2×2c

1

 a> = [0, 0, 1]>Rp

Weak-perspective
d ∈ R+

v = 02×1

k ≈ 1/d, A ≈ [K]2×2

R ≈ Rp

t ≈ tp +

 [K]−1
2×2c

1

 a> = [0, 0, 1]>Rp

Para-perspective
d ∈ R+

v ∈ R2

k ≈ 1/d, A ≈ [K]2×2Â

R ≈ R̂Rp

t ≈ R̂

tp +

 [K]−1
2×2c+ v2×1

1

(
Â, R̂

)
= afactor([I2| − v|02×1])

a> = [0, 0, 1]>R̂Rp

TABLE IV

ORTHOGRAPHIC, WEAK-PERSPECTIVE AND PARA-PERSPECTIVE CAMERAS DEFINED BY A LINEARISED PERSPECTIVE CAMERA. THE TERMS

K ∈ R3×3 , c ∈ R2 , Rp ∈ SO3 AND tp ∈ R3 DENOTE THE PERSPECTIVE CAMERA’S INTRINSIC CALIBRATION MATRIX, PRINCIPAL POINT,

ROTATION AND TRANSLATION RESPECTIVELY. THE FUNCTION π(x, y, z)
def
= 1/z [x, y]> IS A PINHOLE PROJECTION AND ≈ DENOTES AN

APPROXIMATION UP TO FIRST-ORDER.

where
Z

def
= [s1, s2, . . . sL]>[s1, s2, . . . sL]

Y
def
= 2 [s1, s2, . . . sL]>[q̂1, q̂2, . . . q̂L]

(33)

From the spectral definition of SS2×2 we have C ∈ SS2×2 ⇔ det(C>C − I2) = 0, det(C) ≤ 1. The problem is

therefore a convex quadratic optimization on C subject to quadratic equality and inequality constraints. This can be

cast as a Generalised Problem of Moments [27] and because it is a small scale low-order problem is exactly the type

of problem that can be solved globally with Gloptipoly. Given C we reconstruct the two full rotation matrix solutions

R̂a and R̂b as follows. The third column of R̂a is given by stack
(

[F]
1/2
11 , [F]

1/2
22 ,det(C)

)
where F

def
= I2 − C>C.

The third column of R̂b is given by stack
(
−[F]

1/2
11 ,−[F]

1/2
22 ,det(C)

)
. The third rows of R̂a and R̂b are then given

by cross-producting their first two rows. Because point centroids are preserved by affine transforms the corresponding

solutions to translation are t̂a = t̂b = q0 −Cs0.

APPENDIX E

MOVA: THE FALLBACK METHOD

MOVA is an approximate stratified-based solution that uses the following heuristic: if the camera orientations are

distributed randomly and independently then with a sufficiently large number of views there is likely to be one that has a

fronto-parallel view of the structure plane (in the limit the probability reaches 1). If we do indeed have a fronto-parallel

view then the points in its image give the metric structure up to noise. In reality we are never likely to have such a view,

but we can approximate metric structure using the view that is most fronto-parallel. This is the view where det2([Ri]2×2)

is largest. Because det([Ri]2×2) = det(MA
i X) = det(MA

i ) det(X), it is also the view where det2(MA
i ) is largest, so
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it can be determined entirely from the affine structure matrix. Suppose this is given by view i∗. Assuming this view is

fronto-parallel we have MA
i∗WMA>

i∗ ≈ I2, so we can approximate the upgrade matrix by W ≈
(
MA

i∗
)−1 (

MA
i∗
)−>

.

Metric structure can then be computed by factoring W as described in §III-A. We use MOVA as the fall-back solution

because we can always compute metric structure unless for all views det(MA
i ) = 0 (in which case we cannot perform

the matrix inversion). This happens when the structure plane normal is orthogonal to the projection direction in all views,

and is a rare occurrence in practice.

APPENDIX F

ALGORITHM FOR COMPUTING PLANAR AFFINE STRUCTURE WITH GENERAL AFFINE CAMERAS AND MISSING

MEASUREMENTS

The algorithm we use is given in Algorithm 6.

Algorithm 6 (Planar Affine Structure with General Affine Cameras from Point Correspondences)
Require: {qj

i} . point correspondences with view index i ∈ {1, . . . ,M} point index j ∈ {1, . . . , N}
1: function affineReconstruct2D({qj

i}))
2: Construct a directed graph G of M nodes with weighted edges E(j, k) ∈ R+M×M . E(j, k) is the conditioning number of the linear system

for solving the Least Squares 2D affine transform from view j to k using points measured in both views.

3: Compute the connected components of G and remove all views not connected to the largest component.

4: Assign the root view i∗ to be the one with the shortest sum of paths from all other views.

5: Compute 2D affine transforms Fi from i to i∗ by chaining affine transforms along the shortest path to i∗.

6: Transfer all measured points to the root view using Fi. For each point j ∈ {1, . . . ,M} compute its median sj ∈ R2×1 in the root view.

7: Initialise the affine structure SA with sj in its jth column.

8: Compute Least Squares 2D affine transform F′i mapping SA to measured points in ith view.

9: Jointly refine F′i and SA to minimise the affine reconstruction reprojection error using Levenberg-Marquardt.

10: return MA = stack
(
[F′1]2×2, . . . , [F′M ]2×2

)
,SA

APPENDIX G

DERIVATION OF ALGORITHM 1

Equation (16) is a quadratic constraint on w that has the form

aiw1 + biw2 + ciw3 + di(w1w3 − w2
2) = 1

Ei
def
= MA>

i MA
i , ai

def
= [Ei]11, bi

def
= 2[Ei]12, ci

def
= [Ei]22, di

def
= −det(Ei)

(34)

We solve this system by introducing the determinant of W as an auxiliary variable s def
= w1w3 − w2

2 . The following is

then equivalent to Equation (16):

AE stack(w, s) = 13×1, w1w3 − w2
2 − s = 0 (35)

where AE is a 3× 4 matrix holding [ai bi ci di] in its ith row. This system has three linear equations and one quadratic

equation, so it must have either 0, 1 or 2 real solutions. We solve it by first using the linear constraints to find stack(w, s)

up to a 1-DoF affine subspace: stack(w, s) = stack(w′, s′) +αz, where z is a unit nullvector of AE , α is an unknown

scalar and (w′ ∈ R3, s′ ∈ R) is any solution to AE stack(w, s) = 13×1. We compute (w′, s′) with the Moore-Penrose
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pseudoinverse: stack(w′, s′) = A>E(AEA>E)−113×1. We then resolve α with the quadratic constraint in Equation (35).

This is given by all real solutions to aα2 + bα+ c = 0 where

a
def
= z22 − z1z3, b

def
= z4 − w′1z3 + 2w′2z2 − w′3z1, c

def
= w′22 + 1− w′1w′3 (36)

For each solution to α, w is given by w = w′ + α[z]3×1. We then test whether this solution satisfies fw) � 0, which

means it is a feasible upgrade solution and we can recover X (and hence metric structure) from it using Equation (13).

We also test whether the inequality constraints in the right-hand side of Equation (15) are satisfied. If so, then we know

that all constraints in problem (14) are satisfied.

APPENDIX H

PROOF OF THEOREM 1

A. Definitions and Theorem 1 in a Compact Form

We define (M̃A, S̃A) to be a 2D affine reconstruction computed from noise-free measurements, with the rank of S̃A

being equal to the rank of the metric structure matrix S (which is at most two). We refer to solving PSfM-O using

(M̃A, S̃A) as the noise-free PSfM-O problem:

The noise-free PSfM-O problem:

find w ∈ R3 s.t. M̃A
i f(w)M̃A>

i ∈ G2×2, ∀i ∈ {1, 2, . . .M} (a)

f(w) � 0 (b)

(37)

The number of solutions to problem (37) gives the number of metric structure solutions.

Definition 1. An input (M̃A, S̃A) is a degenerate input if and only if problem (37) has an infinite number of solutions.

Definition 2. An input (M̃A, S̃A) is a non-degenerate input if and only if problem (37) has a finite number of solutions.

We use the following terms defined in §I-C: trivial camera degeneracies, critical motion sequences, structural degeneracies,

mixed degeneracies, artificial degeneracies and Non-artificially Degenerate Algorithms (NADAs). We also define two

more geometric entities:

Definition 3. The camera Gramian matrix Gi for view i:

Gi ∈ G2×2
def
= [Ri]

>
2×2[Ri]2×2

= X>M̃A>
i M̃A

i X

= I2 − [ai]2×1[ai]
>
2×1

(38)

The second line is because [Ri]2×2 = M̃A
i X and the third line comes from the fact that ai is the third row of Ri and Ri

is unitary. The camera Gramian matrix is important as a tool for geometrically interpreting the problem’s degeneracies.

Definition 4. The scalar D with 1 ≤ D ≤M is the number of unique camera Gramian matrices in the scene.
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From Equation (38) we have:

Gi = Gj ⇔ [ai]2×1 = ±[aj ]2×1 ⇔ ai =

 ±I2 02×1

01×2 ±1

aj (39)

This says that two camera Gramian matrices are equivalent if and only if the projection directions of the two cameras

are the same up to a sign change and a reflection about the structure plane (recall the structure plane is defined in world

coordinates on the plane z = 0). This means D is also the number of projection directions in the scene that are unique

up to reflections about the structure plane and changes of sign.

The trivial camera degeneracy stated in Theorem 1 is equivalent to the condition D < 3. The critical motion sequence

stated in Theorem 1 is when all projection directions lie on a plane which is orthogonal to the structures plane (Figure

1, right). This is equivalent to the condition:

∃a 6= 02×1 s.t.∀i ∈ {1, 2, . . . ,M}, [ai]2×1 ∝ a (40)

Theorem 1 is then stated compactly as follows:(
M̃A, S̃A

)
is degenerate ⇔ rank(S) < 2 orD < 3 or Eq. (40) holds (41)

This states that there is no mixed degeneracy in PSfM-O and a structural degeneracy only occurs when rank(S) < 2

(i.e. the structures points being co-linear).

The reverse implication of Equation (41) is easy to prove and given at the end of this section. The forward implication

trivially holds when rank(S̃A) < 2 because rank(S̃A) = rank(S) (from the definition of S̃A at the beginning of this

section). The forward implication when rank(S̃A) = 2 is however not easy to prove. We do this first for the minimal

case of M = 3 views. The generalisation to M > 3 views then follows quite easily. To ease readability we use S̄A to

denote a rank-two affine structure matrix.

B. Proof of Forward Implication of Theorem 1 with M = 3 views

When M = 3 we can solve problem (37) with Algorithm 1. We then prove the forward implication with a hypothetical

syllogism:
(M̃A, S̄A) is degenerate⇒ Algorithm 1 fails

Algorithm 1 fails⇒ D < 3 or Eq. (40) holds

∴ (M̃A, S̄A) is degenerate⇒ D < 3 or Eq. (40) holds

(42)

The first line is true by definition (because all algorithms fail with a degenerate scene). Our task is to prove the second

line. We do this with the following lemmas, recalling that in Exact PSfM-O AE is the linear constraint matrix (see

Equation (35)) and a, b and c are the three quadratic coefficients (see Equation (36)).

Lemma 1. Exact PSfM-O Upgrade
(
M̃A

)
fails ⇔ rank(AE) ≤ 2 or a = b = c = 0

Lemma 2. rank(AE) ≤ 2⇒ (a = b = c = 0) does not hold

Lemma 3. rank(AE) ≤ 2 and rank(S) = 2⇒ D < 3 or Eq. (40) holds
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Lemmas 1 and 2 tell us that the only time Exact PSfM-O fails is when the matrix AE is rank-deficient. Lemma 3 tells

us that when AE is rank-deficient and rank(S) = 2 the right side of Equation (41) must hold, which completes the

proof.

Proof of Lemma 1: Exact PSfM-O fails if and only if we cannot compute the upgrade matrix using Algorithm 1.

This can happen for one of two reasons. The first is at Algorithm 1, line 6 and happens when AE is rank-deficient (i.e.

rank(AE) ≤ 2). This means we cannot compute z uniquely up to scale (i.e. we cannot compute a 1D affine subspace

for the upgrade matrix). If however AE is full-rank then we can always compute stack(w′, s′) with line 7. The second

place where Algorithm 1 may fail is at line 11 and happens when all coefficients in the quadratic equation are zero:

a = b = c = 0. This means we cannot resolve α and so we cannot resolve where in the affine subspace the upgrade

matrix exists.

Proof of Lemma 2: We prove this by splitting the space of full-rank AE matrices into two sets and showing that

in either set a = b = c = 0 is contradicted. Set 1 is when det(Ei) = 0 ∀i ∈ {1, 2, 3}. Set 2 is the complement (when

∃i ∈ {1, 2, 3}, det(Ei) 6= 0).

Set 1: By definition in Set 1 the fourth column of AE is all-zeros. Therefore rank (AE) = 3 ⇒ z = ±[0 0 0 1]>.

However from Equation (36) this implies b = ±1 which contradicts b = 0.

Set 2: Without loss of generality let det(M̃A
1 ) 6= 0, which implies M̃A

1 is full-rank. Because the affine reconstruction

is up to an arbitrary full-rank 2D affine transform, the problem does not change by redefining the factors with M̃A
i ←

M̃A
i

(
M̃A

1

)−1
and SA ← M̃A

1 SA. Thus without loss of generality we can assume M̃A
1 = I2. We then have

(c = 0)⇒ (w′1w
′
3 − w′22 = s′) (a)

([1 0 1 − 1] stack(w′, s′) = 1)⇒ w′1 + w′3 = s′ (b)
(43)

Equation (43-a) comes from the definition of c in Equation (36). Equation (43-b) comes from the first linear constraint in

Equation (35). When c = 0, this means the quadratic constraint in Equation (35) is satisfied by s← s′ and w← w′. By

definition, (w′, s′) also satisfies the linear constraints in Equation (35), which means s← s′ and w← w′ is a solution

to Equation (35), and is therefore a solution to Equation (16). Now because M̃A
1 = I2, we have det (f(w′)− I2) = 0,

which implies either λ1(w(w′)) = 1 or λ2(w(w′)) = 1. However this is contradicted by Equation (43-b). To see this,

we can eliminate s′ from the right sides of Equations (43-a,b) to give:

w′1 + w′3 = w′1w
′
3 − w′22

⇔ trace(w(w′)) = det(w(w′))

⇔ λ1(w(w′)) + λ2(w(w′)) = λ1(w(w′))λ2(w(w′))

(44)

If λ1(w(w′)) = 1 this means 1+λ2(w(w′)) = λ2(w(w′)) which is false for all values of λ2(w(w′)). If λ2(w(w′)) = 1

this means 1+λ1(w(w′)) = λ1(w(w′)) which is false for all values of λ1(w(w′)). Therefore we have a contradiction.

Proof of Lemma 3: From the definition of AE in Equation (35) we have:

rank(AE) ≤ 2⇒ ∃α, β ∈ R, s.t.∀{i, j, k} ∈ perm({1, 2, 3}) M̃A>
i M̃A

i = αM̃A>
j M̃A

j + βM̃A>
k M̃A

k (a)

det(M̃A
i ) = α det(M̃A

j ) + β det(M̃A
k ) (b)

(45)
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Equation (45-a) comes from the first three columns of AE , and Equation (45-b) comes from the fourth column. These

equations impose linear constraints on the camera Gramian matrices:

Eq. (45-a)⇒ (Gi = αGj + βGk) (a)

Eq. (45-b)⇒ (det(Gi) = α det(Gj) + β det(Gk)) (b)
(46)

This comes by pre and post-multiplying Equation (45-a,b) by X> and X respectively and substituting in Gi using

Equation (38). Because Gi ∈ G2×2, trace(Gi) = λ1(Gi) +λ2(Gi) = 1 + det(Gi), so taking the trace of the right hand

of Equation (46-a) gives:

1 + det(Gi) = α(1 + det(Gj)) + β(1 + det(Gk)) (47)

Subtracting Equation (46-b) from both sides of Equation (47) gives β = 1−α. We now take the right side of Equation (46-

a) and substitute β by (1− α):

Gi = αGj + (1− α)Gk ⇔ [ai]2×1[ai]
>
2×1 = α[aj ]2×1[aj ]

>
2×1 + (1− α)[ak]2×1[ak]>2×1 (48)

The right part comes by substituting the camera Gramian matrices for the camera projection directions using Equation

(38). For what projection directions does Equation (48) hold? Clearly the determinant of both sides of the second equality

in Equation (48) must be zero. Taking the right hand side, after simplification we have:

α(1− α) det
[

[aj ]2×1 [ak]2×1

]
= 0 (49)

This holds if either α = 0, α = 1 or [aj ]2×1 ∝ [ak]2×1. If α = 0 then Gi = Gk, which implies D < 3 (i.e.

a trival camera degeneracy). Similarly we have a trivial camera degeneracy when α = 1. In the third case we have

[aj ]2×1 ∝ [ak]2×1. From Equation (48) we therefore have [ai]2×1[ai]
>
2×1 ∝ [aj ]2×1[aj ]

>
2×1 ∝ [ak]2×1[ak]>2×1, which

implies Equation (40).

C. Proof of Theorem 1 (Forward Implication for Arbitrary M )

If the degeneracy is caused by the scene’s structure (i.e. rank(S) < 2) then the scene is degenerate no matter the

value of M . Consider instead rank(S) = 2. The forward implication of Equation (41) is proved by showing that D ≥ 3

implies Equation (40) holds. When the scene is degenerate there cannot exist a subset I ∈ {1, 2, . . . ,M}3 of three

views that is non-degenerate. This is because if there were such a subset then we could compute the upgrade matrix

using only the views in I and the problem would be solved. When D ≥ 3 we have at least three camera projection

directions that are distinct up to sign changes and reflections about the structure plane. For all subsets of three views

these camera projection directions must lie on a plane that is orthogonal to the structure plane. It therefore follows that

all of the camera projections must lie on this plane. This is equivalent to Equation (40) holding.

D. Proof of Equation (41) (reverse implication)

Proof that D < 3 ⇒
(
M̃A, S̃A

)
is degenerate: By definition D < 3 means there are fewer than three unique

camera Gramian matrices. Because Gi = [Ri]
>
2×2[Ri]2×2 and Gj = [Rj ]

>
2×2[Rj ]2×2 by definition, (Gi = Gj) ⇔

([Ri]2×2 = [Rj ]2×2U) ⇔ (MA
i X = MA

j XU) for some 2D unitary matrix U. This means MA
i X ∈ SS2×2 ⇔

MA
j X ∈ SS2×2 (i.e. the upgrade constraint is satisfied by view i if and only if it is satisfied by view j). Therefore
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given view i, view j provides no extra constraints on the upgrade matrix. Therefore when D ≤ 3 there are fewer than

three constraints on X (which has 3DoFs).

Proof that Equation (40) ⇒
(
M̃A, S̃A

)
is degenerate: Without loss of generality we rotate world coordinates

about the z-axis so that a = [1, 0]> (i.e. the azimuths of all cameras is now zero). The camera rotations are now of the

form

Ri =

 R2D (ψi) 02×1

01×2 1




cos(θi) 0 sin(θi)

0 1 0

− sin(θi) 0 cos(θi)


[Ri]2×2 = R2D (ψi)

 cos(θi) 0

0 1


(50)

The 2D rotation matrix R2D (ψi) ∈ SS2×2 denotes a rotation of the camera’s image about the camera projection

direction by an angle ψi. The angle θi is the inclination angle of the ith camera’s projection direction (see Figure 1).

Given any factorisation Q̂ = stack([R1]2×2, . . . , [RM ]2×2)>S2×N , consider the alternative factorisation [R′i]2×2 ←

[Ri]2×2

 d 0

0 1

 and S′2×N ←

 1
d 0

0 1

S2×N for some scalar d. For all 0 ≤ d < 1 we have [R′i]2×2 ∈ SS2×2,

so the alternative factorisation is metric. If there exists a non-zero inclination angle θi 6= 0 then there are an infinite

number of alternative metric factorisations, so the scene is degenerate. By contrast, if there does not exist a non-zero

inclination angle then all cameras have the same projection direction (which is orthogonal to the structure plane), which

implies D = 1, and from the first paragraph the scene is also degenerate.

Proof that rank(S̃) < 2⇒
(
M̃A, S̃A

)
is degenerate: When rank(S̃) < 2 points in world coordinates are colinear.

This means the camera rotations cannot be fixed because we can rotate each camera about an axis of rotation that is

colinear with the points in world coordinates and the image measurements do not change.

APPENDIX I

PROOF OF THEOREM 2

Without loss of generality let w1 and w2 be the two upgrade solutions using views 1,2 and 3. From Equation (34)

we have B stack(w, s) = 1M×1, where B is an M × 4 matrix with each row being [ai bi ci di], and s = det(f(w)).

We use the following lemma:

Lemma 4. Given four or more views we can disambiguate w1 and w2 if and only if B is full-rank.

Proof. We first prove the reverse implication. When B is full-rank we can relax the quadratic constraint s = det(f(w))

to s ∈ R, and we can then solve w and s uniquely by inverting the linear system: stack(w, s) = (B>B)−1B>1M×1.

We prove the reverse implication by showing that if we cannot disambiguate w1 and w2 then B is rank-deficient.

Let s1 = det(f(w1)) and s2 = det(f(w2)). If we cannot disambiguate w1 and w2 then B stack(w1, s1) = 1M×1

and B stack(w2, s2) = 1M×1. Because w1 and w2 are distinct, this implies B has a nullspace which implies B is

rank-deficient.

We now use the following lemma:
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Lemma 5. Given a fourth view, B is full-rank if and only if Equation (7) holds.

Proof. Because we have computed upgrade solutions using the first three views, the first three rows of B must be

linearly independent (otherwise the PSfM-O problem using the first three views would be degenerate, see Appendix

H-B). Therefore B is rank deficient if and only if its fourth column is a linear combination of its first three columns.

From the definition of B this means

rank(B) < 4⇔ ∃α, β, γ ∈ R s.t. E4 = αE1 + βE2 + γE3 (a)

det(E4) = α det(E1) + β det(E2) + γ det(E3) (b)

(51)

Pre and post-multiplying Equation (51-a,b) by X and X>, and using Gi = XEiX
> gives

rank(B) < 4⇔ ∃α, β, γ ∈ R s.t. G4 = αG1 + βG2 + γG3 (a)

det(G4) = α det(G1) + β det(G2) + γ det(G3) (b)

(52)

We then take the trace of both sides of Equation (52-a), substitute trace(Gi) ← 1 + det(Gi), and then subtract

Equation (52-b), which gives α + β + γ = 1. We then substitute γ ← (1− α − β) into Equation (52-a) and substitute

Gi ← I2 − [ai]2×1[ai]
>
2×1, which gives

rank(B) < 4⇔ @α, β ∈ R s.t.

[a4]2×1[a4]>2×1 = α[a1]2×1[a1]>2×1 + β[a2]2×1[a2]>2×1 + (1− α− β)[a3]2×1[a3]>2×1

(53)

The proof is completed by negating the implication in Equation (53).

The proof of Theorem 2 is completed by generalising the result to M > 4 views. Lemma 5 tells us that if we have a

fourth view for which Equation (7) holds then we can determine the correct structure solution. However, if Equation (7)

does not hold then the rank of B stays at three. From Lemma 4 this means the fourth view provides no extra constraints

on the solution. We can therefore only determine the correct structure solution when we have at least one additional

view for which Equation (7) holds.

APPENDIX J

PROOF OF THEOREMS 3 TO 8

A. Theorems 3 and 4

Theorems 3 has two parts. For the first part, the forward implication holds trivially because if a Type 1 problem is

degenerate then the equivalent problem with full measurements is degenerate, because by definition Type 1 problems are

those where we can complete the rank-2 measurement matrix from the incomplete measurements. The reverse implication

holds because when a system with complete measurements is degenerate then if we remove any of the measurements

the problem is still degenerate. For the second part, because we cannot compute the scene’s 2D affine reconstruction

with a Type 2 problem (by definition) then we cannot compute the scene’s 2D metric reconstruction (because all metric

reconstructions are affine reconstructions).

Theorem 4 has three parts. The first part holds trivially because if there are three or more correspondences that are

non-colinear on the structure plane, then the structure-plane-to-image 2D affine transform is fully-determined. Thus any
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additional point correspondences are redundant, so the disambiguation problem is equivalent to disambiguating with

complete measurements. The second part holds because if we have two distinct metric structures the Euclidean distance

between two points will in general be different. Let d1 > 0, d2 > 0 be the Euclidean distance between the two points

for structure solutions 1 and 2. Without loss of generality we assume d1 ≤ d2. Due to image foreshortening with an

orthographic camera the true Euclidean distance d ∈ {d1, d2} must be equal to or exceed the Euclidean distance dI

between their positions in the image (i.e. dI ≤ d). We can disambiguate structure if and only if there exists an additional

image with dI > d1. When this happens we know d 6= d1 (by contradiction), so structure solution 2 is correct. By

contrast suppose structure solution 1 is correct, so d = d1. In this case we cannot disambiguate structure because the

inequality dI ≤ d is satisfied by both d = d1 (because d1 is the true distance) and d = d2 (because d2 ≥ d1).

B. Theorem 5

Theorem 5 requires proving Algorithm 1 fails⇔ (M̃A, S̃A) is degenerate. The forward implication has been proved

by the second line of Equation (42) and the reverse implication has been proved by Equation (41).

C. Theorem 6

Let rA ∈ R denote the reprojection error of the scene’s optimal affine reconstruction and let rM ∈ R denote the

reprojection error of a metric reconstruction. There exists no metric reconstruction with rM < rA because if we impose

metric constraints on the cameras we reduce the solution space. Let r′M denote the reprojection error of a metric

reconstruction found by Exact PSfM-O by upgrading the optimal affine reconstruction. Because solutions from Exact

PSfM-O exactly transforms the affine reconstruction to a metric reconstruction we have r′M = rA. Therefore it is not

possible to find a better metric reconstruction of the scene, otherwise it would have a lower reprojection error than rA.

This means all solutions from Exact PSfM-O must be optimal metric reconstructions.

The last part of theorem 6 follows because Exact PSfM-O is NADA. Concretely, when Exact PSfM-O has no solution,

this means we cannot turn the optimal affine reconstruction into a metric reconstruction by transforming it with an upgrade

matrix. Therefore for any upgrade matrix X̃ the reconstructed camera factor M̃AX̃ cannot be a metric camera factor. The

individual camera factors M̃A
i X̃ must therefore be corrected a posteriori to make them members of SS2×2. However

the corrected solution will not be optimal because no matter how the correction is performed the upgraded structure

factor Ŝ = X̃−1SA will not be optimal in terms of reprojection error.

D. Theorem 7

Using the definition of the general affine camera in Equation (3), the generalisation of the PSfM-O upgrade constraint

to PSfM-PP is as follows:

MA
i X = kiAiRi ⇔ λ1

(
k−2i A−1i MA

i f(w)MA>
i A−>i

)
= 1⇔

 det
(
MA

i w(w)MA>
i − k2iAiA

>
i

)
= 0 (a)

det
(
MA

i w(w)MA>
i

)
≤ k2i det2(Ai) (b)

(54)

The first equivalence comes from k−1i A−1i MA
i X ∈ SS2×2 and the second equivalence comes from rewriting this

constraint similarly as Equation (15). Therefore in PSfM-PP each view provides one equality constraint on w (which

recall has three DoFs).
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For Case 1 we divide the views into two disjoint sets: I ′ and J def
= [1, 2, . . . ,M ] \ I ′ with size(I ′) ≥ 3. The views

in J provide no constraints on metric structure. To see this, for each view i ∈ J we have to solve camera resection

by decomposing A−1i MA
i X into kiRi. This provides no constraints on X (and hence no constraints on W) because

for all (Ai,X) we can compute the decomposition by ki = σ1 and Ri = 1
σ1

A−1i MA
i X with σ1

def
= s1(A−1i MA

i X).

Therefore only the views in I ′ are relevant for constraining structure. Because Ai∈I′ is known and ki∈I′ is constant

we can effectively convert all views in I ′ to orthographic views by transforming the points with A−1i . This has the

effect of undoing the ‘intrinsic’ component of the camera matrices (i.e. Ai). Now, because ki is assumed to be constant

for all views in I ′ this is exactly the same as using orthographic cameras with a common magnification factor k = ki.

Therefore we have converted the problem to PSfM-O where we only consider the views in I ′. It therefore follows that

structure is solvable if and only if the equivalent PSfM-O problem is solvable, and the geometric conditions for ensuring

this are given by Theorem 1.

For Case 2 we divide the views into two disjoint sets: I ′′ and J ′ def
= [1, 2, . . . ,M ] \ I ′′. Similarly to Case 1 the

views in J ′ provide no constraints on structure, so we need only consider the views in I ′′. From Equation (54-a). For

all i ∈ I ′′ we can write the combined term k2iAiA
>
i as an unknown positive definite matrix V parameterised with

V = v(v ∈ R3) =

 v1 v2

v2 v3

. Equation (54) provides one homogeneous quadratic constraint on six unknowns (i.e.

w and v). This means that to obtain a metric reconstruction we require the size of I ′′ to be at least 5.

For Case 3, let {p1, p2, . . . pP } denote the set of view pairs with pl∈{1,2,...P} ∈ {1, 2, . . .M}2. Let view i be a view

that does not belong to a view pair (i.e. there is no other view that has the same magnification factor as ki). From the

same reasoning as Case 1, view i provides no constraints on structure. Therefore to determine structure we need to only

deal with the views in {p1, p2, . . . pP }. To fix the scene’s scale ambiguity we can arbitrarily set the magnification factor

of the first pair to 1, which means the number of unknowns is P + 2 (including three unknowns for w). The number

of equality constraints from Equation (54-a) is 2P , which means to have the necessary number of equations we must

have P ≥ 2 (which means we require 4 or more views).

E. Theorem 8

Recall in Table IV the relationship between a perspective camera and its corresponding affine camera by linearising

the projection function about some 3D point yi ∈ R3 in camera coordinates, where i is the view index. We first take the

problem with para-perspective cameras. This requires calibrating yi, i ∈ I ′ and the camera extrinsics. We can calibrate

yi using the perspective camera’s intrinsic matrix Ki. This is done by setting yi so that the camera is the closest

approximation to the perspective camera. From [25] we known that this is when yi is at the structure’s 3D centroid

ci ∈ R3 in view i. Let us parameterise this by yi = distack(vi, 1), where di ∈ R is the depth of the centroid and

vi ∈ R2 is its direction. The closest first-order approximation of vi is known, and given by the vector passing through

the centroid of the structure points in image i [25]. What is unknown is di and the camera extrinsics. From Table

IV we know that di is, to first-order, inversely proportional to the camera’s magnification factor ki. Therefore if di is

approximately constant then so is ki. Therefore by definition we are in Case 1.

Exactly the same argument follows for weak-perspective cameras. The only difference is that yi is constrained to lie

on the optical axis (by the definition of the weak perspective camera). The depth of yi is calibrated by setting it to the
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average depth of the structure in view i [25].
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