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ABSTRACT

Specularities, which are often visible in images, may be problem-
atic in computer vision since they depend on parameters which are
difficult to estimate in practice. We present an empirical model
called JOLIMAS: JOint LIght-MAterial Specularity, which allows
specularity prediction. JOLIMAS is reconstructed from images of
specular reflections observed on a planar surface and implicitly in-
cludes light and material properties which are intrinsic to specular-
ities. This work was motivated by the observation that speculari-
ties have a conic shape on planar surfaces. A theoretical study on
the well known illumination models of Phong and Blinn-Phong was
conducted to support the accuracy of this hypothesis. A conic shape
is obtained by projecting a quadric on a planar surface. We showed
empirically the existence of a fixed quadric whose perspective pro-
jection fits the conic shaped specularity in the associated image.
JOLIMAS predicts the complex phenomenon of specularity using
a simple geometric approach with static parameters on the object
material and on the light source shape. It is adapted to indoor light
sources such as light bulbs or fluorescent lamps. The performance
of the prediction was convincing on synthetic and real sequences.
Additionally, we used the specularity prediction for dynamic retex-
turing and obtained convincing rendering results. Further results
are presented as supplementary material.

1 INTRODUCTION

The photometric phenomenon of specular reflections is often seen
in images. Specularities occur on surfaces when their imperfections
are smaller than the incident wavelength making them mirror-like.
In that case, light is completely reflected in a specular form (the
angles of reflection and incidence are equal w.r.t the normal of the
surface) creating a specular highlight in the image. Specularities are
important in several fields. They often saturate the camera response
and may impact the rest of the image. This abrupt change of the
image intensity disturbs computer vision algorithms such as cam-
era localization, tracking or 3D reconstruction. However, instead
of treating these specularities as perturbations or outliers, they may
be considered as useful primitives. In fact, specularities give ad-
ditional information about the depth of the scene [10, 31] and may
improve camera localization [21,24,34], 3D reconstruction [10,32]
and scene material analysis [5, 26, 27, 33]. In Augmented Reality
(AR) and computer graphics, these primitives allow significant im-
provement of rendering quality [8,11,12,16,17,19,30,31]. Indeed,
it was showed that specularities play a key role in scene perception
by the human brain [1]. To achieve better results for these appli-
cations, specularity prediction for a given viewpoint and a scene is
tremendously important.

By observing the shape of a specularity on a planar surface,
it seems plausible to model it by a conic. The latter is obtained
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Figure 1: We observe that specularities have a conic shape on planar
surfaces. We approximate them by projecting a fixed quadric which
includes light and material properties. This figure presents quadric
reconstruction examples (blue quadrics) for two light types (light bulb
(c) and fluorescent lamp (d)) and two materials (steel table (c) and a
plastic kitchen counter (d)). The lights sources along with the steel
table and the plastic kitchen counter can be seen in (a). Once re-
constructed, our virtual quadric model allows the prediction of future
specular reflections by simple perspective projection (blue conics).
(b) shows the specularity prediction close-up in the respective se-
quences.

by projecting a quadric on a plane. Considering these elements,
it is natural to ask if it would be possible to reconstruct a fixed
quadric explaining the specularity for every viewpoint. If possible,
this model would represent a link between the photometric phe-
nomenon of specularities (light and material) and multiple view ge-
ometry [14]. We propose JOLIMAS, an empirical model which al-
lows us to easily predict the position and shape of specularities from
existing and new viewpoints, as illustrated in figure 1. This model
is composed of a quadric which implicitly captures light and mate-
rial properties, which are intrinsic to specularities. This quadric is
reconstructed from the conics associated with the specularity. We
work essentially on planar surfaces because they are dominant in
the indoor context [4, 16]. With JOLIMAS, we collect experimen-
tal evidence to answer the above mentioned modeling hypothesis:
it turns out that the shape of specularities can be very well approx-
imated by a purely quadric based model. We work essentially with
specularities clearly visible (high intensity) because their impact on
computer vision algorithms is too high as opposed to smooth specu-
larities. When planar surfaces of strong roughness affects the spec-
ularity contours, our conic approximation is still relevant because
our model is abstracting this parameter along with the reflectance
of the surface material.

JOLIMAS is presented in section 3. Its estimation is detailed
in section 4 by comparing the different state of the art approaches
for quadric reconstruction. This empirical model, along with the
specularity predictions, is tested on synthetic and real sequences
including bulb and fluorescent lamps in section 5. We present an
application to specularity prediction on real sequences for retextur-
ing in section 6.



2 STATE OF THE ART

Specularity prediction is a difficult problem because a specularity
is a complex photometric phenomenon described by its size, po-
sition, shape and intensity. Additionally, these elements are highly
influenced by the camera (its pose and response function), the scene
including its geometry and material (reflectance and roughness) and
the light sources (position, shape, intensity, isotropicity). There
is currently no methods to estimate a predictive specularity model
from images. A natural approach would be to estimate a physical
model of the scene with the associated parameters for the materials
and light sources. As opposed to camera localization and 3D scene
geometric reconstruction, the estimation of these parameters is pos-
sible but extremely difficult and ill-posed in practice when only an
image sequence is available. Existing methods estimate the light
sources. They can be divided in two categories: global illumination
and primary source reconstruction.

For global illumination, Jacknik et al. [16] proposed light envi-
ronment map reconstruction from a video of a planar specular sur-
face. This method uses a GPU implementation and achieves a con-
vincing photo-realistic rendering for AR application. However, this
model does not distinguish primary and secondary sources, which is
essential for specularity prediction for unknown viewpoints. Meil-
land et al. [23] also present a global illumination estimation by
reconstructing primary sources as point lights. They are directly
observed from an RGB-D camera. Despite its high quality render-
ing, the method lacks flexibility. In fact, the method represents a
volumetric light source such as fluorescent light by a set of point
lights. Therefore, the method has to compute an intensity for each
of the different points which are supposed to represent the same
light. Moreover, dynamical light sources (lights changing intensity
over time) are not handled and specular materials are not modeled.
As a consequence, this method cannot predict specular reflections
for new viewpoints.

Solutions have been also proposed to the primary light source
reconstruction problem. Ideally, every physical light model has to
be associated with a geometry (position and shape), color [22] and
intensity value to realistically match the lighting conditions of the
scene. Even though many light models exist in computer graphics,
the ones used for light source reconstruction in computer vision are
generally divided in two categories: directional light sources and
point light sources. Lagger et al. [20] describe a method to com-
pute directional lights using specular reflections on a mobile object
observed from a fixed viewpoint. This application is limited as due
to the view-dependent aspect of specular reflections, light sources
should be estimated for each position. Neither shape, position nor
object material are taken into account, making the method unable
to predict specular reflections. Similar approaches [4, 18, 38] ex-
perience the same issues with the same limitations. On point light
source estimation, Boom et al. approach [3] computes a primary
light source assuming Lambertian surfaces and using an RGB-D
camera. From the diffuse term, by comparing synthesis rendering
with the real scene, a point light is estimated. However, this method
is not suitable for real-time applications and for volumetric light es-
timation as fluorescent lamps. By computing only one light source
without its shape and the associated specular material properties,
specularity prediction can not be achieved.

To predict a specularity from physical light source reconstruc-
tion, complex parameters of light and materials have to be com-
puted. In practice, a physical approach as the ones described pre-
viously does not seem practical, as we only have an image se-
quence and camera pose as inputs. To address this challenging
highly non-linear problem, we propose a quadric based model re-
constructed from conics fitted to specularities on each viewpoint.
Despite its simplicity, this empirical model, implicitly capturing the
light source and material parameters, allows specularity prediction
in new viewpoints.

Figure 2: JOLIMAS illustration, showing the link between photometry
(light and surface material) and multiple view geometry (our empirical
model). The light source L which could be either a light bulb or a fluo-
rescent lamp is creating specularities (the red conics) in the different
viewpoints Π1, Π2 and Π3. From multiple viewpoints, a quadric Q is
reconstructed from specular reflections of conic shape in the images
(C1, C2 and C3). We then use the quadric Q projected onto the planar
surface to predict specularities in new viewpoints.

3 MODELING

We propose JOLIMAS an empirical model, including light source
and materials properties. JOLIMAS uses a quadric reconstructed
from conics fitted to the specularity for each viewpoint as illus-
trated in figure 2. We assume a non-Lambertian planar surfaces
where each specularity is associated with a light source. A formal
demonstration of our conic specularity approximation on a planar
surface is given in the following section. We then evaluate our el-
liptical specularity hypothesis on planar surfaces empirically.

3.1 Theoretical Motivation
Phong model. We choose the Phong illumination model [28]

which is the baseline in most BRDF models [15]. This illumination
model divides the image in three components: the diffuse, ambi-
ent and specular ones. Recent models such as Blinn-Phong [2],
Ward [37], Cook-Torrance [6] differ in the way the specular term
is computed. These models propose improved roughness computa-
tion. Even if the Phong specular term is no longer used in rendering,
it perfectly suits the approximation in our study. Indeed, roughness
is implicitly included in the proposed JOLIMAS model.

The Phong intensity function of a 3D surface point p is given by:

I(p) = iaka + idkd(L̂(p) · N̂)+ isks(R̂(p) · V̂(p))n, (1)

with R̂ the normalized direction of a perfectly reflected ray of light
L̂, V̂ the normalized direction pointing towards the viewer, n the
glossiness of the surface, ks, ka and kd the ratio of reflection of
the specular, ambient and diffuse terms of incoming light, N̂ the
normal of the surface S and is, ia and id the incoming intensities on
the surface for the specular, ambient and diffuse term. We choose
the world coordinate frame so that the scene’s flat surface S⊂R3 is
the (XY) plane. In other words, S = {P ∈R3|PZ = 0}. We can thus
parameterize S by a point p ∈ R2 and define P = stk(p,0) with stk
the stack operator for notation simplicity.

Specular term. At point p, the specular component Is is given
by:

Is(p) = isks(R̂(p) · V̂(p))n, (2)

We want to analyze the isocontours of a specular highlight on
the surface S for a viewpoint V, a light source L and R =



stk(LX ,LY ,−LZ) . We first expand equation (13) for a general τ

and then solve it for τ = 1 and τ = 0.

Is(p) = τ. (3)

Because Is is a scalar product between two normalized vectors, we
have −1 ≤ Is ≤ 1. Moreover, because PZ = 0, RZ < 0 and VZ > 0,
Is > 0. Overall, 0 < Is ≤ 1. By expanding the specular term of
equation (16) and collecting the monomials of same degrees, we
have:

(d◦4) (1− τ
2)||P||4

(d◦3) 2(τ2−1)(R+V)>P||P||2

(d◦2) P>(RR>+2τ(1−2τ
2)RV>+

(2R>V− τ
2||R||2− τ

2||V||2)I)P

(d◦1) 2(−R>VR>−R>VV>+

τ
2||R||2V>+ τ

2||V||2R>)P

(d◦0) (R>V)2− τ
2||R||2||V||2.

We observe that the sum of degrees 3 and 4 factors as:

(1− τ
2)||P||2P>(P−2R−2V). (4)

The brightest point. For the highest intensity value τ = 1,
monomials of degrees 3 and 4 vanish such as the remaining terms
form a quadratic equation such as:

P̃>QP̃ = 0, (5)

where P̃ def
= stk(P,1) are the homogeneous coordinates of P. Matrix

Q ∈ R4×4 is symmetric and defined by:

Q=

[
[R−V]2× [V×R]×(V−R)

([V×R]×(V−R))> (R>V)2−||R||2||V||2
]

In the supplementary materials, we explain how rank(Q) = 2 and
Q is non-negative meaning that Q is a point quadric representing the
line containing R and V. Its intersection with S is defined as the
brightest point.

The outer contour. To further understand the structure of the
problem, we solve it for the lowest intensity value τ = 0 to study
the nature of the outer contour. Expanding the specular term of
equation (16), we obtain:

‖P‖2− (R+V)>P+R>V = 0, (6)

Which corresponds to a quadric surface and more particularly a
sphere whose point matrix is:

Q=

[
I3 − 1

2 (R+V)

− 1
2 (R+V)> R>V

]
. (7)

By defining the orthographic projection on S as:

A=

1 0 0
0 1 0
0 0 0
0 0 1

 , (8)

the highlight’s outer ring is thus given by the conic:

C= A>QA=

[
I2 − 1

2 (R̄+ V̄)

− 1
2 (R̄+ V̄)> R>V

]
,

with R̄ def
= stk(RX ,RY ) and V̄ def

= stk(VX ,VY ) are the orthographic
projection of R and V on S respectively. C represents a real circle for
τ = 0.By observing the circle C into the image plane of the camera
of optical center V, a conic is obtained and more particularly, an
ellipse if the specularity is entirely in the image plane.

(a) (b)

Figure 3: Illustration of our hypothesis of conic shaped speculari-
ties. A specularity is generated from the specular term of Phong
reflection model in (a) and from the specular term of Blinn-Phong re-
flection model in (b). In the latter, specularities are clearly elliptical
whereas in Phong, they appeared as more circular shaped. By ob-
serving these shapes from the image plane of the camera, conics
are obtained. If the specularity is entirely in the image plane these
conics are ellipses. We show in these examples the different isocon-
tours associated to a specific intensity τ = {0,0.5,0.9} (line contours
in green, red and blue) along with the fitted conics (in dotted contours
in green, red and blue). Our hypothesis of conic shaped specularity
is clearly valid in these examples.

The inner isocontours. To study the inner isocontours which
correspond to an arbitrary τ ∈ [0,1], specular reflections could be
approximated by conics using the Phong model as illustrated in fig-
ure 3(a). This approximation was also tested and validated with the
Blinn-Phong [2] model as illustrated in figure 3(b). Initially this
model was defined as an approximation of the Phong model, it is
now often presented by the computer graphics community as more
physically accurate than Phong’s and commonly used in computer
graphics. This model is physically better because it verifies the
Helmholtz equation [13].

3.2 Empirical Validation on Simulated Data
To validate our conic approximation of specularities, we used the
method of Fitzgibbon et al. [9] for ellipse fitting on different val-
ues of τ ∈ [0,1] on the specular term alone and on the diffuse and
specular terms combined. In an AR context, the diffuse and spec-
ular terms are correlated. For each value of τ , with a step of 0.05
between each value, we run 1000 scenarios of different light source
and camera poses. The error is computed using the distance from
Sturm et al. [35] between the fitted conic and the isocontours for
each scenario. The specular and diffuse terms are generated using
Phong [28] and Blinn-Phong [2] illumination models. The empir-
ical validation of our conic approximation for different values of
τ ∈ [0,1] is illustrated in figure 4.

The error is computed as a ratio of the geometric distance with
the diameter of the conic in pixels for τ = 0. The results shows
our approximation fits synthetic data with less than 1.5% of er-
ror confirming our conic representation to be reliable and accurate.
We need to prove, for multiple viewpoints, the existence of a fixed
quadric. We give an empirical validation in section 5.1.

For extended light sources such as fluorescent lamps, our conic
shaped specularity approximation is still relevant. In computer
graphics, an extended light source is generally represented as a
set of point light sources e.g a line for fluorescent lamp. We have
shown that for a single point light source, an associated conic can
be found. Furthermore, we consider the outline of the specularity as
the union of the associated conic for each point light source which
is close to a conic. Thus, for an extended light source, a conic is
still a good approximation for its associated specularity.

4 MODEL ESTIMATION

We showed that the shape of specularities on a plane surface could
be approximated by a conic. The main contribution of our method
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Figure 4: Empirical validation from simulated data. Our hypothesis
of conic shaped specularity is tested on the Phong (P) and the Blinn-
Phong (BP) illumination models for different values of intensity τ ∈
[0,1]. This hypothesis is tested for the specular term alone and for
the combination of the specular and diffuse terms. For each value of
τ, with a step of 0.05 between each value, we run 1000 scenarios of
different light source and camera poses. The error is computed using
the distance from Sturm et al. [35] between the fitted conic and the
isocontours for each scenario.

is to propose an empirical model for specularity prediction modeled
by a quadric Q associated with its projections on the plane S for a
given camera pose Π.

4.1 Overview

The pipeline of the proposed method is detailed as follows:

• Specularity detection in images

• Conic fitting on specularities on the planar surface

• Quadric reconstruction

• Perspective projection of the quadric to predict specularities
in the image.

4.2 Quadric Reconstruction

We use the approach of Cross et al. [7] which reconstructs a dual
quadric Q∗ from several dual conics C∗ in closed form by rewriting
the relation:

ΠQ∗Π> = C∗, (9)

into a linear system. By vectorizing Q,Π and C as Qv, B and Cv, we
can build the equation (10) equivalent to using specular reflections
as conics C and JOLIMAS as Q for n viewpoints with n≥ 3.

Mw= 0⇔


B1 −C∗1,v 0 . . . 0
B2 0 −C∗2,v 0
... 0 0

. . .
...

Bn 0 0 . . . −C∗n,v





Q∗v
α1

α2

...
αn

= 0, (10)

with Bi ∈ R6×10. The solutions of system (10) are retrieved by a
singular value decomposition (SVD) of M. Note that αi corresponds
to a scale such that: αic

∗
i,v = BiQ

∗
i,v for the viewpoint i. The quadric

reconstruction process is illustrated in figure 2. However, the sys-
tem (10) is sensitive to the fitting errors of the input conics. To
ensure the quality of the input conics used for the reconstruction,
we compare two methods of epipolar correction of the input conics
to ensure they respect the epipolar constraint for the quadric initial-
ization process.

Conic epipolar correction. The epipolar correction of Cross
et al. [7] consists of computing for each viewpoint the epipolar
lines imposed from the other viewpoints (2 lines per viewpoint).
Each conic is corrected by a non-linear refinement to fit the im-
posed epipolar lines. This correction presents some drawbacks. In-
deed, the process is limited to 3 viewpoints (corresponding to 4
epipolar lines for each viewpoint). The epipolar lines are estimated
from conics which are difficult to correct. The more the number of
viewpoints, the less effective the epipolar correction. Additionally,
recent approaches such as Reyes et al. [29] prove that the non-linear
refinement process is not required.

Indeed, a conic is defined in an unique manner for 5 non-aligned
points or 5 non-colinear lines in the dual space. For 3 viewpoints,
each conic is constrained by two pairs of lines from other view-
points which makes the dual conic estimation under-constrained.
Reyes et al. [29] approach estimates a new epipolar line from the
contours associated with the specularity in the image to compute the
unique dual conic. This process is repeated for each contour point
and viewpoint. The corrected conic fitting the 5 epipolar lines, such
that the Conic-Point distance according to Sturm et al. [35], is min-
imal, replaces the previous conic allowing a quadric reconstruction
where input conics respect the epipolar constraint. This method is
iterative, efficient and reliable. However, in our context, our recon-
struction cannot be limited to three viewpoints.

Non-linear refinement. To further improve the initialization,
the quadric reconstruction of Reyes [29] also includes a non-linear
refinement process minimizing the Conic-Point distance [35] be-
tween the quadric projections for each viewpoint and the associ-
ated contours. This method gives us a robust reconstruction of the
quadric for 3+ viewpoints in real-time and usable for specularity
prediction on unknown viewpoints. For these advantages, we used
Reyes et al. [29] method for the epipolar correction, initialization
and non-linear refinement.

5 EXPERIMENTAL RESULTS

To evaluate the relevance and accuracy of our proposed parametric
light source model, two experiments are conducted. We first an-
alyze the performance of JOLIMAS for specularity prediction on
synthetic data generated from the Phong and Blinn-Phong illumi-
nation models. Thereafter, this prediction ability is evaluated on
four real sequences including different light source types such as
bulb and fluorescent lamps.

5.1 Synthetic Data
We give the synthetic validation of our quadric approximation in
JOLIMAS model. The simulated camera has a 50mm lens with a
centered principal point. The images have 0.45×0.45mm pixels for
a resolution of 1000×1000. Our scene is composed of a 20×20cm
specular plane and we observe a moving specularity. We randomly
select viewpoints and a light source above the plane. From the
Phong and Blinn-Phong illumination models, for each τ ∈ [0,1],
100 quadric estimations are made using 100 viewpoints. We com-
pute the geometric distance between the observed specularity in the
image (which combines the diffuse and specular terms in real data)
with the associated quadric projection to the viewpoint.

As shown in figure 5, our quadric approximation is efficient
in producing accurate specularity predictions for τ ∈ [0,1] for
both Blinn-Phong and Phong illumination models with respectively
0.3% and 0.5% of error on average according to the scene dimen-
sion. However, the refinement process does not play a big part on
synthetic sequences where the conditions are ideal.

5.2 Real Data
We evaluated JOLIMAS on real sequences with three different light
sources and five different materials. The quadric is reconstructed
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Figure 5: Validation of our model by measuring the prediction error on
synthetic data. From 100 viewpoints, a fixed quadric is reconstructed
and its projection is compared to specularity contours of each view-
point using Sturm et al.’s distance [35]. For each value of τ = [0,1]
with a step of 0.05, 100 quadrics are estimated. We achieve an av-
erage error of 0.3% and 0.5% for the Blinn-Phong and Phong models
respectively confirming the relevance and accuracy of our empirical
model.
from conics fitted by the method of Fitzgibbon et al. [9]. The spec-
ularities are detected using the approach of Morgand et al. [25].
Camera poses are computed using a SLAM method [36]. The ac-
curacy of our quadric model is evaluated on real data to quantify the
prediction ability of our approach. We use the distance of Sturm et
al. [35] to measure the Conic-Contour distance to the ground truth.
To retrieve ground truth, we manually selected the specularities on
the different sequences including light bulb and fluorescent lamps.

Our results are illustrated in the table 1, the figure 1 and figure 6.

2D distance
(in pixels) Initialization Epipolar

correction
Non-linear
refinement

Light bulb 1
Steel table 110.3 82.2 62.8

Fluorescent lamp
Kitchen counter 135.8 76.4 23.1

Fluorescent lamp
Whiteboard 210.6 80.9 31.6

Light bulb 2
Electronic box 77.1 53.9 19.4

Light bulb 2
Plastic book 85.2 66.7 28.9

Table 1: Empirical validation of our model and its capacity to predict
specular reflections in images for 5 real sequences. The average
error of prediction per specularity is computed in pixels using Sturm
et al.’s distance [35] between the predicted conic and detected con-
tours specularity. This prediction is evaluated during three steps: the
initialization alone, the epipolar correction and the non-linear refine-
ment. We observed a significant decrease in error at each step.

In our context, the quadric initialization is not sufficient on its
own to predict specularity accurately. Estimating reliable specular-
ity contours is difficult in practice which highly impact the quadric
reconstruction quality. Adding an epipolar correction to the outlines
of the input conics provides better results. By combining the epipo-
lar correction with the non-linear refinement, we achieve a maxi-
mum error value of 62.8 pixels. For real sequences, JOLIMAS is
accurate and allows specularity prediction on new viewpoint for a
variety of light sources.

6 APPLICATION TO DYNAMIC RETEXTURING

A natural application of JOLIMAS is to reproduce a specularity on
a planar surface while changing the texture. Indeed, from a physi-

(a)

(b)

(c)

Figure 6: Specularity prediction on three real sequences a white-
board illuminated by a fluorescent lamp (a), an electronic box illumi-
nated from a light bulb (b) and a book illuminated by a light bulb (c).
Our virtual model is projected on the different planes to fit the ob-
served specularity (blue ellipses). We computed the symmetric from
the planes (whiteboard, electronic box and book cover) to display the
reconstructed quadric in JOLIMAS (blue ellipsoids), which happens
to lie on the light sources.

cal model of light source, specularity prediction is difficult without
computing numerous parameters of the light sources and materials.

One of the main interest of our model is to predict synthetic
viewpoints (unknown viewpoints where the camera never went in
the sequence). Our model is needed to predict specularities as op-
posed to simply detecting and fitting ellipses to the specularities.
Indeed, the quality of specularity detection cannot be guaranteed
for every viewpoint because of light conditions changes, specular-
ity detector limitations, imperfections on the planar surface (rough-
ness) and occluding objects in the scene. Thus, these issues could
affect the conic fitting process and cause jittering and temporal in-
coherence in the retexturing rendering. For applications such as
diminished reality, a stable prediction of specularities is needed to
guarantee a convincing rendering.

We propose a simple approximation based on the specularity
modeling by a 2D Gaussian function. Indeed, a specularity is de-
scribed as a high intensity area. Starting from the center of this
specularity, the intensity is progressively decreasing making the use
of a Gaussian function appropriate. The Gaussian intensity function
captures the following properties of the specularity: the smooth
variation of the intensity and the ellipticity of the isocontours. In
theory, the intensity distribution of a specularity may be more com-
plex as the intensity at an isocontour depends on the angle between
the incident light ray and the camera’s optical axe: this angle is
proportional to the isocontour’s eccentricity.

Our retexturing method is divided in several steps. Firstly, from
detected specularities in the sequence, a mean of the specularity
color is computed to fit the lighting conditions. The appropriate
Gaussian function is computed on the red, green and blue color
channels to match the specularity detected in the sequences. To
correctly draw our synthetic specularity on the texture associated
to the plane, two homographies are computed: H2, the transforma-
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Figure 7: Retexturing method illustrated on the light bulb/steel table sequence (a) by using a marble texture, the fluorescent lamp/kitchen counter
sequence (b) using a rock texturing, the light bulb/book sequence by switching the book cover (c) and the fluorescent lamp/whiteboard by
changing the content on the whiteboard (d). To simulate the specularity, we used a Gaussian function and transformed it onto the plane surface
using our specularity prediction to compute the transformation. The color of the specularity is computed from the specularities detected in the
images used for the quadric reconstruction. Without considering the diffuse term on the texture, we can realistically change the texture of the
planar surface using only the specular term predicted by JOLIMAS. The retexturing sequences can be found in the supplementary materials



tion from the texture to the planar surface and H1 transforming the
unit circle into the predicted conic (the conic is first transformed
by H−1

2 ). Our synthetic texture replaces the scene planar surface by
merging the texture with our Gaussian texture using H1 and trans-
forms the fusion onto the plane using H2. Three results of retextur-
ing are shown in figure 7.

A better rendering quality could be obtained by modeling the
diffuse term. However, the simplicity of our method provides
good results with room for improvement with additional parame-
ters (roughness or surface reflectance).

7 DISCUSSION AND CONCLUSION

We have presented a novel empirical and virtual model for spec-
ularity prediction called JOint LIght-MAterial Specularity (JOLI-
MAS). After observing the conic shape of a specularity on a planar
surface, a detailed demonstration on the Phong and Blinn-Phong
reflection models was conducted to confirm the relevance of this
approximation. In projective geometry a quadric projection gener-
ates a conic. By proving the existence of a fixed virtual quadric
whose projection is associated with a specularity on a viewpoint,
we demonstrated a link between photometry (light and materials)
and multiple view geometry (virtual quadric). This virtual quadric
is reconstructed from conics fitted to specularities. This model was
tested on synthetic and real sequences for various light source types
such as light bulbs and fluorescent lamps. The specularity predic-
tion ability of the model allows one to achieve dynamic retexturing
by changing the plane texture and rendering a specularity predicted
by JOLIMAS. The current state of JOLIMAS could be used to im-
prove the realism of AR applications by rendering specularities and
shadows on the augmentations. Moreover, this specularity predic-
tion aspect could greatly improve camera localization algorithms.
For computer graphics applications, the computation of the specu-
lar term could be quickly rendered using our predictions. We plan
to generalize the approach for multiple light sources by tracking
multiple specularities. We also plan to extend JOLIMAS to curved
surfaces. This will require one to study how the surface’s unflatness
deforms the specularity’s isocontours. In fact, the specularity shape
seems related to the second derivative of the surface [10]. Thus, a
link could be found between JOLIMAS and surface curvature.
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8 APPENDIX : ANALYSIS SPECULAR HIGHLIGHT ISOCON-
TOURS UNDER THE PHONG AND BLINN-PHONG MODELS

Further explanations on the isocontours analysis are detailed here.
We focused on the highlight’s outline which corresponds to an in-
tensity for τ = 0.

8.1 Formalization and notations
Our scene is composed of a light source L with a viewpoint V and
a planar surface S. We choose the world coordinate frame so that
the scene’s flat surface S ⊂ R3 is the (XY) plane. In other words,
S= {P∈R3|PZ = 0}. We can thus parameterize S by a point p∈R2

and define P = stk(p,0) with stk the stack operator for notation
simplicity:

stk(X,Y) =

(
X
Y

)
For Phong and Blinn-Phong illumination model, we use R̂ the

normalized direction of a perfectly reflected ray of light L̂, V̂ the
normalized direction pointing towards the viewer, n the glossiness
of the surface, ks, ka and kd the ratio of reflection of the specular,
ambient and diffuse term of incoming light, N̂ the normal of the

surface S and is, ia and id the incoming intensity on the surface for
the specular, ambient and diffuse term.

V̂ and R̂ are normalized vector such as: V̂(p) = µ(V−P) and
R̂(p) =−µ(R−P) with µ the normalization operator:

µ(A) =
A
||A||

.

8.1.1 Phong Model
The Phong intensity function of a 3D surface point p is given by:

I(p) = iaka + idkd(L̂(p) · N̂)+ isks(R̂(p) · V̂(p))n. (11)

At point p, the specular component Is is given by:

Is(p) = max(0,(R̂(p) · V̂(p))n), (12)

We want to analyze the isocontours of a specular highlight on
the surface S for a viewpoint V, a light source L and R =
stk(LX ,LY ,−LZ) . We first expand Eq.(13) for a general τ and then
solve it for τ = 1 and τ = 0.

Is(p) = τ. (13)

Is is a scalar product between two normalized vectors, we have
−1≤ Is ≤ 1.

The specular term is proportional to:

Is(p) ∝ R̂(p)>V̂(p), (14)

We expand (14) such as:

Is(p) ∝−µ(R−P)>µ(V−P), (15)

8.1.2 Blinn-Phong Model
The Blinn-Phong intensity function of a 3D surface point p is given
by:

I(p) = iaka + idkd(L̂(p) · N̂)+ isks(N̂ · Ĥ(p))n, (16)

with the half-way vector Ĥ:

Ĥ =
L̂(p)+ V̂(p)
||L̂(p)+ V̂(p)||

The specular term is defined by:

Is(p) ∝ N̂(p)>
L̂(p)+ V̂(p)
||L̂(p)+ V̂(p)||

, (17)

We expand (17) such as:

Is(p) ∝ N̂(p)>
µ(L−P)+µ(V−P)
||µ(L−P)+µ(V−P)||

, (18)

In the same manner as Phong model, we want to analyze the
isocontours of a specular highlight on the surface S for a viewpoint
V, a light source L and R = stk(LX ,LY ,−LZ) from the Eq.(13).

8.2 Derivation for a General τ

8.2.1 Phong Model
By multiplying the equation by ||R−P||||V−P||:

−(R−P)>(V−P) = τ||R−P||||V−P||. (19)

Squaring both sides and substracting the RHS, we obtain a bi-
variate quartic (in x and y):

((R−P)>(V−P))2− τ
2||R−P||2||V−P||2 = 0. (20)



By expanding and collecting the monomials of same degrees, we
have:

(d◦4) (1− τ
2)||P||4

(d◦3) 2(τ2−1)(R+V)>P||P||2

(d◦2) P>(RR>+2τ(1−2τ
2)RV>+

(2R>V− τ
2||R||2− τ

2||V||2)I)P

(d◦1) 2(−R>VR>−R>VV>+ τ
2||R||2V>+ τ

2||V||2R>)P

(d◦0) (R>V)2− τ
2||R||2||V||2.

We observe the sum of degrees 3 and 4 factors as:

(1− τ
2)||P||2P>(P−2R−2V).

It is thus small if τ is close to 1, meaning if we are close to the
highlight’s centre.

8.2.2 Blinn-Phong Model
The development of the specular term for a general τ in the Blinn-
Phong model is not detailed here as it does not bring interesting
information or special case.

Indeed, the analysis of the specular term for τ = 1 is not as
straightforward as the Phong illumination model one. For simplic-
ity purposes, we will only study the highlight’s outer ring for τ = 0.

8.3 Analysis of the highlight’s outer ring, τ = 0

8.3.1 Phong
In that case, we directly have (before squaring):

−(R−P)>(V−P) = 0.

This is a quadric, whose intersection with S gives the sought
conic. Expanding the above equation, we obtain:

||P||2− (R+V)>P+R>V = 0,

which is a quadric whose point matrix is:

Q=

[
I3 − 1

2 (R+V)

− 1
2 (R+V)> R>V

]
.

We define the orthographic projection on S as:

A=

1 0 0
0 1 0
0 0 0
0 0 1

 . (21)

The highlight’s outer ring is thus given by the conic:

C= A>QA=

[
I2 − 1

2 (R̄+ V̄)

− 1
2 (R̄+ V̄)> R>V

]
,

with R̄ def
= stk(RX ,RY ) and V̄ def

= stk(VX ,VY ) the orthographic pro-
jection of R and V on S respectively. C represents a real circle if
det(C)< 0 and an imaginary circle otherwise.

8.3.2 Blinn-Phong Model
We solve the equation for τ = 0:

N̂(p)>
µ(L−P)+µ(V−P)
||µ(L−P)+µ(V−P)||

= 0.

By expanding and collecting the monomials of same degrees, we
have:

(d◦4) PZ ||P||2

(d◦3) −2(LZPZ ||P||2−VZPZ ||P||2−P>LP2
Z +P>VP2

Z)

(d◦2) 4(LZPZP>V−VZPZP>L)+

P2
Z(||V||2−||L||2)+(L2

Z−V2
Z)||P||2

(d◦1) 2(VZPZ ||L||2−LZPZ ||V||2 +V2
ZP>L−L2

ZP>V)

(d◦0) L2
Z ||V||2−V2

Z ||L||2.

We note that, P = stk(p,0) with p = stk(pX ,pY ). With PZ = 0,
the degrees 4 and 3 vanish:

(d◦2) (L2
Z −V2

Z)||P||2

(d◦1) 2(V2
ZL>−L2

ZV>)P

(d◦0) L2
Z ||V||2−V2

Z ||L||2.

The monomials can be factored in the following form:

P̃>QP̃ = 0, (22)

where P̃ def
= stk(P,1) are the homogeneous coordinates of P. Matrix

Q ∈ R4×4 is symmetric and defined by:

Q=

[
L2

Z −V2
Z (V2

ZL−L2
ZV)>

V2
ZL−L2

ZV L2
Z ||V||2−V2

Z ||L||2.

]
(23)

We define the orthographic projection on S as:

A=

1 0 0
0 1 0
0 0 0
0 0 1

 .
The highlight’s outer ring is thus given by the conic:

C= A>QA=

[
L2

Z −V2
Z (V2

ZL̄−L2
ZV̄)>

V2
ZL̄−L2

ZV̄ L2
Z ||V||2−V2

Z ||L||2
]
,

with V̄ def
= stk(VX ,VY ) and L̄ def

= stk(LX ,LY ) are the orthographic
projection of V and L on S respectively. C represents a real circle.

8.4 Special case, analysis for τ = 1 for Phong Model
The study of τ = 1 concerns the points on the surface S of maximum
intensity. For Phong model, this study is interesting because for
τ = 1, the terms of degrees 3 and 4 vanish. The remaining terms
are:

(d◦2) P>[R−V]2×P

(d◦1) 2P>[V×R]×(V−R)

(d◦0) (R>V)2− τ
2||R||2||V||2.

They can be factored in the following form:

P̃>QP̃ = 0, (24)

where P̃ def
= stk(P,1) are the homogeneous coordinates of P. Ma-

trix Q ∈ R4×4 is symmetric and defined by:

Q=

[
[R−V]2× [V×R]×(V−R)

([V×R]×(V−R))> (R>V)2−||R||2||V||2
]



It thus represent a quadric, and P̂ lies at the intersection of this
quadric with S. The leading (3× 3) block of Q is [R−V]2× and
thus has rank 2. Therefore, rank(Q) ≥ 2. We show below that
QR̃ = QṼ = 0. This means rank(Q)≤ 2 and thus that rank(Q) = 2.
This also means that Q is semi-definite, either non-positive or non-
negative. The way we constructed the polynomial, starting from a
fraction Is =

a
b = τ = 1, with a ≤ b imply a− b ≤ 0 and thus that

Q is a point quadric representing the line containing R and V. Its
intersection with S then yields the expected solution for P̂.

Showing R̃ ∈ Q⊥. We have the leading part as:

[R−V]2×+[V×R]×(V−R).

The first term is expanded as:

[R−V]×[R−V]×R
= [R−V]×[V]×R

= [V]2×R− [R]×[V]×R
= V× (V×R)−R× (V×R).

The second term is expanded as:

(V×R)×R− (V×R)×R =−V× (V×R)+R× (V×R),

which sum to zero. The last element is:

(R−V)>[V×R]×R+(R>V)2−||R||2||V||2.

The first term is expanded as:

(R−V)>(R× (R×V)) =−V>(R× (R×V)) =−V>[R]2×V.

We saw that the second and third terms (the degree 0 coefficients
of the polynomial) are also equal to V>[R]2×V, which concludes.

8.5 Conclusion for a general τ

For both models, the analysis of Is shows a circle for τ = 0. From
the viewpoint of a camera pointing to the plane with V its optical
center, we obtain an conic for τ = 0 and an ellipse if the circle
is entirely seen in the image plane.d We empirically studied the
specularity shape on both models for a general τ in the submission.

Note that for Phong model, the analysis of Is shows a point on S
for τ = 1 which corresponds to the brightest point.
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