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3D conformation of a flexible fiber in a turbulent flow
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Abstract A growing number of studies is devoted to
anisotropic particles in turbulent flows. In most cases
the particles are assumed to be rigid and their deforma-
tions are neglected. We present an adaptation of classi-
cal computer vision tools to reconstruct from two differ-
ent images the 3D conformation of a fiber distorted by
the turbulent fluctuations in a von Kármán flow. This
technique allows us notably to characterize the fiber de-
formation by computing the correlation function of the
orientation of the tangent vector. This function allows
us to tackle the analogy between polymers and flexi-
ble fibers proposed by Brouzet et al. (Phys. Rev. Lett.
112(7) 074501 (2014)). We show that this function de-
pends on an elastic length `e which characterizes the
particle flexibility, as is the case for polymers, but also
on the fiber length L, contrary to polymers.

1 Introduction

The transport of fibers in turbulent flows is a key point
in several applications such as the paper and textile in-
dustries [15,22] and polymer processing [10]. In all these
cases, the quality of the final product depends on the
fiber orientation statistics (homogeneity and isotropy
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mainly). The dynamics of fibers in turbulent flows is
also relevant in environmental sciences. Indeed phyto-
planktons play a key role in the ocean by producing
organic matter and oxygen from the CO2 dissolved in
water. It is known that the rotation rate influences the
chemotaxis of these organisms [18] and that the shape of
a particle influences its rotation rate in a shear flow [9].

Since 2010, an increasing body of work has been de-
voted to the dynamics of anisotropic particles in turbu-
lence. In theoretical works on anisotropic particles, the
particle inertia is generally neglected. Then, the parti-
cles are assumed to have the same density as the carry-
ing fluid and to be smaller than the Kolmogorov scale
ηK , i.e. the smallest spatial scale of the flow. In that
case, the particles can be modeled as point particles
with a given aspect ratio Λ (Λ ∼ ∞ for thin rod and
Λ = 0 for thin discs). Thus the advection and the orien-
tation dynamics are decoupled. While the advection is
simply the one of a tracer following flow streamlines, the
rotation dynamics is determined by the local shear ac-
cording to Jeffery’s work [11]. As a consequence, fibers
are preferentially aligned with the vorticity [27,5]. The
‘point-fiber’ approach has also been used in various nu-
merical works such as in inhomogeneous and anisotropic
turbulence to investigate the influence of walls on the
fiber dynamics [20]. The first measurement of the orien-
tation dynamics of cylindrical particles in a turbulent
flow was made by Parsa et al. [25]. They used 4 high
speed cameras to reconstruct the particle orientation in
space. Another technique was used by Byron et al. [3]
with hydrogel particles seeded with small fluorescent
beads. They could determine the global rotation rate
of discs and rods with a classical Particle Image Ve-
locimetry (PIV) algorithm. For more complex 3D ob-
jects, Marcus et al. [21] proposed to determine the ori-
entation with a stereo-matching method, by minimizing
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the error between the projection of synthetic particles
and experimental images. Zimmermann et al. [35] also
used this technique to measure the rotation rate of a
large painted spherical particle. The recorded pattern
was then compared to a previous set of images to de-
termine the particle orientation.

In all these works, the particles are assumed rigid.
However, it is known that increasing the aspect ratio of
a particle increases its flexibility. This raises the ques-
tion of the influence of the deformation on the trans-
port. In a previous paper, we showed that the flexibil-
ity of a fiber cannot be neglected if its length is longer
than an elastic length `e = (EI)1/4/(ρηε)1/8, where EI
is the bending modulus of the fiber, ρ and η the fluid
density and viscosity, and ε the power injected in the
turbulence [2]. This length is defined by the equilibrium
between the injected power in turbulence and the power
needed to bend a fiber. We also proposed an analogy
between a fiber distorted by the turbulent fluctuations
and a semiflexible polymer in thermal equilibrium in
a good solvent. Measuring the 3D conformation of a
fiber is a key point to test this analogy. But it may also
be useful to determine some flow properties which can
be difficult to estimate otherwise. For instance, the in-
jected power in the turbulence ε can be known from the
measurement of the elastic length `e.

We present an experimental technique from 3D com-
puter vision to reconstruct the 3D conformation of a
fiber. By carefully adapting the method to our images
we are able to determine the conformation of flexible
fibers in a turbulent flow, from the images of two cam-
eras. In this paper, we restrict ourselves to fiber lengths
smaller or of the order of the flow integral scale and to
a single elastic length which lies in the inertial range.
We focus on the evolution of the correlation function
of the orientation of the tangent vector along the fiber,
which is a key quantity to understand the analogy with
polymers. We will see that the shape of this function is
similar in both cases, but that the particle length plays
a role for fibers contrary to polymers. The experimental
setup is described in the second section. The third sec-
tion is focused on the 3D reconstruction technique and
the fourth section presents the validation of the tech-
nique. Finally, our results are presented and discussed
in the last section, before the conclusions.

2 Experimental setup

Turbulence is generated in a von Kármán flow by the
counter-rotation of two impellers [28,35]. Whereas most
experiments are done in a cylindrical geometry, the flow
is here confined in a cubic box of 20×20×20 cm3 to re-
duce optical distorsions, cf. figure 1. The impellers have
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Fig. 1 Schematic of the experimental setup. The black cube in
the center of the vessel materializes the reconstruction volume
where the fiber conformation is measured.

a diameter of 2R=17 cm and are fitted with 6 straight
blades with height 0.5 cm. The distance between the
two impellers is 17 cm. They are set in motion by two
350 W asynchronous motors at a constant rotation fre-
quency F in the range [1;30] Hz. All the results pre-
sented here have been measured in water at ambient
temperature (ρ = 103 kg.m−3, η = 10−3 Pa.s) with
a rotation frequency of 15 Hz. The energy dissipation
rate ε is then around 6 W.kg−1. This flow has been ex-
tensively used to study different problems in turbulence
such as Lagrangian turbulence (see for instance [30] and
references therein), dynamo instability [23] or quan-
tum turbulence [29]. The mean flow is composed of two
toroidal cells with a large azimuthal shear at the center
and two poloidal recirculation cells due to the centrifu-
gal forces near the impellers [16,14]. If the small scales
of the flow are expected to be isotropic due to the high
Reynolds number, the large scales are anisotropic due
to the stretching induced by the poloidal cells [33,24].
The influence of the flow anisotropy is beyond the scope
of this study and will be addressed in future work.It is
known that the turbulence homogeneity is fairly good
close to the stagnation point and decreases as one ap-
proaches the impellers. That is why the reconstruction
volume is a cube with approximately 6 cm side length
centered at the stagnation point of the flow (see the
black cube in figure 1).

As discussed in the introduction, the fiber deforma-
tions are important when the fiber length L is larger
than the elastic length `e. Due to the size of the recon-
struction volume we restrict ourselves to fiber length
smaller than Lmax = 5 cm. Then, to maximize the de-
formation, we have to reduce the elastic length `e =

(EI)1/4/(ρηε)1/8. Working with water at a rotation fre-
quency of 15 Hz determines the denominator. Then
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the only free parameter to minimize this characteristic
length is the bending modulus, i.e. the Young modulus
E and the fiber diameter d (the area moment of inertia
I is proportional to d4). Softer materials with very low
Young modulus such as hydrogel are generally fragile.
They cannot be used to cast fibers as they would be
destroyed when hitting an impeller. We found a good
compromise with the silicone EC00, from Esprit Com-
posite, which has a Young modulus E = 40 ± 15 kPa.
Even if this incertitude is relatively large it does not af-
fect the elastic length significantly as it scales as E1/4.
Then the uncertainty on the elastic length is of the or-
der of 10 %. Since this silicone is very extensible (more
than 400 % of deformation before breaking), fibers are
not broken when an impact occurs. This translucent sil-
icone has been dyed with a manganese colorant powder
(particle size between 1-2 µm) to improve the contrast
for the particle detection. To make fibers the silicone
is first molded in a straight laiton tube with a diame-
ter of 600 µm and then cut to the desired length, here
between 1 and 5 cm. We have checked the fiber di-
ameter on several fibers with a microscope and found
d = 622± 13 µm. With these properties, the estimated
elastic length `e is around 3.4±0.3 mm which is nearly
1/3 of the length of the shortest fibers. One can then
expect that all fibers will be greatly distorted by the
flow. As the silicone density is 1.03, the fiber settling
speed is of the order of 1 cm.s−1. This velocity has to
be compared to the flow speed which is of the order of
1 m.s−1. Therefore buoyancy effects can be neglected
in the problem. Finally, to avoid inter-particle interac-
tions the total volume concentration of fibers is around
0.002 % (so between 3 and 20 fibers depending on their
length).

Since this paper focuses on the statistics of the fiber
deformations and not on its dynamics, the use of high
speed cameras is not necessary. Furthermore, to con-
verge the statistics with less data, the image acquisition
rate is low (a few images per second) to record uncorre-
lated conformations. However, the presented technique
could be applied directly to dynamical problems such
as the relaxation of the elastic strain or the existence
of elastic waves propagating along the fiber. Two IDS
UI-5240CP 1.3 Mpixels cameras with 20 mm lens are
used to film the fibers in the flow at two different an-
gles. The images are then processed with Matlab to
determine the 3D shape of the fiber. To increase the
contrast we used back-lighting with a LED-panel and a
LED spot put behind diffusers. These light sources al-
low us to image fibers with an exposure time of 0.3 ms,
chosen to avoid motion blur, and at a frequency of 5
images per second. This ensures that images are uncor-
related as the acquisition rate is 3 times smaller than

the rotation frequency of the impellers. The angle be-
tween the two axes of the cameras is nearly 90◦ and
is determined precisely during the calibration process
described in section 3.1.

3 3D reconstruction of the fiber conformation

3.1 Principle

We intuitively know that given two images, one can
reconstruct the observed 3D structure. This intuition
is based on the principle of triangulation, whereby the
sightlines associated to two corresponding points, one in
each image, meet in the 3D space where the sought 3D
point lies. This intuition forms the backbone of 3D com-
puter vision, and has been formalized and thoroughly
studied in the past few decades [8,6]. 3D computer vi-
sion has numerous applications, such as depth percep-
tion in computer-aided surgery [19].

Modeling one camera. The most popular camera model
used in 3D computer vision is the so-called pin-hole
camera. It abstracts the sensor and lens forming the
camera by a simple plane, onto which the image is
formed by intersecting a line joining the 3D point and
the center of projection of the camera. Optical distor-
tions, especially radial and tangential distortion, are
then modeled directly in the image space. In the pin-
hole model, a camera has 6 extrinsic and 5 intrinsic
parameters. The extrinsic parameters give the position
and orientation of the camera in space and are repre-
sented by a 3D rotation R and translation t in some
world coordinate frame. The intrinsic parameters give
the focal length f of the camera, the principal point
(the orthogonal projection of the center of projection
onto the image plane) with coordinates cx, cy and the
skewness τ and aspect ratio α of the pixels. They are
held in an upper triangulation 3 × 3 matrix K whose
bottom-right entry is fixed to one:

K =

αf τ cx
0 f cy
0 0 1

 . (1)

As will be seen shortly, this representation allows one
to easily project 3D points to the image using homoge-
neous coordinates. More precisely, let i ∈ {1, 2} be the
camera index, we have the extrinsic parameters as Ri, ti
and the intrinsic parameters as Ki. We now define the
3× 4 projection matrix Pi as:

Pi ∝ Ki

 1 0 0 0

0 1 0 0

0 0 1 0

Si,with Si =

 Ri ti

0 0 0 1

 . (2)
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The proportionality arises from the use of homogeneous
coordinates. In that system of coordinates two points
Q1(X1, Y1, Z1, H1) and Q2(X2, Y2, Z2, H2) are identical
(Q1 ∝ Q2) if:

(X1, Y1, Z1, H1) = λ(X2, Y2, Z2, H2), λ ∈ R?. (3)

For a 3D point whose world coordinates are (X,Y, Z)>,
we construct its homogeneous coordinates, defined up
to scale, as (X,Y, Z, 1)>. The advantage of these coor-
dinates is that the projection operation is then simply
defined as qi ∝ PiQ, where qi represents the homoge-
neous coordinates of the projected point in image i.

Modeling two cameras. The geometry of two cameras
is specifically called the epipolar geometry [13]. For the
pin-hole camera model, the epipolar geometry is repre-
sented by the 3×3 fundamental matrix F . This matrix
can be constructed from the two projection matrices
P1, P2. Given a point with homogeneous coordinates q1
in the first image, the fundamental matrix associates
the homogeneous coordinates of a line l2 ∝ Fq1 to it
in the second image. This line is called the epipolar
line, and represents the projection of the sightline of q1
for the first camera into the second camera. It is ob-
vious that the corresponding point q2 of q1 in the sec-
ond image must lie on l2. We thus have the following
algebraic constraint, called the fundamental equation:
q2 · Fq1 = 0. We will use this constraint in the next
section to match the two images of a fiber, finding cor-
responding points by intersecting the fiber’s detected
image curve with epipolar lines. The epipolar lines can
obviously be constructed in the first image from the
second image, and this is done by using l1 ∝ F>q2.

Calibrating a pair of cameras. The process of calibra-
tion determines the intrinsic and extrinsic parameters
of the two cameras, from which the two projection ma-
trices P1 and P2 are formed, as well as the fundamental
matrix F . Calibration is done by showing the camera an
object with known structure. In practice, the calibra-
tion object is constructed by printing a checkerboard
pattern using a standard laser printer, which is then
plasticized to make it waterproof and to increase its
rigidity. Several image pairs of the calibration object
are recorded with various orientations, and calibration
is solved by Bouguet’s method [1]. This process also
estimates the radial and tangential distortion parame-
ters, which can be neglected in our case. These will be
systematically used to ‘undistort’ any image collected
by the cameras from then on. In practice, it is impor-
tant that the image pairs of the calibration object are
recorded in situ. Indeed, this will guarantee that the cal-
ibration is valid where it needs to be, in other words,

where we will need to reconstruct the fibers’ 3D con-
formation. It is also important because our experimen-
tal setup has two interfaces, between air and Plexiglas,
and Plexiglas and water. This raises the question of
adapting the pin-hole and epipolar models to this spe-
cific configuration, as was studied in [4]. It was however
showed in a recent paper that calibrating in situ natu-
rally adapts the models’ parameters to cope with this
case very well, especially for medium field-of-view cam-
eras [31].

Triangulating points. We are now back to our initial
intuition that 3D points can be reconstructed by in-
tersecting two corresponding sightlines from cameras
with distinct centers of projection. Concretely, trian-
gulation is the process of finding Q from q1, q2, P1, P2.
The camera matrices P1, P2 were found by calibration,
and the corresponding points q1, q2 are found by the
matching process described in the next section. Alge-
braically, the triangulation constraints are written as
q1 ∝ P1Q and q2 ∝ P2Q. One notices that each projec-
tion gives two constraints (as the predicted image point
PiQ must match the two coordinates of the measured
image point qi), and so a total of four constraints for
the two images, but that we have only three unknowns
in the 3D point Q. Geometrically, this is because one
has to intersect the two sightlines, which may not meet.
The most successful approach is to find the 3D point
whose image projections are closest to the measured
image points. This problem has an analytical solution
which was given in [7].

3.2 Fiber reconstruction

This section is devoted to the description of how the
3D fiber conformation is determined from two images.
In elasticity, the deformation of a slender object is de-
fined by its neutral line. For an homogeneous cylinder,
as is the case here, the neutral line corresponds to the
center of the cross section. To determine the position
of this line, two approaches are possible. The first one
consists in reconstructing directly the fiber centerline
by an estimation in each image of its projection, and a
triangulation of these points. In the second method, the
fiber edges are determined in each image and then tri-
angulated in space. The neutral axis is then determined
from the position of the edge points in space. Both
techniques have been tested and give similar results
for weakly distorted fibers. However if one projection
of a fiber intersects itself or presents a large curvature,
the approach based on the centerline frequently gives
inaccurate results preventing the fiber reconstruction.
For these cases the edge technique seems more robust.
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We will thus only discuss the results obtained with this
method in the following.

Fig. 2 Raw images of distorted fibers in a turbulent flow. The
result of the contour detection and of its orientation is presented
in the inset where the crosses represent the edge points and the
color, from red to yellow, represents the curvilinear coordinate
(we display only one half of the points for clarity).

First, for each image, the edge coordinates are de-
termined to sub-pixel precision using a Matlab function
developed by Trujilo et al. [32]. This routine returns the
point coordinates and the local normal vector to the
edge. Each fiber is then individualized by connecting
each point to its nearest neighbors. If two fibers inter-
sect on an image they are considered as a single object
after this step. Then, for each object, the fiber extremi-
ties are determined using the approach given in Lee [12]
and matched from one image to the other. The edges
are then oriented starting from the matched extremities
in order to define a curvilinear coordinate system. To
define the orientation one starts from the extremity and
moves from closest neighbor to closest neighbor. This
is not possible if there is an overlap of two parts of the
same fiber or of two different fibers. To overcome this,
we calculate the angle between the mean tangent vector
calculated over the last 10 points and the vector linking
the current point to its closest neighbor. If this angle is
larger than some maximal value, we look for the closest
point which is in the direction of the mean tangent vec-
tor and with the local normal vector aligned with the
mean local normal vector calculated over the last 10
points. An illustration of the sorting of the edge points
is presented in figure 2. Then each point of the edge
of the fiber in image 1 is matched with the fiber edge
points in image 2. Since the fiber is distorted, the epipo-
lar line may intersect the contour at several locations.

However, since the contour is oriented it is possible to
eliminate false matched points by moving from closest
neighbor to closest neighbor in image 1. In that case
the matching point is the closest point to the previous
point in image 2.

Once we found the two points q1 and q2 on each
image, we determine the 3D coordinates of point Q by
triangulation. At the end of this process, we obtain a set
of 3D data points representing the fiber. We then need
to define the centerline coordinates. First the curvilin-
ear coordinate s is defined for each points Q by the
length of the shortest path between Q and the matched
extremity used previously. This shortest path is deter-
mined by making a graph from the point coordinates
defining the weight of each link by the distance between
points. Links larger than the fiber diameter are removed
in order to isolate each fiber. Then the centerline coor-
dinate is found by fitting the data points with a cubic
spline function. The smoothing parameter is chosen so
that the maximum curvature of the reconstructed fiber
does not exceed the inverse of the fiber diameter, as is
the case in linear elasticity.

3.3 Validation

In practice a fiber might not be entirely in the volume
seen by both cameras. In that case, only a part of the
fiber can be reconstructed. It is not possible to use this
fiber for the statistics as the fit imposes that the fiber
curvature is equal to zero at the fiber extremities. To
eliminate these data, we only keep fibers with an esti-
mated length Le of the order of the real fiber length L,
in practice Le = L± 10 %.

An illustration of the reconstruction is represented
in figure 3 where the plain line is for the fitted curve and
the scattered data for the raw data points. Note that for
clarity, the distance between the raw data points and
the fitted curve has been multiplied by 2. The validity of
the reconstruction can be first emphasized by compar-
ing the estimated length Le with the fiber length L. It
has to be noticed that the way fibers are manufactured
gives an uncertainty on L of the order of 1 mm. One

Fiber length: L [cm] 1 2 3 5
Estimated length: 〈Le〉 [cm] 1.01 1.92 2.90 5.16

Fluctuation rate: Lrms
e /〈Le〉 [%] 3.8 3.6 3.2 3.0

Number of conformations 8868 1501 791 296

Table 1 Comparison of the measured length and the fluctuation
rate for all fiber length. The last row indicates the number of
fibers used to compute the different presented statistics.

can see in table 1 that the number of fibers used for av-
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Fig. 3 Exemple of fiber reconstruction: gray points correspond
to raw data from the 3D reconstruction and the red curve is
the cubic spline fit. Exemple of fiber reconstruction: the gray
points correspond to raw data from the 3D reconstruction and
the red curve is the cubic spline fit. For clarity, nearly 70 % of raw
data points were removed randomly and the distance between the
centerline and the data was multiplied by 2.

eraging depends on the fiber length. There are two rea-
sons for that. First, the fiber concentration was smaller
for long fibers to facilitate the fiber reconstruction and
prevent the fiber interaction. Then, longer fibers were
trapped close to the impellers more frequently, as ob-
served for a large rigid sphere by Machicoane et al. [17].
Therefore, longer fibers enter in the reconstruction vol-
ume less frequently. However, we have checked that the
amount of conformation was enough to converge the
different statistics we present in each cases. In table 1,
we can also see that the estimation of the mean values
of the estimated length 〈Le〉, where 〈·〉 stands for an
ensemble average and the fiber length are equal within
the manufactured precision. This result may be trivial
as only fibers in the range [0.9 ; 1.1]L are selected for
the analysis. However the distribution of the measured
length is strongly peaked. This is shown by the value
of the ratio of the standard deviation over the mean of
the estimated length Lrms

e /〈Le〉 which is nearly twice
as small as the one of a randomly distributed variable.
This also shows that, as for laminar flows, the stretching
of the fiber is negligible as compared to the bending [26]
and that the fiber can be considered as inextensible.

In addition, the technique used here allows us to
determine the fiber diameter. Indeed, as the two cam-
era axes are perpendicular, the edges of the projec-

tion of one image correspond to the midline of the
fiber projection in the second image. Then the trian-
gulation of the intersection of the epipolar line with
the fiber edge defines a square with side length equal
to d, see figure 4. Then the fiber diameter is mea-
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Fig. 4 Triangulation of points from the edges of a cylinder. The
red (resp. green) line represents the edges measured in image 1
(resp. 2). The triangulated points are at the intersection of the
sightlines from cameras 1 and 2. As shown at the bottom of the
image, they define a square tangent to the cylinder with side
length equal to d.

sured by determining the distance between the recon-
structed points and the fitted line. We found here
dm = 626±30 µm. As mentioned in section 2, the fiber
diameter has been measured independently with a mi-
croscope to d = 622± 10 µm. These two measurements
are in very good agreement.

In this section we have shown that the reconstructed
points are at a distance d/

√
2 of the neutral line fitted

with the spline function. We have also seen that the
length of the fitted spline is close to the real fiber length.
These observations validate the reconstruction process.
We now focus on the evolution of the tangent vector
along the fiber.

4 Results and discussion

In Brouzet et al. [2], an analogy between a wormlike
chain polymer and a flexible fiber in a turbulent flow
has been drawn. Indeed the evolution of the norm of the
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Fig. 5 Evolution of the correlation function for the experimental
data in plain (blue) line, the best exponential fit (black, dashed
line). In the inset, zoom for small ` of the correlation function
(plain line) and the dashed dotted line represents the cardinal
sine function sin(x)/x, cf. text for details.

end to end vector Re, linking the two extremities, as a
function of the fiber or polymer length seems similar in
both cases. In the wormlike chain model [34] this norm
depends on two independent parameters, the polymer
length L and the persistence length lp:

〈R2
e〉 = 2Llp − 2l2p

(
1− e−L/lp

)
. (4)

The persistence length lp is related to the polymer rigid-
ity and is defined by EI/lp = kT where EI is the bend-
ing modulus and kT the thermal energy.

In fact in polymer theory, this relation is an integral
relation and is derived from the correlation function of
the orientation of the tangent vector:

C(`) = 〈t(s) · t(s+ `)〉s = e−`/lp . (5)

Here t is the tangent vector (with t · t = 1), s and ` are
2 curvilinear coordinates and 〈·〉s represents a double
averaging process over realizations and over the curvi-
linear coordinate s. We propose to measure this correla-
tion function for different fiber lengths in the turbulent
von Kármán flow described earlier. The results are then
compared to the wormlike chain prediction.

We first focus on the correlation function for the
longest fibers (L = 5 cm). This function is presented
in figure 5 where the distance ` has been normalized
by the elastic length scale `e. In this graph the exper-
imental curve (plain blue line) is compared to the ex-
ponential law predicted for wormlike chain polymers,

cf. equation (5). The global evolution is well captured
by this prediction with a persistence length lp ' 7.5`e.
However the inset of figure 5 shows that at short length
` the evolution of the experimental curve is quadratic
(C(`) ∼ 1 − α`2) whereas for an exponential law, the
evolution is linear (exp(−`/lp) ∼ 1− `/lp).

In fact, one can easily show that this linear behavior
is not possible either for fibers or for wormlike chains.
Indeed the Taylor expansion of the correlation function
gives:

〈t(s)·t(s+ `)〉 ' 〈t(s) · t(s)〉+ `〈t(s) · ∂st(s)〉+
`2

2
〈t(s) · ∂sst(s)〉+

`3

6
〈t(s) · ∂ssst(s)〉+O(`4).

(6)

By definition the tangent vector is normalized. Thus it
has to verify the two relations t ·t = 1 and ∂s(t ·t) = 0.
Therefore for small `, the correlation of the orientation
can be written as:

〈t(s)·t(s+ `)〉 ' 1− 〈κ2〉`2/2− 〈∂sκ2〉`3/4 + ..., (7)

in contradiction with the simple exponential approxi-
mation. Here κ2 = ∂st · ∂st is the local curvature of
the fiber. As this relation does not involve any physical
properties of the fiber the same behavior is expected for
polymer. Furthermore this relation enlightens the fact
that the persistence length is a function of the local
curvature of the fiber. This idea is already present in
Brouzet et al. [2]. They explained that if the fiber length
L is equal to the elastic length `e, the correlation func-
tion should be equal to sin θ/θ, where θ = `/`e. Indeed,
when the fiber length is equal to the elastic length, the
deformation is an arc of circle with radius R > `e. Then,
the correlation function is simply:

t(s) · t(s+ `) = cos `/R. (8)

The correlation function can be found by averaging over
all configurations, i.e. from a straight line to an arc of
circle of radius `e:

C(`) = 〈t(s) · t(s+ `)〉

=
`

L
sin

L

`
=
`e
`

sin
`

`e
. (9)

We have compared this prediction to our measurements
in the inset of figure 5. We can see that the cardinal
sine (dashed dotted line) fits very well the experimen-
tal curve with no adjustable parameters for ` < 0.5`e.
Therefore, the Taylor expansion of the cardinal sine
(sin(x)/x ∼ 1−x2/6) gives a relation between the elas-
tic length `e and the mean curvature 〈κ2〉:

〈κ2〉 =
1

3`2e
. (10)
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Fig. 6 Evolution of the correlation length as a function of the
fiber length.

We focus now on the evolution of the correlation
function with the fiber length for the same elastic
length `e. We can see in figure 6 that the experimen-
tal curve does not superimpose for all lengths. Whereas
the correlation functions overlap for the shortest and
the longest fibers, they decrease more rapidly for in-
termediate lengths. This is in contradiction with the
wormlike chain model which assumes that the correla-
tion function depends only on the persistence length lp.
However, for long enough fibers (L > 1 cm) two regimes
are visible. For large `, the correlation function is nearly
linear in a log-lin plot (see figure 6). So this part can still
be modeled by an exponential law but with a charac-
teristic length which depends also on the fiber length.
For small `, the correlation function is still quadratic
but the mean curvature κ̄ = (〈κ2〉)1/2 changes with the
fiber length. Then the fit with the cardinal sine seems
to be valid only for the shortest and the longest fibers.
The relation between the mean curvature and the elas-
tic length does not hold for the intermediate lengths.
An evaluation of κ̄ with the elastic length using equa-
tion (10) will underestimate the value by nearly 10 %
for the 2 cm fiber.

As the shape of the correlation function varies with
the fiber length in turbulence, the analogy between the
deformations of a fiber in a turbulent flow and the dis-
torsions of a polymer submitted to thermal fluctuation
is not rigorous. We may now wonder if this result could
also have been observed without the 3D reconstruction
tools we have developed.

0 1 2 3 4 5 6
0

5

10

15

L [ cm]

〈
R

2 e
〉
[c
m

2
]

Fig. 7 Mean value of the norm of the end to end vector 〈R2
e 〉 as a

function of the fiber length. The blue dot is the measurement and
the dashed line the best fit from the prediction of the wormlike
chain theory. The uncertainty scales roughly with the symbol size.

In Brouzet et al., the analogy was based on the non
linear evolution of the norm of the end to end vector
〈R2

e〉 when the fiber length is increased. The same quan-
tity is presented in figure 7 where the measurement un-
certainty is nearly the symbol size. The dashed line rep-
resents the best fit of the evolution of the norm of the
end-to-end vector as a function of the fiber length, cf.
equation (4), where the persistence lp is considered here
as a fit parameter and is noted lp,Re in the following.
We can see here that with only this integral quantity it
is difficult to assess the analogy between polymers and
flexible fibers as the fit with lp,Re ' 6`e is very close to
the experimental points. The 3D reconstruction allows
one to access local quantities, such as the correlation
function, which are more sensitive and allowed us to
clearly show that the fiber length plays an important
role in the fiber deformation in turbulence contrary to
wormlike chain polymer.

Note that in Brouzet et al. the persistence length
was equal to 2`e and not 6`e as is the case here. This
difference is not due to the difference of the experimen-
tal techniques used in both studies but is related to the
flow correlation. Indeed, in turbulence the flow is corre-
lated at scale r smaller than the so called integral scale
LI with a correlation Ct(r) ∼ r2/3. As the elastic length
is here 10 times smaller than in our previous study, the
turbulent fluctuations at the origin of the deformation
do not have the same correlation. Then it is expected
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that the relation between the persistence length and the
elastic length differs in both studies. Beyond the poly-
mer analogy, this observation opens new perspectives
to model the fiber deformation in turbulence which ap-
pears to be a very rich problem.

5 Conclusion

In this study we used the classical epipolar geometry to
determine fiber conformations in a turbulent von Kár-
mán flow. The measurement of the correlation function
of the orientation of the tangent vector along the fiber
shows that the analogy between flexible fibers distorted
by turbulent fluctuations and wormlike chain polymers
submitted to thermal fluctuations is not always true.
In both cases, the correlation function C(s) is propor-
tional to 1−〈κ2〉s/2 for s� `e and, for s� `e, it can be
approximated by an exponential law exp(−s/lp). How-
ever we showed that for flexible fibers, the persistence
length is a function of both the elastic length `e and the
fiber length L whereas it depends only on the elasticity
for polymers. This dependence on the fiber length is
directly related to the flow correlation, which is scale-
dependent in turbulence.

The relation between the flow properties and the
fiber statistics deserves to be studied in more details. As
is shown by equation (7), there is a direct relation be-
tween the correlation function and the local curvature.
A better understanding on the physics of the deforma-
tion might be possible by investigating the curvature
statistics and the tools developed here can be easily
adapted to this task. Finally, the measurement of fiber
deformations might allow one to determine some flow
properties. For instance, the estimation of the persis-
tence length for very long fibers seems related to the
flow integral scale. It is also possible to estimate the tur-
bulent dissipation rate ε by looking at the correlation
function for short distances. Indeed, by fitting the cor-
relation function with a quadratic function, it is possi-
ble to estimate the elastic length `e = (EI)1/4/(ρηε)1/8

within 10 %. This gives ε within a relatively large range
as it can be overrestimated by a factor of 2. This kind of
measurement could however be useful in oceanography
as it allows a rapid estimation of the local dissipation
rate.
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